kern_synch.c revision 1.257 1 /* $NetBSD: kern_synch.c,v 1.257 2008/12/20 23:06:14 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.257 2008/12/20 23:06:14 ad Exp $");
72
73 #include "opt_kstack.h"
74 #include "opt_perfctrs.h"
75 #include "opt_sa.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #if defined(PERFCTRS)
84 #include <sys/pmc.h>
85 #endif
86 #include <sys/cpu.h>
87 #include <sys/resourcevar.h>
88 #include <sys/sched.h>
89 #include <sys/sa.h>
90 #include <sys/savar.h>
91 #include <sys/syscall_stats.h>
92 #include <sys/sleepq.h>
93 #include <sys/lockdebug.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/lwpctl.h>
97 #include <sys/atomic.h>
98 #include <sys/simplelock.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #include <dev/lockstat.h>
103
104 static u_int sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107 static void resched_cpu(struct lwp *);
108
109 syncobj_t sleep_syncobj = {
110 SOBJ_SLEEPQ_SORTED,
111 sleepq_unsleep,
112 sleepq_changepri,
113 sleepq_lendpri,
114 syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 SOBJ_SLEEPQ_SORTED,
119 sched_unsleep,
120 sched_changepri,
121 sched_lendpri,
122 syncobj_noowner,
123 };
124
125 callout_t sched_pstats_ch;
126 unsigned sched_pstats_ticks;
127 kcondvar_t lbolt; /* once a second sleep address */
128
129 /* Preemption event counters */
130 static struct evcnt kpreempt_ev_crit;
131 static struct evcnt kpreempt_ev_klock;
132 static struct evcnt kpreempt_ev_ipl;
133 static struct evcnt kpreempt_ev_immed;
134
135 /*
136 * During autoconfiguration or after a panic, a sleep will simply lower the
137 * priority briefly to allow interrupts, then return. The priority to be
138 * used (safepri) is machine-dependent, thus this value is initialized and
139 * maintained in the machine-dependent layers. This priority will typically
140 * be 0, or the lowest priority that is safe for use on the interrupt stack;
141 * it can be made higher to block network software interrupts after panics.
142 */
143 int safepri;
144
145 void
146 sched_init(void)
147 {
148
149 cv_init(&lbolt, "lbolt");
150 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152
153 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "defer: critical section");
155 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "defer: kernel_lock");
157 evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
158 "kpreempt", "defer: IPL");
159 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 "kpreempt", "immediate");
161
162 sched_pstats(NULL);
163 }
164
165 /*
166 * OBSOLETE INTERFACE
167 *
168 * General sleep call. Suspends the current LWP until a wakeup is
169 * performed on the specified identifier. The LWP will then be made
170 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
171 * means no timeout). If pri includes PCATCH flag, signals are checked
172 * before and after sleeping, else signals are not checked. Returns 0 if
173 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
174 * signal needs to be delivered, ERESTART is returned if the current system
175 * call should be restarted if possible, and EINTR is returned if the system
176 * call should be interrupted by the signal (return EINTR).
177 *
178 * The interlock is held until we are on a sleep queue. The interlock will
179 * be locked before returning back to the caller unless the PNORELOCK flag
180 * is specified, in which case the interlock will always be unlocked upon
181 * return.
182 */
183 int
184 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 volatile struct simplelock *interlock)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 int error;
191
192 KASSERT((l->l_pflag & LP_INTR) == 0);
193
194 if (sleepq_dontsleep(l)) {
195 (void)sleepq_abort(NULL, 0);
196 if ((priority & PNORELOCK) != 0)
197 simple_unlock(interlock);
198 return 0;
199 }
200
201 l->l_kpriority = true;
202 sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 sleepq_enter(sq, l, mp);
204 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205
206 if (interlock != NULL) {
207 KASSERT(simple_lock_held(interlock));
208 simple_unlock(interlock);
209 }
210
211 error = sleepq_block(timo, priority & PCATCH);
212
213 if (interlock != NULL && (priority & PNORELOCK) == 0)
214 simple_lock(interlock);
215
216 return error;
217 }
218
219 int
220 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
221 kmutex_t *mtx)
222 {
223 struct lwp *l = curlwp;
224 sleepq_t *sq;
225 kmutex_t *mp;
226 int error;
227
228 KASSERT((l->l_pflag & LP_INTR) == 0);
229
230 if (sleepq_dontsleep(l)) {
231 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 return 0;
233 }
234
235 l->l_kpriority = true;
236 sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 sleepq_enter(sq, l, mp);
238 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 mutex_exit(mtx);
240 error = sleepq_block(timo, priority & PCATCH);
241
242 if ((priority & PNORELOCK) == 0)
243 mutex_enter(mtx);
244
245 return error;
246 }
247
248 /*
249 * General sleep call for situations where a wake-up is not expected.
250 */
251 int
252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 {
254 struct lwp *l = curlwp;
255 kmutex_t *mp;
256 sleepq_t *sq;
257 int error;
258
259 if (sleepq_dontsleep(l))
260 return sleepq_abort(NULL, 0);
261
262 if (mtx != NULL)
263 mutex_exit(mtx);
264 l->l_kpriority = true;
265 sq = sleeptab_lookup(&sleeptab, l, &mp);
266 sleepq_enter(sq, l, mp);
267 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
268 error = sleepq_block(timo, intr);
269 if (mtx != NULL)
270 mutex_enter(mtx);
271
272 return error;
273 }
274
275 #ifdef KERN_SA
276 /*
277 * sa_awaken:
278 *
279 * We believe this lwp is an SA lwp. If it's yielding,
280 * let it know it needs to wake up.
281 *
282 * We are called and exit with the lwp locked. We are
283 * called in the middle of wakeup operations, so we need
284 * to not touch the locks at all.
285 */
286 void
287 sa_awaken(struct lwp *l)
288 {
289 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
290
291 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
292 l->l_flag &= ~LW_SA_IDLE;
293 }
294 #endif /* KERN_SA */
295
296 /*
297 * OBSOLETE INTERFACE
298 *
299 * Make all LWPs sleeping on the specified identifier runnable.
300 */
301 void
302 wakeup(wchan_t ident)
303 {
304 sleepq_t *sq;
305 kmutex_t *mp;
306
307 if (cold)
308 return;
309
310 sq = sleeptab_lookup(&sleeptab, ident, &mp);
311 sleepq_wake(sq, ident, (u_int)-1, mp);
312 }
313
314 /*
315 * OBSOLETE INTERFACE
316 *
317 * Make the highest priority LWP first in line on the specified
318 * identifier runnable.
319 */
320 void
321 wakeup_one(wchan_t ident)
322 {
323 sleepq_t *sq;
324 kmutex_t *mp;
325
326 if (cold)
327 return;
328
329 sq = sleeptab_lookup(&sleeptab, ident, &mp);
330 sleepq_wake(sq, ident, 1, mp);
331 }
332
333
334 /*
335 * General yield call. Puts the current LWP back on its run queue and
336 * performs a voluntary context switch. Should only be called when the
337 * current LWP explicitly requests it (eg sched_yield(2)).
338 */
339 void
340 yield(void)
341 {
342 struct lwp *l = curlwp;
343
344 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
345 lwp_lock(l);
346 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
347 KASSERT(l->l_stat == LSONPROC);
348 l->l_kpriority = false;
349 (void)mi_switch(l);
350 KERNEL_LOCK(l->l_biglocks, l);
351 }
352
353 /*
354 * General preemption call. Puts the current LWP back on its run queue
355 * and performs an involuntary context switch.
356 */
357 void
358 preempt(void)
359 {
360 struct lwp *l = curlwp;
361
362 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
363 lwp_lock(l);
364 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
365 KASSERT(l->l_stat == LSONPROC);
366 l->l_kpriority = false;
367 l->l_nivcsw++;
368 (void)mi_switch(l);
369 KERNEL_LOCK(l->l_biglocks, l);
370 }
371
372 /*
373 * Handle a request made by another agent to preempt the current LWP
374 * in-kernel. Usually called when l_dopreempt may be non-zero.
375 *
376 * Character addresses for lockstat only.
377 */
378 static char in_critical_section;
379 static char kernel_lock_held;
380 static char spl_raised;
381 static char is_softint;
382
383 bool
384 kpreempt(uintptr_t where)
385 {
386 uintptr_t failed;
387 lwp_t *l;
388 int s, dop;
389
390 l = curlwp;
391 failed = 0;
392 while ((dop = l->l_dopreempt) != 0) {
393 if (l->l_stat != LSONPROC) {
394 /*
395 * About to block (or die), let it happen.
396 * Doesn't really count as "preemption has
397 * been blocked", since we're going to
398 * context switch.
399 */
400 l->l_dopreempt = 0;
401 return true;
402 }
403 if (cpu_intr_p()) {
404 /*
405 * Don't record a failure event if handling
406 * a hardware interrupt. We're probably
407 * here from _kernel_unlock(). The
408 * preemption will be processed at EOI.
409 */
410 return true;
411 }
412 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
413 /* Can't preempt idle loop, don't count as failure. */
414 l->l_dopreempt = 0;
415 return true;
416 }
417 if (__predict_false(l->l_nopreempt != 0)) {
418 /* LWP holds preemption disabled, explicitly. */
419 if ((dop & DOPREEMPT_COUNTED) == 0) {
420 kpreempt_ev_crit.ev_count++;
421 }
422 failed = (uintptr_t)&in_critical_section;
423 break;
424 }
425 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
426 /* Can't preempt soft interrupts yet. */
427 l->l_dopreempt = 0;
428 failed = (uintptr_t)&is_softint;
429 break;
430 }
431 s = splsched();
432 if (__predict_false(l->l_blcnt != 0 ||
433 curcpu()->ci_biglock_wanted != NULL)) {
434 /* Hold or want kernel_lock, code is not MT safe. */
435 splx(s);
436 if ((dop & DOPREEMPT_COUNTED) == 0) {
437 kpreempt_ev_klock.ev_count++;
438 }
439 failed = (uintptr_t)&kernel_lock_held;
440 break;
441 }
442 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
443 /*
444 * It may be that the IPL is too high.
445 * kpreempt_enter() can schedule an
446 * interrupt to retry later.
447 */
448 splx(s);
449 if ((dop & DOPREEMPT_COUNTED) == 0) {
450 kpreempt_ev_ipl.ev_count++;
451 }
452 failed = (uintptr_t)&spl_raised;
453 break;
454 }
455 /* Do it! */
456 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
457 kpreempt_ev_immed.ev_count++;
458 }
459 lwp_lock(l);
460 mi_switch(l);
461 l->l_nopreempt++;
462 splx(s);
463
464 /* Take care of any MD cleanup. */
465 cpu_kpreempt_exit(where);
466 l->l_nopreempt--;
467 }
468
469 /* Record preemption failure for reporting via lockstat. */
470 if (__predict_false(failed)) {
471 int lsflag = 0;
472 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
473 LOCKSTAT_ENTER(lsflag);
474 /* Might recurse, make it atomic. */
475 if (__predict_false(lsflag)) {
476 if (where == 0) {
477 where = (uintptr_t)__builtin_return_address(0);
478 }
479 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
480 NULL, (void *)where) == NULL) {
481 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
482 l->l_pfaillock = failed;
483 }
484 }
485 LOCKSTAT_EXIT(lsflag);
486 }
487
488 return failed;
489 }
490
491 /*
492 * Return true if preemption is explicitly disabled.
493 */
494 bool
495 kpreempt_disabled(void)
496 {
497 lwp_t *l;
498
499 l = curlwp;
500
501 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
502 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
503 }
504
505 /*
506 * Disable kernel preemption.
507 */
508 void
509 kpreempt_disable(void)
510 {
511
512 KPREEMPT_DISABLE(curlwp);
513 }
514
515 /*
516 * Reenable kernel preemption.
517 */
518 void
519 kpreempt_enable(void)
520 {
521
522 KPREEMPT_ENABLE(curlwp);
523 }
524
525 /*
526 * Compute the amount of time during which the current lwp was running.
527 *
528 * - update l_rtime unless it's an idle lwp.
529 */
530
531 void
532 updatertime(lwp_t *l, const struct bintime *now)
533 {
534
535 if ((l->l_flag & LW_IDLE) != 0)
536 return;
537
538 /* rtime += now - stime */
539 bintime_add(&l->l_rtime, now);
540 bintime_sub(&l->l_rtime, &l->l_stime);
541 }
542
543 /*
544 * Select next LWP from the current CPU to run..
545 */
546 static inline lwp_t *
547 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
548 {
549 lwp_t *newl;
550
551 /*
552 * Let sched_nextlwp() select the LWP to run the CPU next.
553 * If no LWP is runnable, select the idle LWP.
554 *
555 * Note that spc_lwplock might not necessary be held, and
556 * new thread would be unlocked after setting the LWP-lock.
557 */
558 newl = sched_nextlwp();
559 if (newl != NULL) {
560 sched_dequeue(newl);
561 KASSERT(lwp_locked(newl, spc->spc_mutex));
562 newl->l_stat = LSONPROC;
563 newl->l_cpu = ci;
564 newl->l_pflag |= LP_RUNNING;
565 lwp_setlock(newl, spc->spc_lwplock);
566 } else {
567 newl = ci->ci_data.cpu_idlelwp;
568 newl->l_stat = LSONPROC;
569 newl->l_pflag |= LP_RUNNING;
570 }
571
572 /*
573 * Only clear want_resched if there are no pending (slow)
574 * software interrupts.
575 */
576 ci->ci_want_resched = ci->ci_data.cpu_softints;
577 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
578 spc->spc_curpriority = lwp_eprio(newl);
579
580 return newl;
581 }
582
583 /*
584 * The machine independent parts of context switch.
585 *
586 * Returns 1 if another LWP was actually run.
587 */
588 int
589 mi_switch(lwp_t *l)
590 {
591 struct cpu_info *ci;
592 struct schedstate_percpu *spc;
593 struct lwp *newl;
594 int retval, oldspl;
595 struct bintime bt;
596 bool returning;
597
598 KASSERT(lwp_locked(l, NULL));
599 KASSERT(kpreempt_disabled());
600 LOCKDEBUG_BARRIER(l->l_mutex, 1);
601
602 #ifdef KSTACK_CHECK_MAGIC
603 kstack_check_magic(l);
604 #endif
605
606 binuptime(&bt);
607
608 KASSERT(l->l_cpu == curcpu());
609 ci = l->l_cpu;
610 spc = &ci->ci_schedstate;
611 returning = false;
612 newl = NULL;
613
614 /*
615 * If we have been asked to switch to a specific LWP, then there
616 * is no need to inspect the run queues. If a soft interrupt is
617 * blocking, then return to the interrupted thread without adjusting
618 * VM context or its start time: neither have been changed in order
619 * to take the interrupt.
620 */
621 if (l->l_switchto != NULL) {
622 if ((l->l_pflag & LP_INTR) != 0) {
623 returning = true;
624 softint_block(l);
625 if ((l->l_pflag & LP_TIMEINTR) != 0)
626 updatertime(l, &bt);
627 }
628 newl = l->l_switchto;
629 l->l_switchto = NULL;
630 }
631 #ifndef __HAVE_FAST_SOFTINTS
632 else if (ci->ci_data.cpu_softints != 0) {
633 /* There are pending soft interrupts, so pick one. */
634 newl = softint_picklwp();
635 newl->l_stat = LSONPROC;
636 newl->l_pflag |= LP_RUNNING;
637 }
638 #endif /* !__HAVE_FAST_SOFTINTS */
639
640 /* Count time spent in current system call */
641 if (!returning) {
642 SYSCALL_TIME_SLEEP(l);
643
644 /*
645 * XXXSMP If we are using h/w performance counters,
646 * save context.
647 */
648 #if PERFCTRS
649 if (PMC_ENABLED(l->l_proc)) {
650 pmc_save_context(l->l_proc);
651 }
652 #endif
653 updatertime(l, &bt);
654 }
655
656 /* Lock the runqueue */
657 KASSERT(l->l_stat != LSRUN);
658 mutex_spin_enter(spc->spc_mutex);
659
660 /*
661 * If on the CPU and we have gotten this far, then we must yield.
662 */
663 if (l->l_stat == LSONPROC && l != newl) {
664 KASSERT(lwp_locked(l, spc->spc_lwplock));
665 if ((l->l_flag & LW_IDLE) == 0) {
666 l->l_stat = LSRUN;
667 lwp_setlock(l, spc->spc_mutex);
668 sched_enqueue(l, true);
669 /* Handle migration case */
670 KASSERT(spc->spc_migrating == NULL);
671 if (l->l_target_cpu != NULL) {
672 spc->spc_migrating = l;
673 }
674 } else
675 l->l_stat = LSIDL;
676 }
677
678 /* Pick new LWP to run. */
679 if (newl == NULL) {
680 newl = nextlwp(ci, spc);
681 }
682
683 /* Items that must be updated with the CPU locked. */
684 if (!returning) {
685 /* Update the new LWP's start time. */
686 newl->l_stime = bt;
687
688 /*
689 * ci_curlwp changes when a fast soft interrupt occurs.
690 * We use cpu_onproc to keep track of which kernel or
691 * user thread is running 'underneath' the software
692 * interrupt. This is important for time accounting,
693 * itimers and forcing user threads to preempt (aston).
694 */
695 ci->ci_data.cpu_onproc = newl;
696 }
697
698 /*
699 * Preemption related tasks. Must be done with the current
700 * CPU locked.
701 */
702 cpu_did_resched(l);
703 l->l_dopreempt = 0;
704 if (__predict_false(l->l_pfailaddr != 0)) {
705 LOCKSTAT_FLAG(lsflag);
706 LOCKSTAT_ENTER(lsflag);
707 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
708 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
709 1, l->l_pfailtime, l->l_pfailaddr);
710 LOCKSTAT_EXIT(lsflag);
711 l->l_pfailtime = 0;
712 l->l_pfaillock = 0;
713 l->l_pfailaddr = 0;
714 }
715
716 if (l != newl) {
717 struct lwp *prevlwp;
718
719 /* Release all locks, but leave the current LWP locked */
720 if (l->l_mutex == spc->spc_mutex) {
721 /*
722 * Drop spc_lwplock, if the current LWP has been moved
723 * to the run queue (it is now locked by spc_mutex).
724 */
725 mutex_spin_exit(spc->spc_lwplock);
726 } else {
727 /*
728 * Otherwise, drop the spc_mutex, we are done with the
729 * run queues.
730 */
731 mutex_spin_exit(spc->spc_mutex);
732 }
733
734 /*
735 * Mark that context switch is going to be performed
736 * for this LWP, to protect it from being switched
737 * to on another CPU.
738 */
739 KASSERT(l->l_ctxswtch == 0);
740 l->l_ctxswtch = 1;
741 l->l_ncsw++;
742 l->l_pflag &= ~LP_RUNNING;
743
744 /*
745 * Increase the count of spin-mutexes before the release
746 * of the last lock - we must remain at IPL_SCHED during
747 * the context switch.
748 */
749 oldspl = MUTEX_SPIN_OLDSPL(ci);
750 ci->ci_mtx_count--;
751 lwp_unlock(l);
752
753 /* Count the context switch on this CPU. */
754 ci->ci_data.cpu_nswtch++;
755
756 /* Update status for lwpctl, if present. */
757 if (l->l_lwpctl != NULL)
758 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
759
760 /*
761 * Save old VM context, unless a soft interrupt
762 * handler is blocking.
763 */
764 if (!returning)
765 pmap_deactivate(l);
766
767 /*
768 * We may need to spin-wait for if 'newl' is still
769 * context switching on another CPU.
770 */
771 if (newl->l_ctxswtch != 0) {
772 u_int count;
773 count = SPINLOCK_BACKOFF_MIN;
774 while (newl->l_ctxswtch)
775 SPINLOCK_BACKOFF(count);
776 }
777
778 /* Switch to the new LWP.. */
779 prevlwp = cpu_switchto(l, newl, returning);
780 ci = curcpu();
781
782 /*
783 * Switched away - we have new curlwp.
784 * Restore VM context and IPL.
785 */
786 pmap_activate(l);
787 if (prevlwp != NULL) {
788 /* Normalize the count of the spin-mutexes */
789 ci->ci_mtx_count++;
790 /* Unmark the state of context switch */
791 membar_exit();
792 prevlwp->l_ctxswtch = 0;
793 }
794
795 /* Update status for lwpctl, if present. */
796 if (l->l_lwpctl != NULL) {
797 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
798 l->l_lwpctl->lc_pctr++;
799 }
800
801 KASSERT(l->l_cpu == ci);
802 splx(oldspl);
803 retval = 1;
804 } else {
805 /* Nothing to do - just unlock and return. */
806 mutex_spin_exit(spc->spc_mutex);
807 lwp_unlock(l);
808 retval = 0;
809 }
810
811 KASSERT(l == curlwp);
812 KASSERT(l->l_stat == LSONPROC);
813
814 /*
815 * XXXSMP If we are using h/w performance counters, restore context.
816 * XXXSMP preemption problem.
817 */
818 #if PERFCTRS
819 if (PMC_ENABLED(l->l_proc)) {
820 pmc_restore_context(l->l_proc);
821 }
822 #endif
823 SYSCALL_TIME_WAKEUP(l);
824 LOCKDEBUG_BARRIER(NULL, 1);
825
826 return retval;
827 }
828
829 /*
830 * The machine independent parts of context switch to oblivion.
831 * Does not return. Call with the LWP unlocked.
832 */
833 void
834 lwp_exit_switchaway(lwp_t *l)
835 {
836 struct cpu_info *ci;
837 struct lwp *newl;
838 struct bintime bt;
839
840 ci = l->l_cpu;
841
842 KASSERT(kpreempt_disabled());
843 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
844 KASSERT(ci == curcpu());
845 LOCKDEBUG_BARRIER(NULL, 0);
846
847 #ifdef KSTACK_CHECK_MAGIC
848 kstack_check_magic(l);
849 #endif
850
851 /* Count time spent in current system call */
852 SYSCALL_TIME_SLEEP(l);
853 binuptime(&bt);
854 updatertime(l, &bt);
855
856 /* Must stay at IPL_SCHED even after releasing run queue lock. */
857 (void)splsched();
858
859 /*
860 * Let sched_nextlwp() select the LWP to run the CPU next.
861 * If no LWP is runnable, select the idle LWP.
862 *
863 * Note that spc_lwplock might not necessary be held, and
864 * new thread would be unlocked after setting the LWP-lock.
865 */
866 spc_lock(ci);
867 #ifndef __HAVE_FAST_SOFTINTS
868 if (ci->ci_data.cpu_softints != 0) {
869 /* There are pending soft interrupts, so pick one. */
870 newl = softint_picklwp();
871 newl->l_stat = LSONPROC;
872 newl->l_pflag |= LP_RUNNING;
873 } else
874 #endif /* !__HAVE_FAST_SOFTINTS */
875 {
876 newl = nextlwp(ci, &ci->ci_schedstate);
877 }
878
879 /* Update the new LWP's start time. */
880 newl->l_stime = bt;
881 l->l_pflag &= ~LP_RUNNING;
882
883 /*
884 * ci_curlwp changes when a fast soft interrupt occurs.
885 * We use cpu_onproc to keep track of which kernel or
886 * user thread is running 'underneath' the software
887 * interrupt. This is important for time accounting,
888 * itimers and forcing user threads to preempt (aston).
889 */
890 ci->ci_data.cpu_onproc = newl;
891
892 /*
893 * Preemption related tasks. Must be done with the current
894 * CPU locked.
895 */
896 cpu_did_resched(l);
897
898 /* Unlock the run queue. */
899 spc_unlock(ci);
900
901 /* Count the context switch on this CPU. */
902 ci->ci_data.cpu_nswtch++;
903
904 /* Update status for lwpctl, if present. */
905 if (l->l_lwpctl != NULL)
906 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
907
908 /*
909 * We may need to spin-wait for if 'newl' is still
910 * context switching on another CPU.
911 */
912 if (newl->l_ctxswtch != 0) {
913 u_int count;
914 count = SPINLOCK_BACKOFF_MIN;
915 while (newl->l_ctxswtch)
916 SPINLOCK_BACKOFF(count);
917 }
918
919 /* Switch to the new LWP.. */
920 (void)cpu_switchto(NULL, newl, false);
921
922 for (;;) continue; /* XXX: convince gcc about "noreturn" */
923 /* NOTREACHED */
924 }
925
926 /*
927 * Change LWP state to be runnable, placing it on the run queue if it is
928 * in memory, and awakening the swapper if it isn't in memory.
929 *
930 * Call with the process and LWP locked. Will return with the LWP unlocked.
931 */
932 void
933 setrunnable(struct lwp *l)
934 {
935 struct proc *p = l->l_proc;
936 struct cpu_info *ci;
937
938 KASSERT((l->l_flag & LW_IDLE) == 0);
939 KASSERT(mutex_owned(p->p_lock));
940 KASSERT(lwp_locked(l, NULL));
941 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
942
943 switch (l->l_stat) {
944 case LSSTOP:
945 /*
946 * If we're being traced (possibly because someone attached us
947 * while we were stopped), check for a signal from the debugger.
948 */
949 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
950 signotify(l);
951 p->p_nrlwps++;
952 break;
953 case LSSUSPENDED:
954 l->l_flag &= ~LW_WSUSPEND;
955 p->p_nrlwps++;
956 cv_broadcast(&p->p_lwpcv);
957 break;
958 case LSSLEEP:
959 KASSERT(l->l_wchan != NULL);
960 break;
961 default:
962 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
963 }
964
965 #ifdef KERN_SA
966 if (l->l_proc->p_sa)
967 sa_awaken(l);
968 #endif /* KERN_SA */
969
970 /*
971 * If the LWP was sleeping interruptably, then it's OK to start it
972 * again. If not, mark it as still sleeping.
973 */
974 if (l->l_wchan != NULL) {
975 l->l_stat = LSSLEEP;
976 /* lwp_unsleep() will release the lock. */
977 lwp_unsleep(l, true);
978 return;
979 }
980
981 /*
982 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
983 * about to call mi_switch(), in which case it will yield.
984 */
985 if ((l->l_pflag & LP_RUNNING) != 0) {
986 l->l_stat = LSONPROC;
987 l->l_slptime = 0;
988 lwp_unlock(l);
989 return;
990 }
991
992 /*
993 * Look for a CPU to run.
994 * Set the LWP runnable.
995 */
996 ci = sched_takecpu(l);
997 l->l_cpu = ci;
998 spc_lock(ci);
999 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1000 sched_setrunnable(l);
1001 l->l_stat = LSRUN;
1002 l->l_slptime = 0;
1003
1004 /*
1005 * If thread is swapped out - wake the swapper to bring it back in.
1006 * Otherwise, enter it into a run queue.
1007 */
1008 if (l->l_flag & LW_INMEM) {
1009 sched_enqueue(l, false);
1010 resched_cpu(l);
1011 lwp_unlock(l);
1012 } else {
1013 lwp_unlock(l);
1014 uvm_kick_scheduler();
1015 }
1016 }
1017
1018 /*
1019 * suspendsched:
1020 *
1021 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1022 */
1023 void
1024 suspendsched(void)
1025 {
1026 CPU_INFO_ITERATOR cii;
1027 struct cpu_info *ci;
1028 struct lwp *l;
1029 struct proc *p;
1030
1031 /*
1032 * We do this by process in order not to violate the locking rules.
1033 */
1034 mutex_enter(proc_lock);
1035 PROCLIST_FOREACH(p, &allproc) {
1036 if ((p->p_flag & PK_MARKER) != 0)
1037 continue;
1038
1039 mutex_enter(p->p_lock);
1040 if ((p->p_flag & PK_SYSTEM) != 0) {
1041 mutex_exit(p->p_lock);
1042 continue;
1043 }
1044
1045 p->p_stat = SSTOP;
1046
1047 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1048 if (l == curlwp)
1049 continue;
1050
1051 lwp_lock(l);
1052
1053 /*
1054 * Set L_WREBOOT so that the LWP will suspend itself
1055 * when it tries to return to user mode. We want to
1056 * try and get to get as many LWPs as possible to
1057 * the user / kernel boundary, so that they will
1058 * release any locks that they hold.
1059 */
1060 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1061
1062 if (l->l_stat == LSSLEEP &&
1063 (l->l_flag & LW_SINTR) != 0) {
1064 /* setrunnable() will release the lock. */
1065 setrunnable(l);
1066 continue;
1067 }
1068
1069 lwp_unlock(l);
1070 }
1071
1072 mutex_exit(p->p_lock);
1073 }
1074 mutex_exit(proc_lock);
1075
1076 /*
1077 * Kick all CPUs to make them preempt any LWPs running in user mode.
1078 * They'll trap into the kernel and suspend themselves in userret().
1079 */
1080 for (CPU_INFO_FOREACH(cii, ci)) {
1081 spc_lock(ci);
1082 cpu_need_resched(ci, RESCHED_IMMED);
1083 spc_unlock(ci);
1084 }
1085 }
1086
1087 /*
1088 * sched_unsleep:
1089 *
1090 * The is called when the LWP has not been awoken normally but instead
1091 * interrupted: for example, if the sleep timed out. Because of this,
1092 * it's not a valid action for running or idle LWPs.
1093 */
1094 static u_int
1095 sched_unsleep(struct lwp *l, bool cleanup)
1096 {
1097
1098 lwp_unlock(l);
1099 panic("sched_unsleep");
1100 }
1101
1102 static void
1103 resched_cpu(struct lwp *l)
1104 {
1105 struct cpu_info *ci = ci = l->l_cpu;
1106
1107 KASSERT(lwp_locked(l, NULL));
1108 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1109 cpu_need_resched(ci, 0);
1110 }
1111
1112 static void
1113 sched_changepri(struct lwp *l, pri_t pri)
1114 {
1115
1116 KASSERT(lwp_locked(l, NULL));
1117
1118 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1119 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1120 sched_dequeue(l);
1121 l->l_priority = pri;
1122 sched_enqueue(l, false);
1123 } else {
1124 l->l_priority = pri;
1125 }
1126 resched_cpu(l);
1127 }
1128
1129 static void
1130 sched_lendpri(struct lwp *l, pri_t pri)
1131 {
1132
1133 KASSERT(lwp_locked(l, NULL));
1134
1135 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1136 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1137 sched_dequeue(l);
1138 l->l_inheritedprio = pri;
1139 sched_enqueue(l, false);
1140 } else {
1141 l->l_inheritedprio = pri;
1142 }
1143 resched_cpu(l);
1144 }
1145
1146 struct lwp *
1147 syncobj_noowner(wchan_t wchan)
1148 {
1149
1150 return NULL;
1151 }
1152
1153 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1154 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1155
1156 /*
1157 * sched_pstats:
1158 *
1159 * Update process statistics and check CPU resource allocation.
1160 * Call scheduler-specific hook to eventually adjust process/LWP
1161 * priorities.
1162 */
1163 /* ARGSUSED */
1164 void
1165 sched_pstats(void *arg)
1166 {
1167 const int clkhz = (stathz != 0 ? stathz : hz);
1168 struct rlimit *rlim;
1169 struct lwp *l;
1170 struct proc *p;
1171 long runtm;
1172 fixpt_t lpctcpu;
1173 u_int lcpticks;
1174 int sig;
1175
1176 sched_pstats_ticks++;
1177
1178 mutex_enter(proc_lock);
1179 PROCLIST_FOREACH(p, &allproc) {
1180 if (__predict_false((p->p_flag & PK_MARKER) != 0))
1181 continue;
1182
1183 /*
1184 * Increment time in/out of memory and sleep
1185 * time (if sleeping), ignore overflow.
1186 */
1187 mutex_enter(p->p_lock);
1188 runtm = p->p_rtime.sec;
1189 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1190 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1191 continue;
1192 lwp_lock(l);
1193 runtm += l->l_rtime.sec;
1194 l->l_swtime++;
1195 sched_lwp_stats(l);
1196 lwp_unlock(l);
1197
1198 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1199 if (l->l_slptime != 0)
1200 continue;
1201
1202 lpctcpu = l->l_pctcpu;
1203 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1204 lpctcpu += ((FSCALE - ccpu) *
1205 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1206 l->l_pctcpu = lpctcpu;
1207 }
1208 /* Calculating p_pctcpu only for ps(1) */
1209 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1210
1211 /*
1212 * Check if the process exceeds its CPU resource allocation.
1213 * If over max, kill it.
1214 */
1215 rlim = &p->p_rlimit[RLIMIT_CPU];
1216 sig = 0;
1217 if (__predict_false(runtm >= rlim->rlim_cur)) {
1218 if (runtm >= rlim->rlim_max)
1219 sig = SIGKILL;
1220 else {
1221 sig = SIGXCPU;
1222 if (rlim->rlim_cur < rlim->rlim_max)
1223 rlim->rlim_cur += 5;
1224 }
1225 }
1226 mutex_exit(p->p_lock);
1227 if (__predict_false(sig))
1228 psignal(p, sig);
1229 }
1230 mutex_exit(proc_lock);
1231 uvm_meter();
1232 cv_wakeup(&lbolt);
1233 callout_schedule(&sched_pstats_ch, hz);
1234 }
1235