kern_synch.c revision 1.259 1 /* $NetBSD: kern_synch.c,v 1.259 2009/01/28 22:59:46 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.259 2009/01/28 22:59:46 rmind Exp $");
72
73 #include "opt_kstack.h"
74 #include "opt_perfctrs.h"
75 #include "opt_sa.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #if defined(PERFCTRS)
84 #include <sys/pmc.h>
85 #endif
86 #include <sys/cpu.h>
87 #include <sys/resourcevar.h>
88 #include <sys/sched.h>
89 #include <sys/sa.h>
90 #include <sys/savar.h>
91 #include <sys/syscall_stats.h>
92 #include <sys/sleepq.h>
93 #include <sys/lockdebug.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/lwpctl.h>
97 #include <sys/atomic.h>
98 #include <sys/simplelock.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #include <dev/lockstat.h>
103
104 static u_int sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107 static void resched_cpu(struct lwp *);
108
109 syncobj_t sleep_syncobj = {
110 SOBJ_SLEEPQ_SORTED,
111 sleepq_unsleep,
112 sleepq_changepri,
113 sleepq_lendpri,
114 syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 SOBJ_SLEEPQ_SORTED,
119 sched_unsleep,
120 sched_changepri,
121 sched_lendpri,
122 syncobj_noowner,
123 };
124
125 callout_t sched_pstats_ch;
126 unsigned sched_pstats_ticks;
127 kcondvar_t lbolt; /* once a second sleep address */
128
129 /* Preemption event counters */
130 static struct evcnt kpreempt_ev_crit;
131 static struct evcnt kpreempt_ev_klock;
132 static struct evcnt kpreempt_ev_immed;
133
134 /*
135 * During autoconfiguration or after a panic, a sleep will simply lower the
136 * priority briefly to allow interrupts, then return. The priority to be
137 * used (safepri) is machine-dependent, thus this value is initialized and
138 * maintained in the machine-dependent layers. This priority will typically
139 * be 0, or the lowest priority that is safe for use on the interrupt stack;
140 * it can be made higher to block network software interrupts after panics.
141 */
142 int safepri;
143
144 void
145 sched_init(void)
146 {
147
148 cv_init(&lbolt, "lbolt");
149 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
150 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
151
152 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
153 "kpreempt", "defer: critical section");
154 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
155 "kpreempt", "defer: kernel_lock");
156 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
157 "kpreempt", "immediate");
158
159 sched_pstats(NULL);
160 }
161
162 /*
163 * OBSOLETE INTERFACE
164 *
165 * General sleep call. Suspends the current LWP until a wakeup is
166 * performed on the specified identifier. The LWP will then be made
167 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
168 * means no timeout). If pri includes PCATCH flag, signals are checked
169 * before and after sleeping, else signals are not checked. Returns 0 if
170 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
171 * signal needs to be delivered, ERESTART is returned if the current system
172 * call should be restarted if possible, and EINTR is returned if the system
173 * call should be interrupted by the signal (return EINTR).
174 *
175 * The interlock is held until we are on a sleep queue. The interlock will
176 * be locked before returning back to the caller unless the PNORELOCK flag
177 * is specified, in which case the interlock will always be unlocked upon
178 * return.
179 */
180 int
181 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
182 volatile struct simplelock *interlock)
183 {
184 struct lwp *l = curlwp;
185 sleepq_t *sq;
186 kmutex_t *mp;
187 int error;
188
189 KASSERT((l->l_pflag & LP_INTR) == 0);
190
191 if (sleepq_dontsleep(l)) {
192 (void)sleepq_abort(NULL, 0);
193 if ((priority & PNORELOCK) != 0)
194 simple_unlock(interlock);
195 return 0;
196 }
197
198 l->l_kpriority = true;
199 sq = sleeptab_lookup(&sleeptab, ident, &mp);
200 sleepq_enter(sq, l, mp);
201 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
202
203 if (interlock != NULL) {
204 KASSERT(simple_lock_held(interlock));
205 simple_unlock(interlock);
206 }
207
208 error = sleepq_block(timo, priority & PCATCH);
209
210 if (interlock != NULL && (priority & PNORELOCK) == 0)
211 simple_lock(interlock);
212
213 return error;
214 }
215
216 int
217 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
218 kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 sleepq_t *sq;
222 kmutex_t *mp;
223 int error;
224
225 KASSERT((l->l_pflag & LP_INTR) == 0);
226
227 if (sleepq_dontsleep(l)) {
228 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
229 return 0;
230 }
231
232 l->l_kpriority = true;
233 sq = sleeptab_lookup(&sleeptab, ident, &mp);
234 sleepq_enter(sq, l, mp);
235 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
236 mutex_exit(mtx);
237 error = sleepq_block(timo, priority & PCATCH);
238
239 if ((priority & PNORELOCK) == 0)
240 mutex_enter(mtx);
241
242 return error;
243 }
244
245 /*
246 * General sleep call for situations where a wake-up is not expected.
247 */
248 int
249 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
250 {
251 struct lwp *l = curlwp;
252 kmutex_t *mp;
253 sleepq_t *sq;
254 int error;
255
256 if (sleepq_dontsleep(l))
257 return sleepq_abort(NULL, 0);
258
259 if (mtx != NULL)
260 mutex_exit(mtx);
261 l->l_kpriority = true;
262 sq = sleeptab_lookup(&sleeptab, l, &mp);
263 sleepq_enter(sq, l, mp);
264 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
265 error = sleepq_block(timo, intr);
266 if (mtx != NULL)
267 mutex_enter(mtx);
268
269 return error;
270 }
271
272 #ifdef KERN_SA
273 /*
274 * sa_awaken:
275 *
276 * We believe this lwp is an SA lwp. If it's yielding,
277 * let it know it needs to wake up.
278 *
279 * We are called and exit with the lwp locked. We are
280 * called in the middle of wakeup operations, so we need
281 * to not touch the locks at all.
282 */
283 void
284 sa_awaken(struct lwp *l)
285 {
286 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
287
288 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
289 l->l_flag &= ~LW_SA_IDLE;
290 }
291 #endif /* KERN_SA */
292
293 /*
294 * OBSOLETE INTERFACE
295 *
296 * Make all LWPs sleeping on the specified identifier runnable.
297 */
298 void
299 wakeup(wchan_t ident)
300 {
301 sleepq_t *sq;
302 kmutex_t *mp;
303
304 if (cold)
305 return;
306
307 sq = sleeptab_lookup(&sleeptab, ident, &mp);
308 sleepq_wake(sq, ident, (u_int)-1, mp);
309 }
310
311 /*
312 * OBSOLETE INTERFACE
313 *
314 * Make the highest priority LWP first in line on the specified
315 * identifier runnable.
316 */
317 void
318 wakeup_one(wchan_t ident)
319 {
320 sleepq_t *sq;
321 kmutex_t *mp;
322
323 if (cold)
324 return;
325
326 sq = sleeptab_lookup(&sleeptab, ident, &mp);
327 sleepq_wake(sq, ident, 1, mp);
328 }
329
330
331 /*
332 * General yield call. Puts the current LWP back on its run queue and
333 * performs a voluntary context switch. Should only be called when the
334 * current LWP explicitly requests it (eg sched_yield(2)).
335 */
336 void
337 yield(void)
338 {
339 struct lwp *l = curlwp;
340
341 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
342 lwp_lock(l);
343 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
344 KASSERT(l->l_stat == LSONPROC);
345 l->l_kpriority = false;
346 (void)mi_switch(l);
347 KERNEL_LOCK(l->l_biglocks, l);
348 }
349
350 /*
351 * General preemption call. Puts the current LWP back on its run queue
352 * and performs an involuntary context switch.
353 */
354 void
355 preempt(void)
356 {
357 struct lwp *l = curlwp;
358
359 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
360 lwp_lock(l);
361 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
362 KASSERT(l->l_stat == LSONPROC);
363 l->l_kpriority = false;
364 l->l_nivcsw++;
365 (void)mi_switch(l);
366 KERNEL_LOCK(l->l_biglocks, l);
367 }
368
369 /*
370 * Handle a request made by another agent to preempt the current LWP
371 * in-kernel. Usually called when l_dopreempt may be non-zero.
372 *
373 * Character addresses for lockstat only.
374 */
375 static char in_critical_section;
376 static char kernel_lock_held;
377 static char is_softint;
378
379 bool
380 kpreempt(uintptr_t where)
381 {
382 uintptr_t failed;
383 lwp_t *l;
384 int s, dop;
385
386 l = curlwp;
387 failed = 0;
388 while ((dop = l->l_dopreempt) != 0) {
389 if (l->l_stat != LSONPROC) {
390 /*
391 * About to block (or die), let it happen.
392 * Doesn't really count as "preemption has
393 * been blocked", since we're going to
394 * context switch.
395 */
396 l->l_dopreempt = 0;
397 return true;
398 }
399 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
400 /* Can't preempt idle loop, don't count as failure. */
401 l->l_dopreempt = 0;
402 return true;
403 }
404 if (__predict_false(l->l_nopreempt != 0)) {
405 /* LWP holds preemption disabled, explicitly. */
406 if ((dop & DOPREEMPT_COUNTED) == 0) {
407 kpreempt_ev_crit.ev_count++;
408 }
409 failed = (uintptr_t)&in_critical_section;
410 break;
411 }
412 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
413 /* Can't preempt soft interrupts yet. */
414 l->l_dopreempt = 0;
415 failed = (uintptr_t)&is_softint;
416 break;
417 }
418 s = splsched();
419 if (__predict_false(l->l_blcnt != 0 ||
420 curcpu()->ci_biglock_wanted != NULL)) {
421 /* Hold or want kernel_lock, code is not MT safe. */
422 splx(s);
423 if ((dop & DOPREEMPT_COUNTED) == 0) {
424 kpreempt_ev_klock.ev_count++;
425 }
426 failed = (uintptr_t)&kernel_lock_held;
427 break;
428 }
429 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
430 /*
431 * It may be that the IPL is too high.
432 * kpreempt_enter() can schedule an
433 * interrupt to retry later.
434 */
435 splx(s);
436 break;
437 }
438 /* Do it! */
439 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
440 kpreempt_ev_immed.ev_count++;
441 }
442 lwp_lock(l);
443 mi_switch(l);
444 l->l_nopreempt++;
445 splx(s);
446
447 /* Take care of any MD cleanup. */
448 cpu_kpreempt_exit(where);
449 l->l_nopreempt--;
450 }
451
452 /* Record preemption failure for reporting via lockstat. */
453 if (__predict_false(failed)) {
454 int lsflag = 0;
455 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
456 LOCKSTAT_ENTER(lsflag);
457 /* Might recurse, make it atomic. */
458 if (__predict_false(lsflag)) {
459 if (where == 0) {
460 where = (uintptr_t)__builtin_return_address(0);
461 }
462 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
463 NULL, (void *)where) == NULL) {
464 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
465 l->l_pfaillock = failed;
466 }
467 }
468 LOCKSTAT_EXIT(lsflag);
469 }
470
471 return failed;
472 }
473
474 /*
475 * Return true if preemption is explicitly disabled.
476 */
477 bool
478 kpreempt_disabled(void)
479 {
480 lwp_t *l;
481
482 l = curlwp;
483
484 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
485 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
486 }
487
488 /*
489 * Disable kernel preemption.
490 */
491 void
492 kpreempt_disable(void)
493 {
494
495 KPREEMPT_DISABLE(curlwp);
496 }
497
498 /*
499 * Reenable kernel preemption.
500 */
501 void
502 kpreempt_enable(void)
503 {
504
505 KPREEMPT_ENABLE(curlwp);
506 }
507
508 /*
509 * Compute the amount of time during which the current lwp was running.
510 *
511 * - update l_rtime unless it's an idle lwp.
512 */
513
514 void
515 updatertime(lwp_t *l, const struct bintime *now)
516 {
517
518 if ((l->l_flag & LW_IDLE) != 0)
519 return;
520
521 /* rtime += now - stime */
522 bintime_add(&l->l_rtime, now);
523 bintime_sub(&l->l_rtime, &l->l_stime);
524 }
525
526 /*
527 * Select next LWP from the current CPU to run..
528 */
529 static inline lwp_t *
530 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
531 {
532 lwp_t *newl;
533
534 /*
535 * Let sched_nextlwp() select the LWP to run the CPU next.
536 * If no LWP is runnable, select the idle LWP.
537 *
538 * Note that spc_lwplock might not necessary be held, and
539 * new thread would be unlocked after setting the LWP-lock.
540 */
541 newl = sched_nextlwp();
542 if (newl != NULL) {
543 sched_dequeue(newl);
544 KASSERT(lwp_locked(newl, spc->spc_mutex));
545 newl->l_stat = LSONPROC;
546 newl->l_cpu = ci;
547 newl->l_pflag |= LP_RUNNING;
548 lwp_setlock(newl, spc->spc_lwplock);
549 } else {
550 newl = ci->ci_data.cpu_idlelwp;
551 newl->l_stat = LSONPROC;
552 newl->l_pflag |= LP_RUNNING;
553 }
554
555 /*
556 * Only clear want_resched if there are no pending (slow)
557 * software interrupts.
558 */
559 ci->ci_want_resched = ci->ci_data.cpu_softints;
560 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
561 spc->spc_curpriority = lwp_eprio(newl);
562
563 return newl;
564 }
565
566 /*
567 * The machine independent parts of context switch.
568 *
569 * Returns 1 if another LWP was actually run.
570 */
571 int
572 mi_switch(lwp_t *l)
573 {
574 struct cpu_info *ci;
575 struct schedstate_percpu *spc;
576 struct lwp *newl;
577 int retval, oldspl;
578 struct bintime bt;
579 bool returning;
580
581 KASSERT(lwp_locked(l, NULL));
582 KASSERT(kpreempt_disabled());
583 LOCKDEBUG_BARRIER(l->l_mutex, 1);
584
585 #ifdef KSTACK_CHECK_MAGIC
586 kstack_check_magic(l);
587 #endif
588
589 binuptime(&bt);
590
591 KASSERT(l->l_cpu == curcpu());
592 ci = l->l_cpu;
593 spc = &ci->ci_schedstate;
594 returning = false;
595 newl = NULL;
596
597 /*
598 * If we have been asked to switch to a specific LWP, then there
599 * is no need to inspect the run queues. If a soft interrupt is
600 * blocking, then return to the interrupted thread without adjusting
601 * VM context or its start time: neither have been changed in order
602 * to take the interrupt.
603 */
604 if (l->l_switchto != NULL) {
605 if ((l->l_pflag & LP_INTR) != 0) {
606 returning = true;
607 softint_block(l);
608 if ((l->l_pflag & LP_TIMEINTR) != 0)
609 updatertime(l, &bt);
610 }
611 newl = l->l_switchto;
612 l->l_switchto = NULL;
613 }
614 #ifndef __HAVE_FAST_SOFTINTS
615 else if (ci->ci_data.cpu_softints != 0) {
616 /* There are pending soft interrupts, so pick one. */
617 newl = softint_picklwp();
618 newl->l_stat = LSONPROC;
619 newl->l_pflag |= LP_RUNNING;
620 }
621 #endif /* !__HAVE_FAST_SOFTINTS */
622
623 /* Count time spent in current system call */
624 if (!returning) {
625 SYSCALL_TIME_SLEEP(l);
626
627 /*
628 * XXXSMP If we are using h/w performance counters,
629 * save context.
630 */
631 #if PERFCTRS
632 if (PMC_ENABLED(l->l_proc)) {
633 pmc_save_context(l->l_proc);
634 }
635 #endif
636 updatertime(l, &bt);
637 }
638
639 /* Lock the runqueue */
640 KASSERT(l->l_stat != LSRUN);
641 mutex_spin_enter(spc->spc_mutex);
642
643 /*
644 * If on the CPU and we have gotten this far, then we must yield.
645 */
646 if (l->l_stat == LSONPROC && l != newl) {
647 KASSERT(lwp_locked(l, spc->spc_lwplock));
648 if ((l->l_flag & LW_IDLE) == 0) {
649 l->l_stat = LSRUN;
650 lwp_setlock(l, spc->spc_mutex);
651 sched_enqueue(l, true);
652 /* Handle migration case */
653 KASSERT(spc->spc_migrating == NULL);
654 if (l->l_target_cpu != NULL) {
655 spc->spc_migrating = l;
656 }
657 } else
658 l->l_stat = LSIDL;
659 }
660
661 /* Pick new LWP to run. */
662 if (newl == NULL) {
663 newl = nextlwp(ci, spc);
664 }
665
666 /* Items that must be updated with the CPU locked. */
667 if (!returning) {
668 /* Update the new LWP's start time. */
669 newl->l_stime = bt;
670
671 /*
672 * ci_curlwp changes when a fast soft interrupt occurs.
673 * We use cpu_onproc to keep track of which kernel or
674 * user thread is running 'underneath' the software
675 * interrupt. This is important for time accounting,
676 * itimers and forcing user threads to preempt (aston).
677 */
678 ci->ci_data.cpu_onproc = newl;
679 }
680
681 /*
682 * Preemption related tasks. Must be done with the current
683 * CPU locked.
684 */
685 cpu_did_resched(l);
686 l->l_dopreempt = 0;
687 if (__predict_false(l->l_pfailaddr != 0)) {
688 LOCKSTAT_FLAG(lsflag);
689 LOCKSTAT_ENTER(lsflag);
690 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
691 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
692 1, l->l_pfailtime, l->l_pfailaddr);
693 LOCKSTAT_EXIT(lsflag);
694 l->l_pfailtime = 0;
695 l->l_pfaillock = 0;
696 l->l_pfailaddr = 0;
697 }
698
699 if (l != newl) {
700 struct lwp *prevlwp;
701
702 /* Release all locks, but leave the current LWP locked */
703 if (l->l_mutex == spc->spc_mutex) {
704 /*
705 * Drop spc_lwplock, if the current LWP has been moved
706 * to the run queue (it is now locked by spc_mutex).
707 */
708 mutex_spin_exit(spc->spc_lwplock);
709 } else {
710 /*
711 * Otherwise, drop the spc_mutex, we are done with the
712 * run queues.
713 */
714 mutex_spin_exit(spc->spc_mutex);
715 }
716
717 /*
718 * Mark that context switch is going to be performed
719 * for this LWP, to protect it from being switched
720 * to on another CPU.
721 */
722 KASSERT(l->l_ctxswtch == 0);
723 l->l_ctxswtch = 1;
724 l->l_ncsw++;
725 l->l_pflag &= ~LP_RUNNING;
726
727 /*
728 * Increase the count of spin-mutexes before the release
729 * of the last lock - we must remain at IPL_SCHED during
730 * the context switch.
731 */
732 oldspl = MUTEX_SPIN_OLDSPL(ci);
733 ci->ci_mtx_count--;
734 lwp_unlock(l);
735
736 /* Count the context switch on this CPU. */
737 ci->ci_data.cpu_nswtch++;
738
739 /* Update status for lwpctl, if present. */
740 if (l->l_lwpctl != NULL)
741 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
742
743 /*
744 * Save old VM context, unless a soft interrupt
745 * handler is blocking.
746 */
747 if (!returning)
748 pmap_deactivate(l);
749
750 /*
751 * We may need to spin-wait for if 'newl' is still
752 * context switching on another CPU.
753 */
754 if (newl->l_ctxswtch != 0) {
755 u_int count;
756 count = SPINLOCK_BACKOFF_MIN;
757 while (newl->l_ctxswtch)
758 SPINLOCK_BACKOFF(count);
759 }
760
761 /* Switch to the new LWP.. */
762 prevlwp = cpu_switchto(l, newl, returning);
763 ci = curcpu();
764
765 /*
766 * Switched away - we have new curlwp.
767 * Restore VM context and IPL.
768 */
769 pmap_activate(l);
770 if (prevlwp != NULL) {
771 /* Normalize the count of the spin-mutexes */
772 ci->ci_mtx_count++;
773 /* Unmark the state of context switch */
774 membar_exit();
775 prevlwp->l_ctxswtch = 0;
776 }
777
778 /* Update status for lwpctl, if present. */
779 if (l->l_lwpctl != NULL) {
780 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
781 l->l_lwpctl->lc_pctr++;
782 }
783
784 KASSERT(l->l_cpu == ci);
785 splx(oldspl);
786 retval = 1;
787 } else {
788 /* Nothing to do - just unlock and return. */
789 mutex_spin_exit(spc->spc_mutex);
790 lwp_unlock(l);
791 retval = 0;
792 }
793
794 KASSERT(l == curlwp);
795 KASSERT(l->l_stat == LSONPROC);
796
797 /*
798 * XXXSMP If we are using h/w performance counters, restore context.
799 * XXXSMP preemption problem.
800 */
801 #if PERFCTRS
802 if (PMC_ENABLED(l->l_proc)) {
803 pmc_restore_context(l->l_proc);
804 }
805 #endif
806 SYSCALL_TIME_WAKEUP(l);
807 LOCKDEBUG_BARRIER(NULL, 1);
808
809 return retval;
810 }
811
812 /*
813 * The machine independent parts of context switch to oblivion.
814 * Does not return. Call with the LWP unlocked.
815 */
816 void
817 lwp_exit_switchaway(lwp_t *l)
818 {
819 struct cpu_info *ci;
820 struct lwp *newl;
821 struct bintime bt;
822
823 ci = l->l_cpu;
824
825 KASSERT(kpreempt_disabled());
826 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
827 KASSERT(ci == curcpu());
828 LOCKDEBUG_BARRIER(NULL, 0);
829
830 #ifdef KSTACK_CHECK_MAGIC
831 kstack_check_magic(l);
832 #endif
833
834 /* Count time spent in current system call */
835 SYSCALL_TIME_SLEEP(l);
836 binuptime(&bt);
837 updatertime(l, &bt);
838
839 /* Must stay at IPL_SCHED even after releasing run queue lock. */
840 (void)splsched();
841
842 /*
843 * Let sched_nextlwp() select the LWP to run the CPU next.
844 * If no LWP is runnable, select the idle LWP.
845 *
846 * Note that spc_lwplock might not necessary be held, and
847 * new thread would be unlocked after setting the LWP-lock.
848 */
849 spc_lock(ci);
850 #ifndef __HAVE_FAST_SOFTINTS
851 if (ci->ci_data.cpu_softints != 0) {
852 /* There are pending soft interrupts, so pick one. */
853 newl = softint_picklwp();
854 newl->l_stat = LSONPROC;
855 newl->l_pflag |= LP_RUNNING;
856 } else
857 #endif /* !__HAVE_FAST_SOFTINTS */
858 {
859 newl = nextlwp(ci, &ci->ci_schedstate);
860 }
861
862 /* Update the new LWP's start time. */
863 newl->l_stime = bt;
864 l->l_pflag &= ~LP_RUNNING;
865
866 /*
867 * ci_curlwp changes when a fast soft interrupt occurs.
868 * We use cpu_onproc to keep track of which kernel or
869 * user thread is running 'underneath' the software
870 * interrupt. This is important for time accounting,
871 * itimers and forcing user threads to preempt (aston).
872 */
873 ci->ci_data.cpu_onproc = newl;
874
875 /*
876 * Preemption related tasks. Must be done with the current
877 * CPU locked.
878 */
879 cpu_did_resched(l);
880
881 /* Unlock the run queue. */
882 spc_unlock(ci);
883
884 /* Count the context switch on this CPU. */
885 ci->ci_data.cpu_nswtch++;
886
887 /* Update status for lwpctl, if present. */
888 if (l->l_lwpctl != NULL)
889 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
890
891 /*
892 * We may need to spin-wait for if 'newl' is still
893 * context switching on another CPU.
894 */
895 if (newl->l_ctxswtch != 0) {
896 u_int count;
897 count = SPINLOCK_BACKOFF_MIN;
898 while (newl->l_ctxswtch)
899 SPINLOCK_BACKOFF(count);
900 }
901
902 /* Switch to the new LWP.. */
903 (void)cpu_switchto(NULL, newl, false);
904
905 for (;;) continue; /* XXX: convince gcc about "noreturn" */
906 /* NOTREACHED */
907 }
908
909 /*
910 * Change LWP state to be runnable, placing it on the run queue if it is
911 * in memory, and awakening the swapper if it isn't in memory.
912 *
913 * Call with the process and LWP locked. Will return with the LWP unlocked.
914 */
915 void
916 setrunnable(struct lwp *l)
917 {
918 struct proc *p = l->l_proc;
919 struct cpu_info *ci;
920
921 KASSERT((l->l_flag & LW_IDLE) == 0);
922 KASSERT(mutex_owned(p->p_lock));
923 KASSERT(lwp_locked(l, NULL));
924 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
925
926 switch (l->l_stat) {
927 case LSSTOP:
928 /*
929 * If we're being traced (possibly because someone attached us
930 * while we were stopped), check for a signal from the debugger.
931 */
932 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
933 signotify(l);
934 p->p_nrlwps++;
935 break;
936 case LSSUSPENDED:
937 l->l_flag &= ~LW_WSUSPEND;
938 p->p_nrlwps++;
939 cv_broadcast(&p->p_lwpcv);
940 break;
941 case LSSLEEP:
942 KASSERT(l->l_wchan != NULL);
943 break;
944 default:
945 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
946 }
947
948 #ifdef KERN_SA
949 if (l->l_proc->p_sa)
950 sa_awaken(l);
951 #endif /* KERN_SA */
952
953 /*
954 * If the LWP was sleeping interruptably, then it's OK to start it
955 * again. If not, mark it as still sleeping.
956 */
957 if (l->l_wchan != NULL) {
958 l->l_stat = LSSLEEP;
959 /* lwp_unsleep() will release the lock. */
960 lwp_unsleep(l, true);
961 return;
962 }
963
964 /*
965 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
966 * about to call mi_switch(), in which case it will yield.
967 */
968 if ((l->l_pflag & LP_RUNNING) != 0) {
969 l->l_stat = LSONPROC;
970 l->l_slptime = 0;
971 lwp_unlock(l);
972 return;
973 }
974
975 /*
976 * Look for a CPU to run.
977 * Set the LWP runnable.
978 */
979 ci = sched_takecpu(l);
980 l->l_cpu = ci;
981 spc_lock(ci);
982 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
983 sched_setrunnable(l);
984 l->l_stat = LSRUN;
985 l->l_slptime = 0;
986
987 /*
988 * If thread is swapped out - wake the swapper to bring it back in.
989 * Otherwise, enter it into a run queue.
990 */
991 if (l->l_flag & LW_INMEM) {
992 sched_enqueue(l, false);
993 resched_cpu(l);
994 lwp_unlock(l);
995 } else {
996 lwp_unlock(l);
997 uvm_kick_scheduler();
998 }
999 }
1000
1001 /*
1002 * suspendsched:
1003 *
1004 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1005 */
1006 void
1007 suspendsched(void)
1008 {
1009 CPU_INFO_ITERATOR cii;
1010 struct cpu_info *ci;
1011 struct lwp *l;
1012 struct proc *p;
1013
1014 /*
1015 * We do this by process in order not to violate the locking rules.
1016 */
1017 mutex_enter(proc_lock);
1018 PROCLIST_FOREACH(p, &allproc) {
1019 if ((p->p_flag & PK_MARKER) != 0)
1020 continue;
1021
1022 mutex_enter(p->p_lock);
1023 if ((p->p_flag & PK_SYSTEM) != 0) {
1024 mutex_exit(p->p_lock);
1025 continue;
1026 }
1027
1028 p->p_stat = SSTOP;
1029
1030 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1031 if (l == curlwp)
1032 continue;
1033
1034 lwp_lock(l);
1035
1036 /*
1037 * Set L_WREBOOT so that the LWP will suspend itself
1038 * when it tries to return to user mode. We want to
1039 * try and get to get as many LWPs as possible to
1040 * the user / kernel boundary, so that they will
1041 * release any locks that they hold.
1042 */
1043 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1044
1045 if (l->l_stat == LSSLEEP &&
1046 (l->l_flag & LW_SINTR) != 0) {
1047 /* setrunnable() will release the lock. */
1048 setrunnable(l);
1049 continue;
1050 }
1051
1052 lwp_unlock(l);
1053 }
1054
1055 mutex_exit(p->p_lock);
1056 }
1057 mutex_exit(proc_lock);
1058
1059 /*
1060 * Kick all CPUs to make them preempt any LWPs running in user mode.
1061 * They'll trap into the kernel and suspend themselves in userret().
1062 */
1063 for (CPU_INFO_FOREACH(cii, ci)) {
1064 spc_lock(ci);
1065 cpu_need_resched(ci, RESCHED_IMMED);
1066 spc_unlock(ci);
1067 }
1068 }
1069
1070 /*
1071 * sched_unsleep:
1072 *
1073 * The is called when the LWP has not been awoken normally but instead
1074 * interrupted: for example, if the sleep timed out. Because of this,
1075 * it's not a valid action for running or idle LWPs.
1076 */
1077 static u_int
1078 sched_unsleep(struct lwp *l, bool cleanup)
1079 {
1080
1081 lwp_unlock(l);
1082 panic("sched_unsleep");
1083 }
1084
1085 static void
1086 resched_cpu(struct lwp *l)
1087 {
1088 struct cpu_info *ci = ci = l->l_cpu;
1089
1090 KASSERT(lwp_locked(l, NULL));
1091 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1092 cpu_need_resched(ci, 0);
1093 }
1094
1095 static void
1096 sched_changepri(struct lwp *l, pri_t pri)
1097 {
1098
1099 KASSERT(lwp_locked(l, NULL));
1100
1101 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1102 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1103 sched_dequeue(l);
1104 l->l_priority = pri;
1105 sched_enqueue(l, false);
1106 } else {
1107 l->l_priority = pri;
1108 }
1109 resched_cpu(l);
1110 }
1111
1112 static void
1113 sched_lendpri(struct lwp *l, pri_t pri)
1114 {
1115
1116 KASSERT(lwp_locked(l, NULL));
1117
1118 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1119 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1120 sched_dequeue(l);
1121 l->l_inheritedprio = pri;
1122 sched_enqueue(l, false);
1123 } else {
1124 l->l_inheritedprio = pri;
1125 }
1126 resched_cpu(l);
1127 }
1128
1129 struct lwp *
1130 syncobj_noowner(wchan_t wchan)
1131 {
1132
1133 return NULL;
1134 }
1135
1136 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1137 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1138
1139 /*
1140 * sched_pstats:
1141 *
1142 * Update process statistics and check CPU resource allocation.
1143 * Call scheduler-specific hook to eventually adjust process/LWP
1144 * priorities.
1145 */
1146 /* ARGSUSED */
1147 void
1148 sched_pstats(void *arg)
1149 {
1150 const int clkhz = (stathz != 0 ? stathz : hz);
1151 struct rlimit *rlim;
1152 struct lwp *l;
1153 struct proc *p;
1154 long runtm;
1155 fixpt_t lpctcpu;
1156 u_int lcpticks;
1157 int sig;
1158
1159 sched_pstats_ticks++;
1160
1161 mutex_enter(proc_lock);
1162 PROCLIST_FOREACH(p, &allproc) {
1163 if (__predict_false((p->p_flag & PK_MARKER) != 0))
1164 continue;
1165
1166 /*
1167 * Increment time in/out of memory and sleep
1168 * time (if sleeping), ignore overflow.
1169 */
1170 mutex_enter(p->p_lock);
1171 runtm = p->p_rtime.sec;
1172 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1173 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1174 continue;
1175 lwp_lock(l);
1176 runtm += l->l_rtime.sec;
1177 l->l_swtime++;
1178 sched_lwp_stats(l);
1179 lwp_unlock(l);
1180
1181 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1182 if (l->l_slptime != 0)
1183 continue;
1184
1185 lpctcpu = l->l_pctcpu;
1186 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1187 lpctcpu += ((FSCALE - ccpu) *
1188 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1189 l->l_pctcpu = lpctcpu;
1190 }
1191 /* Calculating p_pctcpu only for ps(1) */
1192 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1193
1194 /*
1195 * Check if the process exceeds its CPU resource allocation.
1196 * If over max, kill it.
1197 */
1198 rlim = &p->p_rlimit[RLIMIT_CPU];
1199 sig = 0;
1200 if (__predict_false(runtm >= rlim->rlim_cur)) {
1201 if (runtm >= rlim->rlim_max)
1202 sig = SIGKILL;
1203 else {
1204 sig = SIGXCPU;
1205 if (rlim->rlim_cur < rlim->rlim_max)
1206 rlim->rlim_cur += 5;
1207 }
1208 }
1209 mutex_exit(p->p_lock);
1210 if (__predict_false(runtm < 0)) {
1211 printf("WARNING: negative runtime; "
1212 "monotonic clock has gone backwards\n");
1213 } else if (__predict_false(sig)) {
1214 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1215 psignal(p, sig);
1216 }
1217 }
1218 mutex_exit(proc_lock);
1219 uvm_meter();
1220 cv_wakeup(&lbolt);
1221 callout_schedule(&sched_pstats_ch, hz);
1222 }
1223