Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.259
      1 /*	$NetBSD: kern_synch.c,v 1.259 2009/01/28 22:59:46 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.259 2009/01/28 22:59:46 rmind Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 #include "opt_sa.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #if defined(PERFCTRS)
     84 #include <sys/pmc.h>
     85 #endif
     86 #include <sys/cpu.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/sched.h>
     89 #include <sys/sa.h>
     90 #include <sys/savar.h>
     91 #include <sys/syscall_stats.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/lockdebug.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/lwpctl.h>
     97 #include <sys/atomic.h>
     98 #include <sys/simplelock.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 #include <dev/lockstat.h>
    103 
    104 static u_int	sched_unsleep(struct lwp *, bool);
    105 static void	sched_changepri(struct lwp *, pri_t);
    106 static void	sched_lendpri(struct lwp *, pri_t);
    107 static void	resched_cpu(struct lwp *);
    108 
    109 syncobj_t sleep_syncobj = {
    110 	SOBJ_SLEEPQ_SORTED,
    111 	sleepq_unsleep,
    112 	sleepq_changepri,
    113 	sleepq_lendpri,
    114 	syncobj_noowner,
    115 };
    116 
    117 syncobj_t sched_syncobj = {
    118 	SOBJ_SLEEPQ_SORTED,
    119 	sched_unsleep,
    120 	sched_changepri,
    121 	sched_lendpri,
    122 	syncobj_noowner,
    123 };
    124 
    125 callout_t 	sched_pstats_ch;
    126 unsigned	sched_pstats_ticks;
    127 kcondvar_t	lbolt;			/* once a second sleep address */
    128 
    129 /* Preemption event counters */
    130 static struct evcnt kpreempt_ev_crit;
    131 static struct evcnt kpreempt_ev_klock;
    132 static struct evcnt kpreempt_ev_immed;
    133 
    134 /*
    135  * During autoconfiguration or after a panic, a sleep will simply lower the
    136  * priority briefly to allow interrupts, then return.  The priority to be
    137  * used (safepri) is machine-dependent, thus this value is initialized and
    138  * maintained in the machine-dependent layers.  This priority will typically
    139  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    140  * it can be made higher to block network software interrupts after panics.
    141  */
    142 int	safepri;
    143 
    144 void
    145 sched_init(void)
    146 {
    147 
    148 	cv_init(&lbolt, "lbolt");
    149 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    150 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    151 
    152 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    153 	   "kpreempt", "defer: critical section");
    154 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    155 	   "kpreempt", "defer: kernel_lock");
    156 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    157 	   "kpreempt", "immediate");
    158 
    159 	sched_pstats(NULL);
    160 }
    161 
    162 /*
    163  * OBSOLETE INTERFACE
    164  *
    165  * General sleep call.  Suspends the current LWP until a wakeup is
    166  * performed on the specified identifier.  The LWP will then be made
    167  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    168  * means no timeout).  If pri includes PCATCH flag, signals are checked
    169  * before and after sleeping, else signals are not checked.  Returns 0 if
    170  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    171  * signal needs to be delivered, ERESTART is returned if the current system
    172  * call should be restarted if possible, and EINTR is returned if the system
    173  * call should be interrupted by the signal (return EINTR).
    174  *
    175  * The interlock is held until we are on a sleep queue. The interlock will
    176  * be locked before returning back to the caller unless the PNORELOCK flag
    177  * is specified, in which case the interlock will always be unlocked upon
    178  * return.
    179  */
    180 int
    181 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    182 	volatile struct simplelock *interlock)
    183 {
    184 	struct lwp *l = curlwp;
    185 	sleepq_t *sq;
    186 	kmutex_t *mp;
    187 	int error;
    188 
    189 	KASSERT((l->l_pflag & LP_INTR) == 0);
    190 
    191 	if (sleepq_dontsleep(l)) {
    192 		(void)sleepq_abort(NULL, 0);
    193 		if ((priority & PNORELOCK) != 0)
    194 			simple_unlock(interlock);
    195 		return 0;
    196 	}
    197 
    198 	l->l_kpriority = true;
    199 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    200 	sleepq_enter(sq, l, mp);
    201 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    202 
    203 	if (interlock != NULL) {
    204 		KASSERT(simple_lock_held(interlock));
    205 		simple_unlock(interlock);
    206 	}
    207 
    208 	error = sleepq_block(timo, priority & PCATCH);
    209 
    210 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    211 		simple_lock(interlock);
    212 
    213 	return error;
    214 }
    215 
    216 int
    217 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    218 	kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	sleepq_t *sq;
    222 	kmutex_t *mp;
    223 	int error;
    224 
    225 	KASSERT((l->l_pflag & LP_INTR) == 0);
    226 
    227 	if (sleepq_dontsleep(l)) {
    228 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    229 		return 0;
    230 	}
    231 
    232 	l->l_kpriority = true;
    233 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    234 	sleepq_enter(sq, l, mp);
    235 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    236 	mutex_exit(mtx);
    237 	error = sleepq_block(timo, priority & PCATCH);
    238 
    239 	if ((priority & PNORELOCK) == 0)
    240 		mutex_enter(mtx);
    241 
    242 	return error;
    243 }
    244 
    245 /*
    246  * General sleep call for situations where a wake-up is not expected.
    247  */
    248 int
    249 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    250 {
    251 	struct lwp *l = curlwp;
    252 	kmutex_t *mp;
    253 	sleepq_t *sq;
    254 	int error;
    255 
    256 	if (sleepq_dontsleep(l))
    257 		return sleepq_abort(NULL, 0);
    258 
    259 	if (mtx != NULL)
    260 		mutex_exit(mtx);
    261 	l->l_kpriority = true;
    262 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    263 	sleepq_enter(sq, l, mp);
    264 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    265 	error = sleepq_block(timo, intr);
    266 	if (mtx != NULL)
    267 		mutex_enter(mtx);
    268 
    269 	return error;
    270 }
    271 
    272 #ifdef KERN_SA
    273 /*
    274  * sa_awaken:
    275  *
    276  *	We believe this lwp is an SA lwp. If it's yielding,
    277  * let it know it needs to wake up.
    278  *
    279  *	We are called and exit with the lwp locked. We are
    280  * called in the middle of wakeup operations, so we need
    281  * to not touch the locks at all.
    282  */
    283 void
    284 sa_awaken(struct lwp *l)
    285 {
    286 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    287 
    288 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    289 		l->l_flag &= ~LW_SA_IDLE;
    290 }
    291 #endif /* KERN_SA */
    292 
    293 /*
    294  * OBSOLETE INTERFACE
    295  *
    296  * Make all LWPs sleeping on the specified identifier runnable.
    297  */
    298 void
    299 wakeup(wchan_t ident)
    300 {
    301 	sleepq_t *sq;
    302 	kmutex_t *mp;
    303 
    304 	if (cold)
    305 		return;
    306 
    307 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    308 	sleepq_wake(sq, ident, (u_int)-1, mp);
    309 }
    310 
    311 /*
    312  * OBSOLETE INTERFACE
    313  *
    314  * Make the highest priority LWP first in line on the specified
    315  * identifier runnable.
    316  */
    317 void
    318 wakeup_one(wchan_t ident)
    319 {
    320 	sleepq_t *sq;
    321 	kmutex_t *mp;
    322 
    323 	if (cold)
    324 		return;
    325 
    326 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    327 	sleepq_wake(sq, ident, 1, mp);
    328 }
    329 
    330 
    331 /*
    332  * General yield call.  Puts the current LWP back on its run queue and
    333  * performs a voluntary context switch.  Should only be called when the
    334  * current LWP explicitly requests it (eg sched_yield(2)).
    335  */
    336 void
    337 yield(void)
    338 {
    339 	struct lwp *l = curlwp;
    340 
    341 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    342 	lwp_lock(l);
    343 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    344 	KASSERT(l->l_stat == LSONPROC);
    345 	l->l_kpriority = false;
    346 	(void)mi_switch(l);
    347 	KERNEL_LOCK(l->l_biglocks, l);
    348 }
    349 
    350 /*
    351  * General preemption call.  Puts the current LWP back on its run queue
    352  * and performs an involuntary context switch.
    353  */
    354 void
    355 preempt(void)
    356 {
    357 	struct lwp *l = curlwp;
    358 
    359 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    360 	lwp_lock(l);
    361 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    362 	KASSERT(l->l_stat == LSONPROC);
    363 	l->l_kpriority = false;
    364 	l->l_nivcsw++;
    365 	(void)mi_switch(l);
    366 	KERNEL_LOCK(l->l_biglocks, l);
    367 }
    368 
    369 /*
    370  * Handle a request made by another agent to preempt the current LWP
    371  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    372  *
    373  * Character addresses for lockstat only.
    374  */
    375 static char	in_critical_section;
    376 static char	kernel_lock_held;
    377 static char	is_softint;
    378 
    379 bool
    380 kpreempt(uintptr_t where)
    381 {
    382 	uintptr_t failed;
    383 	lwp_t *l;
    384 	int s, dop;
    385 
    386 	l = curlwp;
    387 	failed = 0;
    388 	while ((dop = l->l_dopreempt) != 0) {
    389 		if (l->l_stat != LSONPROC) {
    390 			/*
    391 			 * About to block (or die), let it happen.
    392 			 * Doesn't really count as "preemption has
    393 			 * been blocked", since we're going to
    394 			 * context switch.
    395 			 */
    396 			l->l_dopreempt = 0;
    397 			return true;
    398 		}
    399 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    400 			/* Can't preempt idle loop, don't count as failure. */
    401 		    	l->l_dopreempt = 0;
    402 		    	return true;
    403 		}
    404 		if (__predict_false(l->l_nopreempt != 0)) {
    405 			/* LWP holds preemption disabled, explicitly. */
    406 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    407 				kpreempt_ev_crit.ev_count++;
    408 			}
    409 			failed = (uintptr_t)&in_critical_section;
    410 			break;
    411 		}
    412 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    413 		    	/* Can't preempt soft interrupts yet. */
    414 		    	l->l_dopreempt = 0;
    415 		    	failed = (uintptr_t)&is_softint;
    416 		    	break;
    417 		}
    418 		s = splsched();
    419 		if (__predict_false(l->l_blcnt != 0 ||
    420 		    curcpu()->ci_biglock_wanted != NULL)) {
    421 			/* Hold or want kernel_lock, code is not MT safe. */
    422 			splx(s);
    423 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    424 				kpreempt_ev_klock.ev_count++;
    425 			}
    426 			failed = (uintptr_t)&kernel_lock_held;
    427 			break;
    428 		}
    429 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    430 			/*
    431 			 * It may be that the IPL is too high.
    432 			 * kpreempt_enter() can schedule an
    433 			 * interrupt to retry later.
    434 			 */
    435 			splx(s);
    436 			break;
    437 		}
    438 		/* Do it! */
    439 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    440 			kpreempt_ev_immed.ev_count++;
    441 		}
    442 		lwp_lock(l);
    443 		mi_switch(l);
    444 		l->l_nopreempt++;
    445 		splx(s);
    446 
    447 		/* Take care of any MD cleanup. */
    448 		cpu_kpreempt_exit(where);
    449 		l->l_nopreempt--;
    450 	}
    451 
    452 	/* Record preemption failure for reporting via lockstat. */
    453 	if (__predict_false(failed)) {
    454 		int lsflag = 0;
    455 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    456 		LOCKSTAT_ENTER(lsflag);
    457 		/* Might recurse, make it atomic. */
    458 		if (__predict_false(lsflag)) {
    459 			if (where == 0) {
    460 				where = (uintptr_t)__builtin_return_address(0);
    461 			}
    462 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    463 			    NULL, (void *)where) == NULL) {
    464 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    465 				l->l_pfaillock = failed;
    466 			}
    467 		}
    468 		LOCKSTAT_EXIT(lsflag);
    469 	}
    470 
    471 	return failed;
    472 }
    473 
    474 /*
    475  * Return true if preemption is explicitly disabled.
    476  */
    477 bool
    478 kpreempt_disabled(void)
    479 {
    480 	lwp_t *l;
    481 
    482 	l = curlwp;
    483 
    484 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    485 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    486 }
    487 
    488 /*
    489  * Disable kernel preemption.
    490  */
    491 void
    492 kpreempt_disable(void)
    493 {
    494 
    495 	KPREEMPT_DISABLE(curlwp);
    496 }
    497 
    498 /*
    499  * Reenable kernel preemption.
    500  */
    501 void
    502 kpreempt_enable(void)
    503 {
    504 
    505 	KPREEMPT_ENABLE(curlwp);
    506 }
    507 
    508 /*
    509  * Compute the amount of time during which the current lwp was running.
    510  *
    511  * - update l_rtime unless it's an idle lwp.
    512  */
    513 
    514 void
    515 updatertime(lwp_t *l, const struct bintime *now)
    516 {
    517 
    518 	if ((l->l_flag & LW_IDLE) != 0)
    519 		return;
    520 
    521 	/* rtime += now - stime */
    522 	bintime_add(&l->l_rtime, now);
    523 	bintime_sub(&l->l_rtime, &l->l_stime);
    524 }
    525 
    526 /*
    527  * Select next LWP from the current CPU to run..
    528  */
    529 static inline lwp_t *
    530 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    531 {
    532 	lwp_t *newl;
    533 
    534 	/*
    535 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    536 	 * If no LWP is runnable, select the idle LWP.
    537 	 *
    538 	 * Note that spc_lwplock might not necessary be held, and
    539 	 * new thread would be unlocked after setting the LWP-lock.
    540 	 */
    541 	newl = sched_nextlwp();
    542 	if (newl != NULL) {
    543 		sched_dequeue(newl);
    544 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    545 		newl->l_stat = LSONPROC;
    546 		newl->l_cpu = ci;
    547 		newl->l_pflag |= LP_RUNNING;
    548 		lwp_setlock(newl, spc->spc_lwplock);
    549 	} else {
    550 		newl = ci->ci_data.cpu_idlelwp;
    551 		newl->l_stat = LSONPROC;
    552 		newl->l_pflag |= LP_RUNNING;
    553 	}
    554 
    555 	/*
    556 	 * Only clear want_resched if there are no pending (slow)
    557 	 * software interrupts.
    558 	 */
    559 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    560 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    561 	spc->spc_curpriority = lwp_eprio(newl);
    562 
    563 	return newl;
    564 }
    565 
    566 /*
    567  * The machine independent parts of context switch.
    568  *
    569  * Returns 1 if another LWP was actually run.
    570  */
    571 int
    572 mi_switch(lwp_t *l)
    573 {
    574 	struct cpu_info *ci;
    575 	struct schedstate_percpu *spc;
    576 	struct lwp *newl;
    577 	int retval, oldspl;
    578 	struct bintime bt;
    579 	bool returning;
    580 
    581 	KASSERT(lwp_locked(l, NULL));
    582 	KASSERT(kpreempt_disabled());
    583 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    584 
    585 #ifdef KSTACK_CHECK_MAGIC
    586 	kstack_check_magic(l);
    587 #endif
    588 
    589 	binuptime(&bt);
    590 
    591 	KASSERT(l->l_cpu == curcpu());
    592 	ci = l->l_cpu;
    593 	spc = &ci->ci_schedstate;
    594 	returning = false;
    595 	newl = NULL;
    596 
    597 	/*
    598 	 * If we have been asked to switch to a specific LWP, then there
    599 	 * is no need to inspect the run queues.  If a soft interrupt is
    600 	 * blocking, then return to the interrupted thread without adjusting
    601 	 * VM context or its start time: neither have been changed in order
    602 	 * to take the interrupt.
    603 	 */
    604 	if (l->l_switchto != NULL) {
    605 		if ((l->l_pflag & LP_INTR) != 0) {
    606 			returning = true;
    607 			softint_block(l);
    608 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    609 				updatertime(l, &bt);
    610 		}
    611 		newl = l->l_switchto;
    612 		l->l_switchto = NULL;
    613 	}
    614 #ifndef __HAVE_FAST_SOFTINTS
    615 	else if (ci->ci_data.cpu_softints != 0) {
    616 		/* There are pending soft interrupts, so pick one. */
    617 		newl = softint_picklwp();
    618 		newl->l_stat = LSONPROC;
    619 		newl->l_pflag |= LP_RUNNING;
    620 	}
    621 #endif	/* !__HAVE_FAST_SOFTINTS */
    622 
    623 	/* Count time spent in current system call */
    624 	if (!returning) {
    625 		SYSCALL_TIME_SLEEP(l);
    626 
    627 		/*
    628 		 * XXXSMP If we are using h/w performance counters,
    629 		 * save context.
    630 		 */
    631 #if PERFCTRS
    632 		if (PMC_ENABLED(l->l_proc)) {
    633 			pmc_save_context(l->l_proc);
    634 		}
    635 #endif
    636 		updatertime(l, &bt);
    637 	}
    638 
    639 	/* Lock the runqueue */
    640 	KASSERT(l->l_stat != LSRUN);
    641 	mutex_spin_enter(spc->spc_mutex);
    642 
    643 	/*
    644 	 * If on the CPU and we have gotten this far, then we must yield.
    645 	 */
    646 	if (l->l_stat == LSONPROC && l != newl) {
    647 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    648 		if ((l->l_flag & LW_IDLE) == 0) {
    649 			l->l_stat = LSRUN;
    650 			lwp_setlock(l, spc->spc_mutex);
    651 			sched_enqueue(l, true);
    652 			/* Handle migration case */
    653 			KASSERT(spc->spc_migrating == NULL);
    654 			if (l->l_target_cpu !=  NULL) {
    655 				spc->spc_migrating = l;
    656 			}
    657 		} else
    658 			l->l_stat = LSIDL;
    659 	}
    660 
    661 	/* Pick new LWP to run. */
    662 	if (newl == NULL) {
    663 		newl = nextlwp(ci, spc);
    664 	}
    665 
    666 	/* Items that must be updated with the CPU locked. */
    667 	if (!returning) {
    668 		/* Update the new LWP's start time. */
    669 		newl->l_stime = bt;
    670 
    671 		/*
    672 		 * ci_curlwp changes when a fast soft interrupt occurs.
    673 		 * We use cpu_onproc to keep track of which kernel or
    674 		 * user thread is running 'underneath' the software
    675 		 * interrupt.  This is important for time accounting,
    676 		 * itimers and forcing user threads to preempt (aston).
    677 		 */
    678 		ci->ci_data.cpu_onproc = newl;
    679 	}
    680 
    681 	/*
    682 	 * Preemption related tasks.  Must be done with the current
    683 	 * CPU locked.
    684 	 */
    685 	cpu_did_resched(l);
    686 	l->l_dopreempt = 0;
    687 	if (__predict_false(l->l_pfailaddr != 0)) {
    688 		LOCKSTAT_FLAG(lsflag);
    689 		LOCKSTAT_ENTER(lsflag);
    690 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    691 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    692 		    1, l->l_pfailtime, l->l_pfailaddr);
    693 		LOCKSTAT_EXIT(lsflag);
    694 		l->l_pfailtime = 0;
    695 		l->l_pfaillock = 0;
    696 		l->l_pfailaddr = 0;
    697 	}
    698 
    699 	if (l != newl) {
    700 		struct lwp *prevlwp;
    701 
    702 		/* Release all locks, but leave the current LWP locked */
    703 		if (l->l_mutex == spc->spc_mutex) {
    704 			/*
    705 			 * Drop spc_lwplock, if the current LWP has been moved
    706 			 * to the run queue (it is now locked by spc_mutex).
    707 			 */
    708 			mutex_spin_exit(spc->spc_lwplock);
    709 		} else {
    710 			/*
    711 			 * Otherwise, drop the spc_mutex, we are done with the
    712 			 * run queues.
    713 			 */
    714 			mutex_spin_exit(spc->spc_mutex);
    715 		}
    716 
    717 		/*
    718 		 * Mark that context switch is going to be performed
    719 		 * for this LWP, to protect it from being switched
    720 		 * to on another CPU.
    721 		 */
    722 		KASSERT(l->l_ctxswtch == 0);
    723 		l->l_ctxswtch = 1;
    724 		l->l_ncsw++;
    725 		l->l_pflag &= ~LP_RUNNING;
    726 
    727 		/*
    728 		 * Increase the count of spin-mutexes before the release
    729 		 * of the last lock - we must remain at IPL_SCHED during
    730 		 * the context switch.
    731 		 */
    732 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    733 		ci->ci_mtx_count--;
    734 		lwp_unlock(l);
    735 
    736 		/* Count the context switch on this CPU. */
    737 		ci->ci_data.cpu_nswtch++;
    738 
    739 		/* Update status for lwpctl, if present. */
    740 		if (l->l_lwpctl != NULL)
    741 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    742 
    743 		/*
    744 		 * Save old VM context, unless a soft interrupt
    745 		 * handler is blocking.
    746 		 */
    747 		if (!returning)
    748 			pmap_deactivate(l);
    749 
    750 		/*
    751 		 * We may need to spin-wait for if 'newl' is still
    752 		 * context switching on another CPU.
    753 		 */
    754 		if (newl->l_ctxswtch != 0) {
    755 			u_int count;
    756 			count = SPINLOCK_BACKOFF_MIN;
    757 			while (newl->l_ctxswtch)
    758 				SPINLOCK_BACKOFF(count);
    759 		}
    760 
    761 		/* Switch to the new LWP.. */
    762 		prevlwp = cpu_switchto(l, newl, returning);
    763 		ci = curcpu();
    764 
    765 		/*
    766 		 * Switched away - we have new curlwp.
    767 		 * Restore VM context and IPL.
    768 		 */
    769 		pmap_activate(l);
    770 		if (prevlwp != NULL) {
    771 			/* Normalize the count of the spin-mutexes */
    772 			ci->ci_mtx_count++;
    773 			/* Unmark the state of context switch */
    774 			membar_exit();
    775 			prevlwp->l_ctxswtch = 0;
    776 		}
    777 
    778 		/* Update status for lwpctl, if present. */
    779 		if (l->l_lwpctl != NULL) {
    780 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    781 			l->l_lwpctl->lc_pctr++;
    782 		}
    783 
    784 		KASSERT(l->l_cpu == ci);
    785 		splx(oldspl);
    786 		retval = 1;
    787 	} else {
    788 		/* Nothing to do - just unlock and return. */
    789 		mutex_spin_exit(spc->spc_mutex);
    790 		lwp_unlock(l);
    791 		retval = 0;
    792 	}
    793 
    794 	KASSERT(l == curlwp);
    795 	KASSERT(l->l_stat == LSONPROC);
    796 
    797 	/*
    798 	 * XXXSMP If we are using h/w performance counters, restore context.
    799 	 * XXXSMP preemption problem.
    800 	 */
    801 #if PERFCTRS
    802 	if (PMC_ENABLED(l->l_proc)) {
    803 		pmc_restore_context(l->l_proc);
    804 	}
    805 #endif
    806 	SYSCALL_TIME_WAKEUP(l);
    807 	LOCKDEBUG_BARRIER(NULL, 1);
    808 
    809 	return retval;
    810 }
    811 
    812 /*
    813  * The machine independent parts of context switch to oblivion.
    814  * Does not return.  Call with the LWP unlocked.
    815  */
    816 void
    817 lwp_exit_switchaway(lwp_t *l)
    818 {
    819 	struct cpu_info *ci;
    820 	struct lwp *newl;
    821 	struct bintime bt;
    822 
    823 	ci = l->l_cpu;
    824 
    825 	KASSERT(kpreempt_disabled());
    826 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    827 	KASSERT(ci == curcpu());
    828 	LOCKDEBUG_BARRIER(NULL, 0);
    829 
    830 #ifdef KSTACK_CHECK_MAGIC
    831 	kstack_check_magic(l);
    832 #endif
    833 
    834 	/* Count time spent in current system call */
    835 	SYSCALL_TIME_SLEEP(l);
    836 	binuptime(&bt);
    837 	updatertime(l, &bt);
    838 
    839 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    840 	(void)splsched();
    841 
    842 	/*
    843 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    844 	 * If no LWP is runnable, select the idle LWP.
    845 	 *
    846 	 * Note that spc_lwplock might not necessary be held, and
    847 	 * new thread would be unlocked after setting the LWP-lock.
    848 	 */
    849 	spc_lock(ci);
    850 #ifndef __HAVE_FAST_SOFTINTS
    851 	if (ci->ci_data.cpu_softints != 0) {
    852 		/* There are pending soft interrupts, so pick one. */
    853 		newl = softint_picklwp();
    854 		newl->l_stat = LSONPROC;
    855 		newl->l_pflag |= LP_RUNNING;
    856 	} else
    857 #endif	/* !__HAVE_FAST_SOFTINTS */
    858 	{
    859 		newl = nextlwp(ci, &ci->ci_schedstate);
    860 	}
    861 
    862 	/* Update the new LWP's start time. */
    863 	newl->l_stime = bt;
    864 	l->l_pflag &= ~LP_RUNNING;
    865 
    866 	/*
    867 	 * ci_curlwp changes when a fast soft interrupt occurs.
    868 	 * We use cpu_onproc to keep track of which kernel or
    869 	 * user thread is running 'underneath' the software
    870 	 * interrupt.  This is important for time accounting,
    871 	 * itimers and forcing user threads to preempt (aston).
    872 	 */
    873 	ci->ci_data.cpu_onproc = newl;
    874 
    875 	/*
    876 	 * Preemption related tasks.  Must be done with the current
    877 	 * CPU locked.
    878 	 */
    879 	cpu_did_resched(l);
    880 
    881 	/* Unlock the run queue. */
    882 	spc_unlock(ci);
    883 
    884 	/* Count the context switch on this CPU. */
    885 	ci->ci_data.cpu_nswtch++;
    886 
    887 	/* Update status for lwpctl, if present. */
    888 	if (l->l_lwpctl != NULL)
    889 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    890 
    891 	/*
    892 	 * We may need to spin-wait for if 'newl' is still
    893 	 * context switching on another CPU.
    894 	 */
    895 	if (newl->l_ctxswtch != 0) {
    896 		u_int count;
    897 		count = SPINLOCK_BACKOFF_MIN;
    898 		while (newl->l_ctxswtch)
    899 			SPINLOCK_BACKOFF(count);
    900 	}
    901 
    902 	/* Switch to the new LWP.. */
    903 	(void)cpu_switchto(NULL, newl, false);
    904 
    905 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    906 	/* NOTREACHED */
    907 }
    908 
    909 /*
    910  * Change LWP state to be runnable, placing it on the run queue if it is
    911  * in memory, and awakening the swapper if it isn't in memory.
    912  *
    913  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    914  */
    915 void
    916 setrunnable(struct lwp *l)
    917 {
    918 	struct proc *p = l->l_proc;
    919 	struct cpu_info *ci;
    920 
    921 	KASSERT((l->l_flag & LW_IDLE) == 0);
    922 	KASSERT(mutex_owned(p->p_lock));
    923 	KASSERT(lwp_locked(l, NULL));
    924 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    925 
    926 	switch (l->l_stat) {
    927 	case LSSTOP:
    928 		/*
    929 		 * If we're being traced (possibly because someone attached us
    930 		 * while we were stopped), check for a signal from the debugger.
    931 		 */
    932 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    933 			signotify(l);
    934 		p->p_nrlwps++;
    935 		break;
    936 	case LSSUSPENDED:
    937 		l->l_flag &= ~LW_WSUSPEND;
    938 		p->p_nrlwps++;
    939 		cv_broadcast(&p->p_lwpcv);
    940 		break;
    941 	case LSSLEEP:
    942 		KASSERT(l->l_wchan != NULL);
    943 		break;
    944 	default:
    945 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    946 	}
    947 
    948 #ifdef KERN_SA
    949 	if (l->l_proc->p_sa)
    950 		sa_awaken(l);
    951 #endif /* KERN_SA */
    952 
    953 	/*
    954 	 * If the LWP was sleeping interruptably, then it's OK to start it
    955 	 * again.  If not, mark it as still sleeping.
    956 	 */
    957 	if (l->l_wchan != NULL) {
    958 		l->l_stat = LSSLEEP;
    959 		/* lwp_unsleep() will release the lock. */
    960 		lwp_unsleep(l, true);
    961 		return;
    962 	}
    963 
    964 	/*
    965 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    966 	 * about to call mi_switch(), in which case it will yield.
    967 	 */
    968 	if ((l->l_pflag & LP_RUNNING) != 0) {
    969 		l->l_stat = LSONPROC;
    970 		l->l_slptime = 0;
    971 		lwp_unlock(l);
    972 		return;
    973 	}
    974 
    975 	/*
    976 	 * Look for a CPU to run.
    977 	 * Set the LWP runnable.
    978 	 */
    979 	ci = sched_takecpu(l);
    980 	l->l_cpu = ci;
    981 	spc_lock(ci);
    982 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    983 	sched_setrunnable(l);
    984 	l->l_stat = LSRUN;
    985 	l->l_slptime = 0;
    986 
    987 	/*
    988 	 * If thread is swapped out - wake the swapper to bring it back in.
    989 	 * Otherwise, enter it into a run queue.
    990 	 */
    991 	if (l->l_flag & LW_INMEM) {
    992 		sched_enqueue(l, false);
    993 		resched_cpu(l);
    994 		lwp_unlock(l);
    995 	} else {
    996 		lwp_unlock(l);
    997 		uvm_kick_scheduler();
    998 	}
    999 }
   1000 
   1001 /*
   1002  * suspendsched:
   1003  *
   1004  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1005  */
   1006 void
   1007 suspendsched(void)
   1008 {
   1009 	CPU_INFO_ITERATOR cii;
   1010 	struct cpu_info *ci;
   1011 	struct lwp *l;
   1012 	struct proc *p;
   1013 
   1014 	/*
   1015 	 * We do this by process in order not to violate the locking rules.
   1016 	 */
   1017 	mutex_enter(proc_lock);
   1018 	PROCLIST_FOREACH(p, &allproc) {
   1019 		if ((p->p_flag & PK_MARKER) != 0)
   1020 			continue;
   1021 
   1022 		mutex_enter(p->p_lock);
   1023 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1024 			mutex_exit(p->p_lock);
   1025 			continue;
   1026 		}
   1027 
   1028 		p->p_stat = SSTOP;
   1029 
   1030 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1031 			if (l == curlwp)
   1032 				continue;
   1033 
   1034 			lwp_lock(l);
   1035 
   1036 			/*
   1037 			 * Set L_WREBOOT so that the LWP will suspend itself
   1038 			 * when it tries to return to user mode.  We want to
   1039 			 * try and get to get as many LWPs as possible to
   1040 			 * the user / kernel boundary, so that they will
   1041 			 * release any locks that they hold.
   1042 			 */
   1043 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1044 
   1045 			if (l->l_stat == LSSLEEP &&
   1046 			    (l->l_flag & LW_SINTR) != 0) {
   1047 				/* setrunnable() will release the lock. */
   1048 				setrunnable(l);
   1049 				continue;
   1050 			}
   1051 
   1052 			lwp_unlock(l);
   1053 		}
   1054 
   1055 		mutex_exit(p->p_lock);
   1056 	}
   1057 	mutex_exit(proc_lock);
   1058 
   1059 	/*
   1060 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1061 	 * They'll trap into the kernel and suspend themselves in userret().
   1062 	 */
   1063 	for (CPU_INFO_FOREACH(cii, ci)) {
   1064 		spc_lock(ci);
   1065 		cpu_need_resched(ci, RESCHED_IMMED);
   1066 		spc_unlock(ci);
   1067 	}
   1068 }
   1069 
   1070 /*
   1071  * sched_unsleep:
   1072  *
   1073  *	The is called when the LWP has not been awoken normally but instead
   1074  *	interrupted: for example, if the sleep timed out.  Because of this,
   1075  *	it's not a valid action for running or idle LWPs.
   1076  */
   1077 static u_int
   1078 sched_unsleep(struct lwp *l, bool cleanup)
   1079 {
   1080 
   1081 	lwp_unlock(l);
   1082 	panic("sched_unsleep");
   1083 }
   1084 
   1085 static void
   1086 resched_cpu(struct lwp *l)
   1087 {
   1088 	struct cpu_info *ci = ci = l->l_cpu;
   1089 
   1090 	KASSERT(lwp_locked(l, NULL));
   1091 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1092 		cpu_need_resched(ci, 0);
   1093 }
   1094 
   1095 static void
   1096 sched_changepri(struct lwp *l, pri_t pri)
   1097 {
   1098 
   1099 	KASSERT(lwp_locked(l, NULL));
   1100 
   1101 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1102 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1103 		sched_dequeue(l);
   1104 		l->l_priority = pri;
   1105 		sched_enqueue(l, false);
   1106 	} else {
   1107 		l->l_priority = pri;
   1108 	}
   1109 	resched_cpu(l);
   1110 }
   1111 
   1112 static void
   1113 sched_lendpri(struct lwp *l, pri_t pri)
   1114 {
   1115 
   1116 	KASSERT(lwp_locked(l, NULL));
   1117 
   1118 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1119 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1120 		sched_dequeue(l);
   1121 		l->l_inheritedprio = pri;
   1122 		sched_enqueue(l, false);
   1123 	} else {
   1124 		l->l_inheritedprio = pri;
   1125 	}
   1126 	resched_cpu(l);
   1127 }
   1128 
   1129 struct lwp *
   1130 syncobj_noowner(wchan_t wchan)
   1131 {
   1132 
   1133 	return NULL;
   1134 }
   1135 
   1136 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1137 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1138 
   1139 /*
   1140  * sched_pstats:
   1141  *
   1142  * Update process statistics and check CPU resource allocation.
   1143  * Call scheduler-specific hook to eventually adjust process/LWP
   1144  * priorities.
   1145  */
   1146 /* ARGSUSED */
   1147 void
   1148 sched_pstats(void *arg)
   1149 {
   1150 	const int clkhz = (stathz != 0 ? stathz : hz);
   1151 	struct rlimit *rlim;
   1152 	struct lwp *l;
   1153 	struct proc *p;
   1154 	long runtm;
   1155 	fixpt_t lpctcpu;
   1156 	u_int lcpticks;
   1157 	int sig;
   1158 
   1159 	sched_pstats_ticks++;
   1160 
   1161 	mutex_enter(proc_lock);
   1162 	PROCLIST_FOREACH(p, &allproc) {
   1163 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
   1164 			continue;
   1165 
   1166 		/*
   1167 		 * Increment time in/out of memory and sleep
   1168 		 * time (if sleeping), ignore overflow.
   1169 		 */
   1170 		mutex_enter(p->p_lock);
   1171 		runtm = p->p_rtime.sec;
   1172 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1173 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1174 				continue;
   1175 			lwp_lock(l);
   1176 			runtm += l->l_rtime.sec;
   1177 			l->l_swtime++;
   1178 			sched_lwp_stats(l);
   1179 			lwp_unlock(l);
   1180 
   1181 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1182 			if (l->l_slptime != 0)
   1183 				continue;
   1184 
   1185 			lpctcpu = l->l_pctcpu;
   1186 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1187 			lpctcpu += ((FSCALE - ccpu) *
   1188 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1189 			l->l_pctcpu = lpctcpu;
   1190 		}
   1191 		/* Calculating p_pctcpu only for ps(1) */
   1192 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1193 
   1194 		/*
   1195 		 * Check if the process exceeds its CPU resource allocation.
   1196 		 * If over max, kill it.
   1197 		 */
   1198 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1199 		sig = 0;
   1200 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1201 			if (runtm >= rlim->rlim_max)
   1202 				sig = SIGKILL;
   1203 			else {
   1204 				sig = SIGXCPU;
   1205 				if (rlim->rlim_cur < rlim->rlim_max)
   1206 					rlim->rlim_cur += 5;
   1207 			}
   1208 		}
   1209 		mutex_exit(p->p_lock);
   1210 		if (__predict_false(runtm < 0)) {
   1211 			printf("WARNING: negative runtime; "
   1212 			    "monotonic clock has gone backwards\n");
   1213 		} else if (__predict_false(sig)) {
   1214 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1215 			psignal(p, sig);
   1216 		}
   1217 	}
   1218 	mutex_exit(proc_lock);
   1219 	uvm_meter();
   1220 	cv_wakeup(&lbolt);
   1221 	callout_schedule(&sched_pstats_ch, hz);
   1222 }
   1223