Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.254.2.6
      1 /*	$NetBSD: kern_synch.c,v 1.254.2.6 2009/04/23 17:47:13 snj Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.254.2.6 2009/04/23 17:47:13 snj Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #if defined(PERFCTRS)
     85 #include <sys/pmc.h>
     86 #endif
     87 #include <sys/cpu.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/sched.h>
     90 #include <sys/sa.h>
     91 #include <sys/savar.h>
     92 #include <sys/syscall_stats.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/lockdebug.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/lwpctl.h>
     98 #include <sys/atomic.h>
     99 #include <sys/simplelock.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #include <dev/lockstat.h>
    104 
    105 static u_int	sched_unsleep(struct lwp *, bool);
    106 static void	sched_changepri(struct lwp *, pri_t);
    107 static void	sched_lendpri(struct lwp *, pri_t);
    108 static void	resched_cpu(struct lwp *);
    109 
    110 syncobj_t sleep_syncobj = {
    111 	SOBJ_SLEEPQ_SORTED,
    112 	sleepq_unsleep,
    113 	sleepq_changepri,
    114 	sleepq_lendpri,
    115 	syncobj_noowner,
    116 };
    117 
    118 syncobj_t sched_syncobj = {
    119 	SOBJ_SLEEPQ_SORTED,
    120 	sched_unsleep,
    121 	sched_changepri,
    122 	sched_lendpri,
    123 	syncobj_noowner,
    124 };
    125 
    126 callout_t 	sched_pstats_ch;
    127 unsigned	sched_pstats_ticks;
    128 kcondvar_t	lbolt;			/* once a second sleep address */
    129 
    130 /* Preemption event counters */
    131 static struct evcnt kpreempt_ev_crit;
    132 static struct evcnt kpreempt_ev_klock;
    133 static struct evcnt kpreempt_ev_immed;
    134 
    135 /*
    136  * During autoconfiguration or after a panic, a sleep will simply lower the
    137  * priority briefly to allow interrupts, then return.  The priority to be
    138  * used (safepri) is machine-dependent, thus this value is initialized and
    139  * maintained in the machine-dependent layers.  This priority will typically
    140  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    141  * it can be made higher to block network software interrupts after panics.
    142  */
    143 int	safepri;
    144 
    145 void
    146 sched_init(void)
    147 {
    148 
    149 	cv_init(&lbolt, "lbolt");
    150 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    151 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    152 
    153 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: critical section");
    155 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "defer: kernel_lock");
    157 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "immediate");
    159 
    160 	sched_pstats(NULL);
    161 }
    162 
    163 /*
    164  * OBSOLETE INTERFACE
    165  *
    166  * General sleep call.  Suspends the current process until a wakeup is
    167  * performed on the specified identifier.  The process will then be made
    168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170  * before and after sleeping, else signals are not checked.  Returns 0 if
    171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172  * signal needs to be delivered, ERESTART is returned if the current system
    173  * call should be restarted if possible, and EINTR is returned if the system
    174  * call should be interrupted by the signal (return EINTR).
    175  *
    176  * The interlock is held until we are on a sleep queue. The interlock will
    177  * be locked before returning back to the caller unless the PNORELOCK flag
    178  * is specified, in which case the interlock will always be unlocked upon
    179  * return.
    180  */
    181 int
    182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183 	volatile struct simplelock *interlock)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	kmutex_t *mp;
    188 	int error;
    189 
    190 	KASSERT((l->l_pflag & LP_INTR) == 0);
    191 
    192 	if (sleepq_dontsleep(l)) {
    193 		(void)sleepq_abort(NULL, 0);
    194 		if ((priority & PNORELOCK) != 0)
    195 			simple_unlock(interlock);
    196 		return 0;
    197 	}
    198 
    199 	l->l_kpriority = true;
    200 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    201 	sleepq_enter(sq, l, mp);
    202 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    203 
    204 	if (interlock != NULL) {
    205 		KASSERT(simple_lock_held(interlock));
    206 		simple_unlock(interlock);
    207 	}
    208 
    209 	error = sleepq_block(timo, priority & PCATCH);
    210 
    211 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    212 		simple_lock(interlock);
    213 
    214 	return error;
    215 }
    216 
    217 int
    218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    219 	kmutex_t *mtx)
    220 {
    221 	struct lwp *l = curlwp;
    222 	sleepq_t *sq;
    223 	kmutex_t *mp;
    224 	int error;
    225 
    226 	KASSERT((l->l_pflag & LP_INTR) == 0);
    227 
    228 	if (sleepq_dontsleep(l)) {
    229 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    230 		return 0;
    231 	}
    232 
    233 	l->l_kpriority = true;
    234 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    235 	sleepq_enter(sq, l, mp);
    236 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    237 	mutex_exit(mtx);
    238 	error = sleepq_block(timo, priority & PCATCH);
    239 
    240 	if ((priority & PNORELOCK) == 0)
    241 		mutex_enter(mtx);
    242 
    243 	return error;
    244 }
    245 
    246 /*
    247  * General sleep call for situations where a wake-up is not expected.
    248  */
    249 int
    250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    251 {
    252 	struct lwp *l = curlwp;
    253 	kmutex_t *mp;
    254 	sleepq_t *sq;
    255 	int error;
    256 
    257 	if (sleepq_dontsleep(l))
    258 		return sleepq_abort(NULL, 0);
    259 
    260 	if (mtx != NULL)
    261 		mutex_exit(mtx);
    262 	l->l_kpriority = true;
    263 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    264 	sleepq_enter(sq, l, mp);
    265 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    266 	error = sleepq_block(timo, intr);
    267 	if (mtx != NULL)
    268 		mutex_enter(mtx);
    269 
    270 	return error;
    271 }
    272 
    273 #ifdef KERN_SA
    274 /*
    275  * sa_awaken:
    276  *
    277  *	We believe this lwp is an SA lwp. If it's yielding,
    278  * let it know it needs to wake up.
    279  *
    280  *	We are called and exit with the lwp locked. We are
    281  * called in the middle of wakeup operations, so we need
    282  * to not touch the locks at all.
    283  */
    284 void
    285 sa_awaken(struct lwp *l)
    286 {
    287 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    288 
    289 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    290 		l->l_flag &= ~LW_SA_IDLE;
    291 }
    292 #endif /* KERN_SA */
    293 
    294 /*
    295  * OBSOLETE INTERFACE
    296  *
    297  * Make all processes sleeping on the specified identifier runnable.
    298  */
    299 void
    300 wakeup(wchan_t ident)
    301 {
    302 	sleepq_t *sq;
    303 	kmutex_t *mp;
    304 
    305 	if (cold)
    306 		return;
    307 
    308 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    309 	sleepq_wake(sq, ident, (u_int)-1, mp);
    310 }
    311 
    312 /*
    313  * OBSOLETE INTERFACE
    314  *
    315  * Make the highest priority process first in line on the specified
    316  * identifier runnable.
    317  */
    318 void
    319 wakeup_one(wchan_t ident)
    320 {
    321 	sleepq_t *sq;
    322 	kmutex_t *mp;
    323 
    324 	if (cold)
    325 		return;
    326 
    327 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    328 	sleepq_wake(sq, ident, 1, mp);
    329 }
    330 
    331 
    332 /*
    333  * General yield call.  Puts the current process back on its run queue and
    334  * performs a voluntary context switch.  Should only be called when the
    335  * current process explicitly requests it (eg sched_yield(2)).
    336  */
    337 void
    338 yield(void)
    339 {
    340 	struct lwp *l = curlwp;
    341 
    342 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    343 	lwp_lock(l);
    344 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    345 	KASSERT(l->l_stat == LSONPROC);
    346 	l->l_kpriority = false;
    347 	(void)mi_switch(l);
    348 	KERNEL_LOCK(l->l_biglocks, l);
    349 }
    350 
    351 /*
    352  * General preemption call.  Puts the current process back on its run queue
    353  * and performs an involuntary context switch.
    354  */
    355 void
    356 preempt(void)
    357 {
    358 	struct lwp *l = curlwp;
    359 
    360 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    361 	lwp_lock(l);
    362 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    363 	KASSERT(l->l_stat == LSONPROC);
    364 	l->l_kpriority = false;
    365 	l->l_nivcsw++;
    366 	(void)mi_switch(l);
    367 	KERNEL_LOCK(l->l_biglocks, l);
    368 }
    369 
    370 /*
    371  * Handle a request made by another agent to preempt the current LWP
    372  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    373  *
    374  * Character addresses for lockstat only.
    375  */
    376 static char	in_critical_section;
    377 static char	kernel_lock_held;
    378 static char	is_softint;
    379 static char	cpu_kpreempt_enter_fail;
    380 
    381 bool
    382 kpreempt(uintptr_t where)
    383 {
    384 	uintptr_t failed;
    385 	lwp_t *l;
    386 	int s, dop;
    387 
    388 	l = curlwp;
    389 	failed = 0;
    390 	while ((dop = l->l_dopreempt) != 0) {
    391 		if (l->l_stat != LSONPROC) {
    392 			/*
    393 			 * About to block (or die), let it happen.
    394 			 * Doesn't really count as "preemption has
    395 			 * been blocked", since we're going to
    396 			 * context switch.
    397 			 */
    398 			l->l_dopreempt = 0;
    399 			return true;
    400 		}
    401 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    402 			/* Can't preempt idle loop, don't count as failure. */
    403 		    	l->l_dopreempt = 0;
    404 		    	return true;
    405 		}
    406 		if (__predict_false(l->l_nopreempt != 0)) {
    407 			/* LWP holds preemption disabled, explicitly. */
    408 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    409 				kpreempt_ev_crit.ev_count++;
    410 			}
    411 			failed = (uintptr_t)&in_critical_section;
    412 			break;
    413 		}
    414 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    415 		    	/* Can't preempt soft interrupts yet. */
    416 		    	l->l_dopreempt = 0;
    417 		    	failed = (uintptr_t)&is_softint;
    418 		    	break;
    419 		}
    420 		s = splsched();
    421 		if (__predict_false(l->l_blcnt != 0 ||
    422 		    curcpu()->ci_biglock_wanted != NULL)) {
    423 			/* Hold or want kernel_lock, code is not MT safe. */
    424 			splx(s);
    425 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    426 				kpreempt_ev_klock.ev_count++;
    427 			}
    428 			failed = (uintptr_t)&kernel_lock_held;
    429 			break;
    430 		}
    431 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    432 			/*
    433 			 * It may be that the IPL is too high.
    434 			 * kpreempt_enter() can schedule an
    435 			 * interrupt to retry later.
    436 			 */
    437 			splx(s);
    438 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    439 			break;
    440 		}
    441 		/* Do it! */
    442 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    443 			kpreempt_ev_immed.ev_count++;
    444 		}
    445 		lwp_lock(l);
    446 		mi_switch(l);
    447 		l->l_nopreempt++;
    448 		splx(s);
    449 
    450 		/* Take care of any MD cleanup. */
    451 		cpu_kpreempt_exit(where);
    452 		l->l_nopreempt--;
    453 	}
    454 
    455 	/* Record preemption failure for reporting via lockstat. */
    456 	if (__predict_false(failed)) {
    457 		int lsflag = 0;
    458 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    459 		LOCKSTAT_ENTER(lsflag);
    460 		/* Might recurse, make it atomic. */
    461 		if (__predict_false(lsflag)) {
    462 			if (where == 0) {
    463 				where = (uintptr_t)__builtin_return_address(0);
    464 			}
    465 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    466 			    NULL, (void *)where) == NULL) {
    467 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    468 				l->l_pfaillock = failed;
    469 			}
    470 		}
    471 		LOCKSTAT_EXIT(lsflag);
    472 	}
    473 
    474 	return failed;
    475 }
    476 
    477 /*
    478  * Return true if preemption is explicitly disabled.
    479  */
    480 bool
    481 kpreempt_disabled(void)
    482 {
    483 	lwp_t *l;
    484 
    485 	l = curlwp;
    486 
    487 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    488 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    489 }
    490 
    491 /*
    492  * Disable kernel preemption.
    493  */
    494 void
    495 kpreempt_disable(void)
    496 {
    497 
    498 	KPREEMPT_DISABLE(curlwp);
    499 }
    500 
    501 /*
    502  * Reenable kernel preemption.
    503  */
    504 void
    505 kpreempt_enable(void)
    506 {
    507 
    508 	KPREEMPT_ENABLE(curlwp);
    509 }
    510 
    511 /*
    512  * Compute the amount of time during which the current lwp was running.
    513  *
    514  * - update l_rtime unless it's an idle lwp.
    515  */
    516 
    517 void
    518 updatertime(lwp_t *l, const struct bintime *now)
    519 {
    520 
    521 	if ((l->l_flag & LW_IDLE) != 0)
    522 		return;
    523 
    524 	/* rtime += now - stime */
    525 	bintime_add(&l->l_rtime, now);
    526 	bintime_sub(&l->l_rtime, &l->l_stime);
    527 }
    528 
    529 /*
    530  * Select next LWP from the current CPU to run..
    531  */
    532 static inline lwp_t *
    533 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    534 {
    535 	lwp_t *newl;
    536 
    537 	/*
    538 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    539 	 * If no LWP is runnable, select the idle LWP.
    540 	 *
    541 	 * Note that spc_lwplock might not necessary be held, and
    542 	 * new thread would be unlocked after setting the LWP-lock.
    543 	 */
    544 	newl = sched_nextlwp();
    545 	if (newl != NULL) {
    546 		sched_dequeue(newl);
    547 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    548 		newl->l_stat = LSONPROC;
    549 		newl->l_cpu = ci;
    550 		newl->l_pflag |= LP_RUNNING;
    551 		lwp_setlock(newl, spc->spc_lwplock);
    552 	} else {
    553 		newl = ci->ci_data.cpu_idlelwp;
    554 		newl->l_stat = LSONPROC;
    555 		newl->l_pflag |= LP_RUNNING;
    556 	}
    557 
    558 	/*
    559 	 * Only clear want_resched if there are no pending (slow)
    560 	 * software interrupts.
    561 	 */
    562 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    563 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    564 	spc->spc_curpriority = lwp_eprio(newl);
    565 
    566 	return newl;
    567 }
    568 
    569 /*
    570  * The machine independent parts of context switch.
    571  *
    572  * Returns 1 if another LWP was actually run.
    573  */
    574 int
    575 mi_switch(lwp_t *l)
    576 {
    577 	struct cpu_info *ci;
    578 	struct schedstate_percpu *spc;
    579 	struct lwp *newl;
    580 	int retval, oldspl;
    581 	struct bintime bt;
    582 	bool returning;
    583 
    584 	KASSERT(lwp_locked(l, NULL));
    585 	KASSERT(kpreempt_disabled());
    586 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    587 
    588 #ifdef KSTACK_CHECK_MAGIC
    589 	kstack_check_magic(l);
    590 #endif
    591 
    592 	binuptime(&bt);
    593 
    594 	KASSERT(l->l_cpu == curcpu());
    595 	ci = l->l_cpu;
    596 	spc = &ci->ci_schedstate;
    597 	returning = false;
    598 	newl = NULL;
    599 
    600 	/*
    601 	 * If we have been asked to switch to a specific LWP, then there
    602 	 * is no need to inspect the run queues.  If a soft interrupt is
    603 	 * blocking, then return to the interrupted thread without adjusting
    604 	 * VM context or its start time: neither have been changed in order
    605 	 * to take the interrupt.
    606 	 */
    607 	if (l->l_switchto != NULL) {
    608 		if ((l->l_pflag & LP_INTR) != 0) {
    609 			returning = true;
    610 			softint_block(l);
    611 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    612 				updatertime(l, &bt);
    613 		}
    614 		newl = l->l_switchto;
    615 		l->l_switchto = NULL;
    616 	}
    617 #ifndef __HAVE_FAST_SOFTINTS
    618 	else if (ci->ci_data.cpu_softints != 0) {
    619 		/* There are pending soft interrupts, so pick one. */
    620 		newl = softint_picklwp();
    621 		newl->l_stat = LSONPROC;
    622 		newl->l_pflag |= LP_RUNNING;
    623 	}
    624 #endif	/* !__HAVE_FAST_SOFTINTS */
    625 
    626 	/* Count time spent in current system call */
    627 	if (!returning) {
    628 		SYSCALL_TIME_SLEEP(l);
    629 
    630 		/*
    631 		 * XXXSMP If we are using h/w performance counters,
    632 		 * save context.
    633 		 */
    634 #if PERFCTRS
    635 		if (PMC_ENABLED(l->l_proc)) {
    636 			pmc_save_context(l->l_proc);
    637 		}
    638 #endif
    639 		updatertime(l, &bt);
    640 	}
    641 
    642 	/* Lock the runqueue */
    643 	KASSERT(l->l_stat != LSRUN);
    644 	mutex_spin_enter(spc->spc_mutex);
    645 
    646 	/*
    647 	 * If on the CPU and we have gotten this far, then we must yield.
    648 	 */
    649 	if (l->l_stat == LSONPROC && l != newl) {
    650 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    651 		if ((l->l_flag & LW_IDLE) == 0) {
    652 			l->l_stat = LSRUN;
    653 			lwp_setlock(l, spc->spc_mutex);
    654 			sched_enqueue(l, true);
    655 			/* Handle migration case */
    656 			KASSERT(spc->spc_migrating == NULL);
    657 			if (l->l_target_cpu !=  NULL) {
    658 				spc->spc_migrating = l;
    659 			}
    660 		} else
    661 			l->l_stat = LSIDL;
    662 	}
    663 
    664 	/* Pick new LWP to run. */
    665 	if (newl == NULL) {
    666 		newl = nextlwp(ci, spc);
    667 	}
    668 
    669 	/* Items that must be updated with the CPU locked. */
    670 	if (!returning) {
    671 		/* Update the new LWP's start time. */
    672 		newl->l_stime = bt;
    673 
    674 		/*
    675 		 * ci_curlwp changes when a fast soft interrupt occurs.
    676 		 * We use cpu_onproc to keep track of which kernel or
    677 		 * user thread is running 'underneath' the software
    678 		 * interrupt.  This is important for time accounting,
    679 		 * itimers and forcing user threads to preempt (aston).
    680 		 */
    681 		ci->ci_data.cpu_onproc = newl;
    682 	}
    683 
    684 	/*
    685 	 * Preemption related tasks.  Must be done with the current
    686 	 * CPU locked.
    687 	 */
    688 	cpu_did_resched(l);
    689 	l->l_dopreempt = 0;
    690 	if (__predict_false(l->l_pfailaddr != 0)) {
    691 		LOCKSTAT_FLAG(lsflag);
    692 		LOCKSTAT_ENTER(lsflag);
    693 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    694 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    695 		    1, l->l_pfailtime, l->l_pfailaddr);
    696 		LOCKSTAT_EXIT(lsflag);
    697 		l->l_pfailtime = 0;
    698 		l->l_pfaillock = 0;
    699 		l->l_pfailaddr = 0;
    700 	}
    701 
    702 	if (l != newl) {
    703 		struct lwp *prevlwp;
    704 
    705 		/* Release all locks, but leave the current LWP locked */
    706 		if (l->l_mutex == spc->spc_mutex) {
    707 			/*
    708 			 * Drop spc_lwplock, if the current LWP has been moved
    709 			 * to the run queue (it is now locked by spc_mutex).
    710 			 */
    711 			mutex_spin_exit(spc->spc_lwplock);
    712 		} else {
    713 			/*
    714 			 * Otherwise, drop the spc_mutex, we are done with the
    715 			 * run queues.
    716 			 */
    717 			mutex_spin_exit(spc->spc_mutex);
    718 		}
    719 
    720 		/*
    721 		 * Mark that context switch is going to be performed
    722 		 * for this LWP, to protect it from being switched
    723 		 * to on another CPU.
    724 		 */
    725 		KASSERT(l->l_ctxswtch == 0);
    726 		l->l_ctxswtch = 1;
    727 		l->l_ncsw++;
    728 		l->l_pflag &= ~LP_RUNNING;
    729 
    730 		/*
    731 		 * Increase the count of spin-mutexes before the release
    732 		 * of the last lock - we must remain at IPL_SCHED during
    733 		 * the context switch.
    734 		 */
    735 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    736 		ci->ci_mtx_count--;
    737 		lwp_unlock(l);
    738 
    739 		/* Count the context switch on this CPU. */
    740 		ci->ci_data.cpu_nswtch++;
    741 
    742 		/* Update status for lwpctl, if present. */
    743 		if (l->l_lwpctl != NULL)
    744 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    745 
    746 		/*
    747 		 * Save old VM context, unless a soft interrupt
    748 		 * handler is blocking.
    749 		 */
    750 		if (!returning)
    751 			pmap_deactivate(l);
    752 
    753 		/*
    754 		 * We may need to spin-wait for if 'newl' is still
    755 		 * context switching on another CPU.
    756 		 */
    757 		if (newl->l_ctxswtch != 0) {
    758 			u_int count;
    759 			count = SPINLOCK_BACKOFF_MIN;
    760 			while (newl->l_ctxswtch)
    761 				SPINLOCK_BACKOFF(count);
    762 		}
    763 
    764 		/* Switch to the new LWP.. */
    765 		prevlwp = cpu_switchto(l, newl, returning);
    766 		ci = curcpu();
    767 
    768 		/*
    769 		 * Switched away - we have new curlwp.
    770 		 * Restore VM context and IPL.
    771 		 */
    772 		pmap_activate(l);
    773 		if (prevlwp != NULL) {
    774 			/* Normalize the count of the spin-mutexes */
    775 			ci->ci_mtx_count++;
    776 			/* Unmark the state of context switch */
    777 			membar_exit();
    778 			prevlwp->l_ctxswtch = 0;
    779 		}
    780 
    781 		/* Update status for lwpctl, if present. */
    782 		if (l->l_lwpctl != NULL) {
    783 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    784 			l->l_lwpctl->lc_pctr++;
    785 		}
    786 
    787 		KASSERT(l->l_cpu == ci);
    788 		splx(oldspl);
    789 		retval = 1;
    790 	} else {
    791 		/* Nothing to do - just unlock and return. */
    792 		mutex_spin_exit(spc->spc_mutex);
    793 		lwp_unlock(l);
    794 		retval = 0;
    795 	}
    796 
    797 	KASSERT(l == curlwp);
    798 	KASSERT(l->l_stat == LSONPROC);
    799 
    800 	/*
    801 	 * XXXSMP If we are using h/w performance counters, restore context.
    802 	 * XXXSMP preemption problem.
    803 	 */
    804 #if PERFCTRS
    805 	if (PMC_ENABLED(l->l_proc)) {
    806 		pmc_restore_context(l->l_proc);
    807 	}
    808 #endif
    809 	SYSCALL_TIME_WAKEUP(l);
    810 	LOCKDEBUG_BARRIER(NULL, 1);
    811 
    812 	return retval;
    813 }
    814 
    815 /*
    816  * The machine independent parts of context switch to oblivion.
    817  * Does not return.  Call with the LWP unlocked.
    818  */
    819 void
    820 lwp_exit_switchaway(lwp_t *l)
    821 {
    822 	struct cpu_info *ci;
    823 	struct lwp *newl;
    824 	struct bintime bt;
    825 
    826 	ci = l->l_cpu;
    827 
    828 	KASSERT(kpreempt_disabled());
    829 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    830 	KASSERT(ci == curcpu());
    831 	LOCKDEBUG_BARRIER(NULL, 0);
    832 
    833 #ifdef KSTACK_CHECK_MAGIC
    834 	kstack_check_magic(l);
    835 #endif
    836 
    837 	/* Count time spent in current system call */
    838 	SYSCALL_TIME_SLEEP(l);
    839 	binuptime(&bt);
    840 	updatertime(l, &bt);
    841 
    842 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    843 	(void)splsched();
    844 
    845 	/*
    846 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    847 	 * If no LWP is runnable, select the idle LWP.
    848 	 *
    849 	 * Note that spc_lwplock might not necessary be held, and
    850 	 * new thread would be unlocked after setting the LWP-lock.
    851 	 */
    852 	spc_lock(ci);
    853 #ifndef __HAVE_FAST_SOFTINTS
    854 	if (ci->ci_data.cpu_softints != 0) {
    855 		/* There are pending soft interrupts, so pick one. */
    856 		newl = softint_picklwp();
    857 		newl->l_stat = LSONPROC;
    858 		newl->l_pflag |= LP_RUNNING;
    859 	} else
    860 #endif	/* !__HAVE_FAST_SOFTINTS */
    861 	{
    862 		newl = nextlwp(ci, &ci->ci_schedstate);
    863 	}
    864 
    865 	/* Update the new LWP's start time. */
    866 	newl->l_stime = bt;
    867 	l->l_pflag &= ~LP_RUNNING;
    868 
    869 	/*
    870 	 * ci_curlwp changes when a fast soft interrupt occurs.
    871 	 * We use cpu_onproc to keep track of which kernel or
    872 	 * user thread is running 'underneath' the software
    873 	 * interrupt.  This is important for time accounting,
    874 	 * itimers and forcing user threads to preempt (aston).
    875 	 */
    876 	ci->ci_data.cpu_onproc = newl;
    877 
    878 	/*
    879 	 * Preemption related tasks.  Must be done with the current
    880 	 * CPU locked.
    881 	 */
    882 	cpu_did_resched(l);
    883 
    884 	/* Unlock the run queue. */
    885 	spc_unlock(ci);
    886 
    887 	/* Count the context switch on this CPU. */
    888 	ci->ci_data.cpu_nswtch++;
    889 
    890 	/* Update status for lwpctl, if present. */
    891 	if (l->l_lwpctl != NULL)
    892 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    893 
    894 	/*
    895 	 * We may need to spin-wait for if 'newl' is still
    896 	 * context switching on another CPU.
    897 	 */
    898 	if (newl->l_ctxswtch != 0) {
    899 		u_int count;
    900 		count = SPINLOCK_BACKOFF_MIN;
    901 		while (newl->l_ctxswtch)
    902 			SPINLOCK_BACKOFF(count);
    903 	}
    904 
    905 	/* Switch to the new LWP.. */
    906 	(void)cpu_switchto(NULL, newl, false);
    907 
    908 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    909 	/* NOTREACHED */
    910 }
    911 
    912 /*
    913  * Change process state to be runnable, placing it on the run queue if it is
    914  * in memory, and awakening the swapper if it isn't in memory.
    915  *
    916  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    917  */
    918 void
    919 setrunnable(struct lwp *l)
    920 {
    921 	struct proc *p = l->l_proc;
    922 	struct cpu_info *ci;
    923 
    924 	KASSERT((l->l_flag & LW_IDLE) == 0);
    925 	KASSERT(mutex_owned(p->p_lock));
    926 	KASSERT(lwp_locked(l, NULL));
    927 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    928 
    929 	switch (l->l_stat) {
    930 	case LSSTOP:
    931 		/*
    932 		 * If we're being traced (possibly because someone attached us
    933 		 * while we were stopped), check for a signal from the debugger.
    934 		 */
    935 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    936 			signotify(l);
    937 		p->p_nrlwps++;
    938 		break;
    939 	case LSSUSPENDED:
    940 		l->l_flag &= ~LW_WSUSPEND;
    941 		p->p_nrlwps++;
    942 		cv_broadcast(&p->p_lwpcv);
    943 		break;
    944 	case LSSLEEP:
    945 		KASSERT(l->l_wchan != NULL);
    946 		break;
    947 	default:
    948 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    949 	}
    950 
    951 #ifdef KERN_SA
    952 	if (l->l_proc->p_sa)
    953 		sa_awaken(l);
    954 #endif /* KERN_SA */
    955 
    956 	/*
    957 	 * If the LWP was sleeping interruptably, then it's OK to start it
    958 	 * again.  If not, mark it as still sleeping.
    959 	 */
    960 	if (l->l_wchan != NULL) {
    961 		l->l_stat = LSSLEEP;
    962 		/* lwp_unsleep() will release the lock. */
    963 		lwp_unsleep(l, true);
    964 		return;
    965 	}
    966 
    967 	/*
    968 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    969 	 * about to call mi_switch(), in which case it will yield.
    970 	 */
    971 	if ((l->l_pflag & LP_RUNNING) != 0) {
    972 		l->l_stat = LSONPROC;
    973 		l->l_slptime = 0;
    974 		lwp_unlock(l);
    975 		return;
    976 	}
    977 
    978 	/*
    979 	 * Look for a CPU to run.
    980 	 * Set the LWP runnable.
    981 	 */
    982 	ci = sched_takecpu(l);
    983 	l->l_cpu = ci;
    984 	spc_lock(ci);
    985 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    986 	sched_setrunnable(l);
    987 	l->l_stat = LSRUN;
    988 	l->l_slptime = 0;
    989 
    990 	/*
    991 	 * If thread is swapped out - wake the swapper to bring it back in.
    992 	 * Otherwise, enter it into a run queue.
    993 	 */
    994 	if (l->l_flag & LW_INMEM) {
    995 		sched_enqueue(l, false);
    996 		resched_cpu(l);
    997 		lwp_unlock(l);
    998 	} else {
    999 		lwp_unlock(l);
   1000 		uvm_kick_scheduler();
   1001 	}
   1002 }
   1003 
   1004 /*
   1005  * suspendsched:
   1006  *
   1007  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1008  */
   1009 void
   1010 suspendsched(void)
   1011 {
   1012 	CPU_INFO_ITERATOR cii;
   1013 	struct cpu_info *ci;
   1014 	struct lwp *l;
   1015 	struct proc *p;
   1016 
   1017 	/*
   1018 	 * We do this by process in order not to violate the locking rules.
   1019 	 */
   1020 	mutex_enter(proc_lock);
   1021 	PROCLIST_FOREACH(p, &allproc) {
   1022 		if ((p->p_flag & PK_MARKER) != 0)
   1023 			continue;
   1024 
   1025 		mutex_enter(p->p_lock);
   1026 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1027 			mutex_exit(p->p_lock);
   1028 			continue;
   1029 		}
   1030 
   1031 		p->p_stat = SSTOP;
   1032 
   1033 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1034 			if (l == curlwp)
   1035 				continue;
   1036 
   1037 			lwp_lock(l);
   1038 
   1039 			/*
   1040 			 * Set L_WREBOOT so that the LWP will suspend itself
   1041 			 * when it tries to return to user mode.  We want to
   1042 			 * try and get to get as many LWPs as possible to
   1043 			 * the user / kernel boundary, so that they will
   1044 			 * release any locks that they hold.
   1045 			 */
   1046 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1047 
   1048 			if (l->l_stat == LSSLEEP &&
   1049 			    (l->l_flag & LW_SINTR) != 0) {
   1050 				/* setrunnable() will release the lock. */
   1051 				setrunnable(l);
   1052 				continue;
   1053 			}
   1054 
   1055 			lwp_unlock(l);
   1056 		}
   1057 
   1058 		mutex_exit(p->p_lock);
   1059 	}
   1060 	mutex_exit(proc_lock);
   1061 
   1062 	/*
   1063 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1064 	 * They'll trap into the kernel and suspend themselves in userret().
   1065 	 */
   1066 	for (CPU_INFO_FOREACH(cii, ci)) {
   1067 		spc_lock(ci);
   1068 		cpu_need_resched(ci, RESCHED_IMMED);
   1069 		spc_unlock(ci);
   1070 	}
   1071 }
   1072 
   1073 /*
   1074  * sched_unsleep:
   1075  *
   1076  *	The is called when the LWP has not been awoken normally but instead
   1077  *	interrupted: for example, if the sleep timed out.  Because of this,
   1078  *	it's not a valid action for running or idle LWPs.
   1079  */
   1080 static u_int
   1081 sched_unsleep(struct lwp *l, bool cleanup)
   1082 {
   1083 
   1084 	lwp_unlock(l);
   1085 	panic("sched_unsleep");
   1086 }
   1087 
   1088 static void
   1089 resched_cpu(struct lwp *l)
   1090 {
   1091 	struct cpu_info *ci = ci = l->l_cpu;
   1092 
   1093 	KASSERT(lwp_locked(l, NULL));
   1094 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1095 		cpu_need_resched(ci, 0);
   1096 }
   1097 
   1098 static void
   1099 sched_changepri(struct lwp *l, pri_t pri)
   1100 {
   1101 
   1102 	KASSERT(lwp_locked(l, NULL));
   1103 
   1104 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1105 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1106 		sched_dequeue(l);
   1107 		l->l_priority = pri;
   1108 		sched_enqueue(l, false);
   1109 	} else {
   1110 		l->l_priority = pri;
   1111 	}
   1112 	resched_cpu(l);
   1113 }
   1114 
   1115 static void
   1116 sched_lendpri(struct lwp *l, pri_t pri)
   1117 {
   1118 
   1119 	KASSERT(lwp_locked(l, NULL));
   1120 
   1121 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1122 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1123 		sched_dequeue(l);
   1124 		l->l_inheritedprio = pri;
   1125 		sched_enqueue(l, false);
   1126 	} else {
   1127 		l->l_inheritedprio = pri;
   1128 	}
   1129 	resched_cpu(l);
   1130 }
   1131 
   1132 struct lwp *
   1133 syncobj_noowner(wchan_t wchan)
   1134 {
   1135 
   1136 	return NULL;
   1137 }
   1138 
   1139 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1140 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1141 
   1142 /*
   1143  * sched_pstats:
   1144  *
   1145  * Update process statistics and check CPU resource allocation.
   1146  * Call scheduler-specific hook to eventually adjust process/LWP
   1147  * priorities.
   1148  */
   1149 /* ARGSUSED */
   1150 void
   1151 sched_pstats(void *arg)
   1152 {
   1153 	const int clkhz = (stathz != 0 ? stathz : hz);
   1154 	static bool backwards;
   1155 	struct rlimit *rlim;
   1156 	struct lwp *l;
   1157 	struct proc *p;
   1158 	long runtm;
   1159 	fixpt_t lpctcpu;
   1160 	u_int lcpticks;
   1161 	int sig;
   1162 
   1163 	sched_pstats_ticks++;
   1164 
   1165 	mutex_enter(proc_lock);
   1166 	PROCLIST_FOREACH(p, &allproc) {
   1167 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
   1168 			continue;
   1169 
   1170 		/*
   1171 		 * Increment time in/out of memory and sleep
   1172 		 * time (if sleeping), ignore overflow.
   1173 		 */
   1174 		mutex_enter(p->p_lock);
   1175 		runtm = p->p_rtime.sec;
   1176 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1177 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1178 				continue;
   1179 			lwp_lock(l);
   1180 			runtm += l->l_rtime.sec;
   1181 			l->l_swtime++;
   1182 			sched_lwp_stats(l);
   1183 			lwp_unlock(l);
   1184 
   1185 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1186 			if (l->l_slptime != 0)
   1187 				continue;
   1188 
   1189 			lpctcpu = l->l_pctcpu;
   1190 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1191 			lpctcpu += ((FSCALE - ccpu) *
   1192 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1193 			l->l_pctcpu = lpctcpu;
   1194 		}
   1195 		/* Calculating p_pctcpu only for ps(1) */
   1196 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1197 
   1198 		/*
   1199 		 * Check if the process exceeds its CPU resource allocation.
   1200 		 * If over max, kill it.
   1201 		 */
   1202 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1203 		sig = 0;
   1204 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1205 			if (runtm >= rlim->rlim_max)
   1206 				sig = SIGKILL;
   1207 			else {
   1208 				sig = SIGXCPU;
   1209 				if (rlim->rlim_cur < rlim->rlim_max)
   1210 					rlim->rlim_cur += 5;
   1211 			}
   1212 		}
   1213 		mutex_exit(p->p_lock);
   1214 		if (__predict_false(runtm < 0)) {
   1215 			if (!backwards) {
   1216 				backwards = true;
   1217 				printf("WARNING: negative runtime; "
   1218 				    "monotonic clock has gone backwards\n");
   1219 			}
   1220 		} else if (__predict_false(sig)) {
   1221 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1222 			psignal(p, sig);
   1223 		}
   1224 	}
   1225 	mutex_exit(proc_lock);
   1226 	uvm_meter();
   1227 	cv_wakeup(&lbolt);
   1228 	callout_schedule(&sched_pstats_ch, hz);
   1229 }
   1230