kern_synch.c revision 1.263 1 /* $NetBSD: kern_synch.c,v 1.263 2009/04/16 00:17:19 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.263 2009/04/16 00:17:19 rmind Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/syscall_stats.h>
93 #include <sys/sleepq.h>
94 #include <sys/lockdebug.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/lwpctl.h>
98 #include <sys/atomic.h>
99 #include <sys/simplelock.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <dev/lockstat.h>
104
105 static u_int sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108 static void resched_cpu(struct lwp *);
109
110 syncobj_t sleep_syncobj = {
111 SOBJ_SLEEPQ_SORTED,
112 sleepq_unsleep,
113 sleepq_changepri,
114 sleepq_lendpri,
115 syncobj_noowner,
116 };
117
118 syncobj_t sched_syncobj = {
119 SOBJ_SLEEPQ_SORTED,
120 sched_unsleep,
121 sched_changepri,
122 sched_lendpri,
123 syncobj_noowner,
124 };
125
126 callout_t sched_pstats_ch;
127 unsigned sched_pstats_ticks;
128 kcondvar_t lbolt; /* once a second sleep address */
129
130 /* Preemption event counters */
131 static struct evcnt kpreempt_ev_crit;
132 static struct evcnt kpreempt_ev_klock;
133 static struct evcnt kpreempt_ev_immed;
134
135 /*
136 * During autoconfiguration or after a panic, a sleep will simply lower the
137 * priority briefly to allow interrupts, then return. The priority to be
138 * used (safepri) is machine-dependent, thus this value is initialized and
139 * maintained in the machine-dependent layers. This priority will typically
140 * be 0, or the lowest priority that is safe for use on the interrupt stack;
141 * it can be made higher to block network software interrupts after panics.
142 */
143 int safepri;
144
145 void
146 sched_init(void)
147 {
148
149 cv_init(&lbolt, "lbolt");
150 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152
153 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "defer: critical section");
155 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "defer: kernel_lock");
157 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 "kpreempt", "immediate");
159
160 sched_pstats(NULL);
161 }
162
163 /*
164 * OBSOLETE INTERFACE
165 *
166 * General sleep call. Suspends the current LWP until a wakeup is
167 * performed on the specified identifier. The LWP will then be made
168 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 * means no timeout). If pri includes PCATCH flag, signals are checked
170 * before and after sleeping, else signals are not checked. Returns 0 if
171 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 * signal needs to be delivered, ERESTART is returned if the current system
173 * call should be restarted if possible, and EINTR is returned if the system
174 * call should be interrupted by the signal (return EINTR).
175 *
176 * The interlock is held until we are on a sleep queue. The interlock will
177 * be locked before returning back to the caller unless the PNORELOCK flag
178 * is specified, in which case the interlock will always be unlocked upon
179 * return.
180 */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 volatile struct simplelock *interlock)
184 {
185 struct lwp *l = curlwp;
186 sleepq_t *sq;
187 kmutex_t *mp;
188 int error;
189
190 KASSERT((l->l_pflag & LP_INTR) == 0);
191
192 if (sleepq_dontsleep(l)) {
193 (void)sleepq_abort(NULL, 0);
194 if ((priority & PNORELOCK) != 0)
195 simple_unlock(interlock);
196 return 0;
197 }
198
199 l->l_kpriority = true;
200 sq = sleeptab_lookup(&sleeptab, ident, &mp);
201 sleepq_enter(sq, l, mp);
202 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
203
204 if (interlock != NULL) {
205 KASSERT(simple_lock_held(interlock));
206 simple_unlock(interlock);
207 }
208
209 error = sleepq_block(timo, priority & PCATCH);
210
211 if (interlock != NULL && (priority & PNORELOCK) == 0)
212 simple_lock(interlock);
213
214 return error;
215 }
216
217 int
218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
219 kmutex_t *mtx)
220 {
221 struct lwp *l = curlwp;
222 sleepq_t *sq;
223 kmutex_t *mp;
224 int error;
225
226 KASSERT((l->l_pflag & LP_INTR) == 0);
227
228 if (sleepq_dontsleep(l)) {
229 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
230 return 0;
231 }
232
233 l->l_kpriority = true;
234 sq = sleeptab_lookup(&sleeptab, ident, &mp);
235 sleepq_enter(sq, l, mp);
236 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
237 mutex_exit(mtx);
238 error = sleepq_block(timo, priority & PCATCH);
239
240 if ((priority & PNORELOCK) == 0)
241 mutex_enter(mtx);
242
243 return error;
244 }
245
246 /*
247 * General sleep call for situations where a wake-up is not expected.
248 */
249 int
250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
251 {
252 struct lwp *l = curlwp;
253 kmutex_t *mp;
254 sleepq_t *sq;
255 int error;
256
257 if (sleepq_dontsleep(l))
258 return sleepq_abort(NULL, 0);
259
260 if (mtx != NULL)
261 mutex_exit(mtx);
262 l->l_kpriority = true;
263 sq = sleeptab_lookup(&sleeptab, l, &mp);
264 sleepq_enter(sq, l, mp);
265 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
266 error = sleepq_block(timo, intr);
267 if (mtx != NULL)
268 mutex_enter(mtx);
269
270 return error;
271 }
272
273 #ifdef KERN_SA
274 /*
275 * sa_awaken:
276 *
277 * We believe this lwp is an SA lwp. If it's yielding,
278 * let it know it needs to wake up.
279 *
280 * We are called and exit with the lwp locked. We are
281 * called in the middle of wakeup operations, so we need
282 * to not touch the locks at all.
283 */
284 void
285 sa_awaken(struct lwp *l)
286 {
287 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
288
289 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
290 l->l_flag &= ~LW_SA_IDLE;
291 }
292 #endif /* KERN_SA */
293
294 /*
295 * OBSOLETE INTERFACE
296 *
297 * Make all LWPs sleeping on the specified identifier runnable.
298 */
299 void
300 wakeup(wchan_t ident)
301 {
302 sleepq_t *sq;
303 kmutex_t *mp;
304
305 if (__predict_false(cold))
306 return;
307
308 sq = sleeptab_lookup(&sleeptab, ident, &mp);
309 sleepq_wake(sq, ident, (u_int)-1, mp);
310 }
311
312 /*
313 * OBSOLETE INTERFACE
314 *
315 * Make the highest priority LWP first in line on the specified
316 * identifier runnable.
317 */
318 void
319 wakeup_one(wchan_t ident)
320 {
321 sleepq_t *sq;
322 kmutex_t *mp;
323
324 if (__predict_false(cold))
325 return;
326
327 sq = sleeptab_lookup(&sleeptab, ident, &mp);
328 sleepq_wake(sq, ident, 1, mp);
329 }
330
331
332 /*
333 * General yield call. Puts the current LWP back on its run queue and
334 * performs a voluntary context switch. Should only be called when the
335 * current LWP explicitly requests it (eg sched_yield(2)).
336 */
337 void
338 yield(void)
339 {
340 struct lwp *l = curlwp;
341
342 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
343 lwp_lock(l);
344 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
345 KASSERT(l->l_stat == LSONPROC);
346 l->l_kpriority = false;
347 (void)mi_switch(l);
348 KERNEL_LOCK(l->l_biglocks, l);
349 }
350
351 /*
352 * General preemption call. Puts the current LWP back on its run queue
353 * and performs an involuntary context switch.
354 */
355 void
356 preempt(void)
357 {
358 struct lwp *l = curlwp;
359
360 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
361 lwp_lock(l);
362 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
363 KASSERT(l->l_stat == LSONPROC);
364 l->l_kpriority = false;
365 l->l_nivcsw++;
366 (void)mi_switch(l);
367 KERNEL_LOCK(l->l_biglocks, l);
368 }
369
370 /*
371 * Handle a request made by another agent to preempt the current LWP
372 * in-kernel. Usually called when l_dopreempt may be non-zero.
373 *
374 * Character addresses for lockstat only.
375 */
376 static char in_critical_section;
377 static char kernel_lock_held;
378 static char is_softint;
379 static char cpu_kpreempt_enter_fail;
380
381 bool
382 kpreempt(uintptr_t where)
383 {
384 uintptr_t failed;
385 lwp_t *l;
386 int s, dop;
387
388 l = curlwp;
389 failed = 0;
390 while ((dop = l->l_dopreempt) != 0) {
391 if (l->l_stat != LSONPROC) {
392 /*
393 * About to block (or die), let it happen.
394 * Doesn't really count as "preemption has
395 * been blocked", since we're going to
396 * context switch.
397 */
398 l->l_dopreempt = 0;
399 return true;
400 }
401 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
402 /* Can't preempt idle loop, don't count as failure. */
403 l->l_dopreempt = 0;
404 return true;
405 }
406 if (__predict_false(l->l_nopreempt != 0)) {
407 /* LWP holds preemption disabled, explicitly. */
408 if ((dop & DOPREEMPT_COUNTED) == 0) {
409 kpreempt_ev_crit.ev_count++;
410 }
411 failed = (uintptr_t)&in_critical_section;
412 break;
413 }
414 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
415 /* Can't preempt soft interrupts yet. */
416 l->l_dopreempt = 0;
417 failed = (uintptr_t)&is_softint;
418 break;
419 }
420 s = splsched();
421 if (__predict_false(l->l_blcnt != 0 ||
422 curcpu()->ci_biglock_wanted != NULL)) {
423 /* Hold or want kernel_lock, code is not MT safe. */
424 splx(s);
425 if ((dop & DOPREEMPT_COUNTED) == 0) {
426 kpreempt_ev_klock.ev_count++;
427 }
428 failed = (uintptr_t)&kernel_lock_held;
429 break;
430 }
431 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
432 /*
433 * It may be that the IPL is too high.
434 * kpreempt_enter() can schedule an
435 * interrupt to retry later.
436 */
437 splx(s);
438 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
439 break;
440 }
441 /* Do it! */
442 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
443 kpreempt_ev_immed.ev_count++;
444 }
445 lwp_lock(l);
446 mi_switch(l);
447 l->l_nopreempt++;
448 splx(s);
449
450 /* Take care of any MD cleanup. */
451 cpu_kpreempt_exit(where);
452 l->l_nopreempt--;
453 }
454
455 /* Record preemption failure for reporting via lockstat. */
456 if (__predict_false(failed)) {
457 int lsflag = 0;
458 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
459 LOCKSTAT_ENTER(lsflag);
460 /* Might recurse, make it atomic. */
461 if (__predict_false(lsflag)) {
462 if (where == 0) {
463 where = (uintptr_t)__builtin_return_address(0);
464 }
465 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
466 NULL, (void *)where) == NULL) {
467 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
468 l->l_pfaillock = failed;
469 }
470 }
471 LOCKSTAT_EXIT(lsflag);
472 }
473
474 return failed;
475 }
476
477 /*
478 * Return true if preemption is explicitly disabled.
479 */
480 bool
481 kpreempt_disabled(void)
482 {
483 const lwp_t *l = curlwp;
484
485 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
486 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
487 }
488
489 /*
490 * Disable kernel preemption.
491 */
492 void
493 kpreempt_disable(void)
494 {
495
496 KPREEMPT_DISABLE(curlwp);
497 }
498
499 /*
500 * Reenable kernel preemption.
501 */
502 void
503 kpreempt_enable(void)
504 {
505
506 KPREEMPT_ENABLE(curlwp);
507 }
508
509 /*
510 * Compute the amount of time during which the current lwp was running.
511 *
512 * - update l_rtime unless it's an idle lwp.
513 */
514
515 void
516 updatertime(lwp_t *l, const struct bintime *now)
517 {
518
519 if (__predict_false(l->l_flag & LW_IDLE))
520 return;
521
522 /* rtime += now - stime */
523 bintime_add(&l->l_rtime, now);
524 bintime_sub(&l->l_rtime, &l->l_stime);
525 }
526
527 /*
528 * Select next LWP from the current CPU to run..
529 */
530 static inline lwp_t *
531 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
532 {
533 lwp_t *newl;
534
535 /*
536 * Let sched_nextlwp() select the LWP to run the CPU next.
537 * If no LWP is runnable, select the idle LWP.
538 *
539 * Note that spc_lwplock might not necessary be held, and
540 * new thread would be unlocked after setting the LWP-lock.
541 */
542 newl = sched_nextlwp();
543 if (newl != NULL) {
544 sched_dequeue(newl);
545 KASSERT(lwp_locked(newl, spc->spc_mutex));
546 newl->l_stat = LSONPROC;
547 newl->l_cpu = ci;
548 newl->l_pflag |= LP_RUNNING;
549 lwp_setlock(newl, spc->spc_lwplock);
550 } else {
551 newl = ci->ci_data.cpu_idlelwp;
552 newl->l_stat = LSONPROC;
553 newl->l_pflag |= LP_RUNNING;
554 }
555
556 /*
557 * Only clear want_resched if there are no pending (slow)
558 * software interrupts.
559 */
560 ci->ci_want_resched = ci->ci_data.cpu_softints;
561 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
562 spc->spc_curpriority = lwp_eprio(newl);
563
564 return newl;
565 }
566
567 /*
568 * The machine independent parts of context switch.
569 *
570 * Returns 1 if another LWP was actually run.
571 */
572 int
573 mi_switch(lwp_t *l)
574 {
575 struct cpu_info *ci;
576 struct schedstate_percpu *spc;
577 struct lwp *newl;
578 int retval, oldspl;
579 struct bintime bt;
580 bool returning;
581
582 KASSERT(lwp_locked(l, NULL));
583 KASSERT(kpreempt_disabled());
584 LOCKDEBUG_BARRIER(l->l_mutex, 1);
585
586 kstack_check_magic(l);
587
588 binuptime(&bt);
589
590 KASSERT(l->l_cpu == curcpu());
591 ci = l->l_cpu;
592 spc = &ci->ci_schedstate;
593 returning = false;
594 newl = NULL;
595
596 /*
597 * If we have been asked to switch to a specific LWP, then there
598 * is no need to inspect the run queues. If a soft interrupt is
599 * blocking, then return to the interrupted thread without adjusting
600 * VM context or its start time: neither have been changed in order
601 * to take the interrupt.
602 */
603 if (l->l_switchto != NULL) {
604 if ((l->l_pflag & LP_INTR) != 0) {
605 returning = true;
606 softint_block(l);
607 if ((l->l_pflag & LP_TIMEINTR) != 0)
608 updatertime(l, &bt);
609 }
610 newl = l->l_switchto;
611 l->l_switchto = NULL;
612 }
613 #ifndef __HAVE_FAST_SOFTINTS
614 else if (ci->ci_data.cpu_softints != 0) {
615 /* There are pending soft interrupts, so pick one. */
616 newl = softint_picklwp();
617 newl->l_stat = LSONPROC;
618 newl->l_pflag |= LP_RUNNING;
619 }
620 #endif /* !__HAVE_FAST_SOFTINTS */
621
622 /* Count time spent in current system call */
623 if (!returning) {
624 SYSCALL_TIME_SLEEP(l);
625
626 /*
627 * XXXSMP If we are using h/w performance counters,
628 * save context.
629 */
630 #if PERFCTRS
631 if (PMC_ENABLED(l->l_proc)) {
632 pmc_save_context(l->l_proc);
633 }
634 #endif
635 updatertime(l, &bt);
636 }
637
638 /* Lock the runqueue */
639 KASSERT(l->l_stat != LSRUN);
640 mutex_spin_enter(spc->spc_mutex);
641
642 /*
643 * If on the CPU and we have gotten this far, then we must yield.
644 */
645 if (l->l_stat == LSONPROC && l != newl) {
646 KASSERT(lwp_locked(l, spc->spc_lwplock));
647 if ((l->l_flag & LW_IDLE) == 0) {
648 l->l_stat = LSRUN;
649 lwp_setlock(l, spc->spc_mutex);
650 sched_enqueue(l, true);
651 /* Handle migration case */
652 KASSERT(spc->spc_migrating == NULL);
653 if (l->l_target_cpu != NULL) {
654 spc->spc_migrating = l;
655 }
656 } else
657 l->l_stat = LSIDL;
658 }
659
660 /* Pick new LWP to run. */
661 if (newl == NULL) {
662 newl = nextlwp(ci, spc);
663 }
664
665 /* Items that must be updated with the CPU locked. */
666 if (!returning) {
667 /* Update the new LWP's start time. */
668 newl->l_stime = bt;
669
670 /*
671 * ci_curlwp changes when a fast soft interrupt occurs.
672 * We use cpu_onproc to keep track of which kernel or
673 * user thread is running 'underneath' the software
674 * interrupt. This is important for time accounting,
675 * itimers and forcing user threads to preempt (aston).
676 */
677 ci->ci_data.cpu_onproc = newl;
678 }
679
680 /*
681 * Preemption related tasks. Must be done with the current
682 * CPU locked.
683 */
684 cpu_did_resched(l);
685 l->l_dopreempt = 0;
686 if (__predict_false(l->l_pfailaddr != 0)) {
687 LOCKSTAT_FLAG(lsflag);
688 LOCKSTAT_ENTER(lsflag);
689 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
690 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
691 1, l->l_pfailtime, l->l_pfailaddr);
692 LOCKSTAT_EXIT(lsflag);
693 l->l_pfailtime = 0;
694 l->l_pfaillock = 0;
695 l->l_pfailaddr = 0;
696 }
697
698 if (l != newl) {
699 struct lwp *prevlwp;
700
701 /* Release all locks, but leave the current LWP locked */
702 if (l->l_mutex == spc->spc_mutex) {
703 /*
704 * Drop spc_lwplock, if the current LWP has been moved
705 * to the run queue (it is now locked by spc_mutex).
706 */
707 mutex_spin_exit(spc->spc_lwplock);
708 } else {
709 /*
710 * Otherwise, drop the spc_mutex, we are done with the
711 * run queues.
712 */
713 mutex_spin_exit(spc->spc_mutex);
714 }
715
716 /*
717 * Mark that context switch is going to be performed
718 * for this LWP, to protect it from being switched
719 * to on another CPU.
720 */
721 KASSERT(l->l_ctxswtch == 0);
722 l->l_ctxswtch = 1;
723 l->l_ncsw++;
724 l->l_pflag &= ~LP_RUNNING;
725
726 /*
727 * Increase the count of spin-mutexes before the release
728 * of the last lock - we must remain at IPL_SCHED during
729 * the context switch.
730 */
731 oldspl = MUTEX_SPIN_OLDSPL(ci);
732 ci->ci_mtx_count--;
733 lwp_unlock(l);
734
735 /* Count the context switch on this CPU. */
736 ci->ci_data.cpu_nswtch++;
737
738 /* Update status for lwpctl, if present. */
739 if (l->l_lwpctl != NULL)
740 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
741
742 /*
743 * Save old VM context, unless a soft interrupt
744 * handler is blocking.
745 */
746 if (!returning)
747 pmap_deactivate(l);
748
749 /*
750 * We may need to spin-wait for if 'newl' is still
751 * context switching on another CPU.
752 */
753 if (__predict_false(newl->l_ctxswtch != 0)) {
754 u_int count;
755 count = SPINLOCK_BACKOFF_MIN;
756 while (newl->l_ctxswtch)
757 SPINLOCK_BACKOFF(count);
758 }
759
760 /* Switch to the new LWP.. */
761 prevlwp = cpu_switchto(l, newl, returning);
762 ci = curcpu();
763
764 /*
765 * Switched away - we have new curlwp.
766 * Restore VM context and IPL.
767 */
768 pmap_activate(l);
769 if (prevlwp != NULL) {
770 /* Normalize the count of the spin-mutexes */
771 ci->ci_mtx_count++;
772 /* Unmark the state of context switch */
773 membar_exit();
774 prevlwp->l_ctxswtch = 0;
775 }
776
777 /* Update status for lwpctl, if present. */
778 if (l->l_lwpctl != NULL) {
779 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
780 l->l_lwpctl->lc_pctr++;
781 }
782
783 KASSERT(l->l_cpu == ci);
784 splx(oldspl);
785 retval = 1;
786 } else {
787 /* Nothing to do - just unlock and return. */
788 mutex_spin_exit(spc->spc_mutex);
789 lwp_unlock(l);
790 retval = 0;
791 }
792
793 KASSERT(l == curlwp);
794 KASSERT(l->l_stat == LSONPROC);
795
796 /*
797 * XXXSMP If we are using h/w performance counters, restore context.
798 * XXXSMP preemption problem.
799 */
800 #if PERFCTRS
801 if (PMC_ENABLED(l->l_proc)) {
802 pmc_restore_context(l->l_proc);
803 }
804 #endif
805 SYSCALL_TIME_WAKEUP(l);
806 LOCKDEBUG_BARRIER(NULL, 1);
807
808 return retval;
809 }
810
811 /*
812 * The machine independent parts of context switch to oblivion.
813 * Does not return. Call with the LWP unlocked.
814 */
815 void
816 lwp_exit_switchaway(lwp_t *l)
817 {
818 struct cpu_info *ci;
819 struct lwp *newl;
820 struct bintime bt;
821
822 ci = l->l_cpu;
823
824 KASSERT(kpreempt_disabled());
825 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
826 KASSERT(ci == curcpu());
827 LOCKDEBUG_BARRIER(NULL, 0);
828
829 kstack_check_magic(l);
830
831 /* Count time spent in current system call */
832 SYSCALL_TIME_SLEEP(l);
833 binuptime(&bt);
834 updatertime(l, &bt);
835
836 /* Must stay at IPL_SCHED even after releasing run queue lock. */
837 (void)splsched();
838
839 /*
840 * Let sched_nextlwp() select the LWP to run the CPU next.
841 * If no LWP is runnable, select the idle LWP.
842 *
843 * Note that spc_lwplock might not necessary be held, and
844 * new thread would be unlocked after setting the LWP-lock.
845 */
846 spc_lock(ci);
847 #ifndef __HAVE_FAST_SOFTINTS
848 if (ci->ci_data.cpu_softints != 0) {
849 /* There are pending soft interrupts, so pick one. */
850 newl = softint_picklwp();
851 newl->l_stat = LSONPROC;
852 newl->l_pflag |= LP_RUNNING;
853 } else
854 #endif /* !__HAVE_FAST_SOFTINTS */
855 {
856 newl = nextlwp(ci, &ci->ci_schedstate);
857 }
858
859 /* Update the new LWP's start time. */
860 newl->l_stime = bt;
861 l->l_pflag &= ~LP_RUNNING;
862
863 /*
864 * ci_curlwp changes when a fast soft interrupt occurs.
865 * We use cpu_onproc to keep track of which kernel or
866 * user thread is running 'underneath' the software
867 * interrupt. This is important for time accounting,
868 * itimers and forcing user threads to preempt (aston).
869 */
870 ci->ci_data.cpu_onproc = newl;
871
872 /*
873 * Preemption related tasks. Must be done with the current
874 * CPU locked.
875 */
876 cpu_did_resched(l);
877
878 /* Unlock the run queue. */
879 spc_unlock(ci);
880
881 /* Count the context switch on this CPU. */
882 ci->ci_data.cpu_nswtch++;
883
884 /* Update status for lwpctl, if present. */
885 if (l->l_lwpctl != NULL)
886 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
887
888 /*
889 * We may need to spin-wait for if 'newl' is still
890 * context switching on another CPU.
891 */
892 if (__predict_false(newl->l_ctxswtch != 0)) {
893 u_int count;
894 count = SPINLOCK_BACKOFF_MIN;
895 while (newl->l_ctxswtch)
896 SPINLOCK_BACKOFF(count);
897 }
898
899 /* Switch to the new LWP.. */
900 (void)cpu_switchto(NULL, newl, false);
901
902 for (;;) continue; /* XXX: convince gcc about "noreturn" */
903 /* NOTREACHED */
904 }
905
906 /*
907 * Change LWP state to be runnable, placing it on the run queue if it is
908 * in memory, and awakening the swapper if it isn't in memory.
909 *
910 * Call with the process and LWP locked. Will return with the LWP unlocked.
911 */
912 void
913 setrunnable(struct lwp *l)
914 {
915 struct proc *p = l->l_proc;
916 struct cpu_info *ci;
917
918 KASSERT((l->l_flag & LW_IDLE) == 0);
919 KASSERT(mutex_owned(p->p_lock));
920 KASSERT(lwp_locked(l, NULL));
921 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
922
923 switch (l->l_stat) {
924 case LSSTOP:
925 /*
926 * If we're being traced (possibly because someone attached us
927 * while we were stopped), check for a signal from the debugger.
928 */
929 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
930 signotify(l);
931 p->p_nrlwps++;
932 break;
933 case LSSUSPENDED:
934 l->l_flag &= ~LW_WSUSPEND;
935 p->p_nrlwps++;
936 cv_broadcast(&p->p_lwpcv);
937 break;
938 case LSSLEEP:
939 KASSERT(l->l_wchan != NULL);
940 break;
941 default:
942 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
943 }
944
945 #ifdef KERN_SA
946 if (l->l_proc->p_sa)
947 sa_awaken(l);
948 #endif /* KERN_SA */
949
950 /*
951 * If the LWP was sleeping interruptably, then it's OK to start it
952 * again. If not, mark it as still sleeping.
953 */
954 if (l->l_wchan != NULL) {
955 l->l_stat = LSSLEEP;
956 /* lwp_unsleep() will release the lock. */
957 lwp_unsleep(l, true);
958 return;
959 }
960
961 /*
962 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
963 * about to call mi_switch(), in which case it will yield.
964 */
965 if ((l->l_pflag & LP_RUNNING) != 0) {
966 l->l_stat = LSONPROC;
967 l->l_slptime = 0;
968 lwp_unlock(l);
969 return;
970 }
971
972 /*
973 * Look for a CPU to run.
974 * Set the LWP runnable.
975 */
976 ci = sched_takecpu(l);
977 l->l_cpu = ci;
978 spc_lock(ci);
979 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
980 sched_setrunnable(l);
981 l->l_stat = LSRUN;
982 l->l_slptime = 0;
983
984 /*
985 * If thread is swapped out - wake the swapper to bring it back in.
986 * Otherwise, enter it into a run queue.
987 */
988 if (l->l_flag & LW_INMEM) {
989 sched_enqueue(l, false);
990 resched_cpu(l);
991 lwp_unlock(l);
992 } else {
993 lwp_unlock(l);
994 uvm_kick_scheduler();
995 }
996 }
997
998 /*
999 * suspendsched:
1000 *
1001 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1002 */
1003 void
1004 suspendsched(void)
1005 {
1006 CPU_INFO_ITERATOR cii;
1007 struct cpu_info *ci;
1008 struct lwp *l;
1009 struct proc *p;
1010
1011 /*
1012 * We do this by process in order not to violate the locking rules.
1013 */
1014 mutex_enter(proc_lock);
1015 PROCLIST_FOREACH(p, &allproc) {
1016 if ((p->p_flag & PK_MARKER) != 0)
1017 continue;
1018
1019 mutex_enter(p->p_lock);
1020 if ((p->p_flag & PK_SYSTEM) != 0) {
1021 mutex_exit(p->p_lock);
1022 continue;
1023 }
1024
1025 p->p_stat = SSTOP;
1026
1027 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1028 if (l == curlwp)
1029 continue;
1030
1031 lwp_lock(l);
1032
1033 /*
1034 * Set L_WREBOOT so that the LWP will suspend itself
1035 * when it tries to return to user mode. We want to
1036 * try and get to get as many LWPs as possible to
1037 * the user / kernel boundary, so that they will
1038 * release any locks that they hold.
1039 */
1040 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1041
1042 if (l->l_stat == LSSLEEP &&
1043 (l->l_flag & LW_SINTR) != 0) {
1044 /* setrunnable() will release the lock. */
1045 setrunnable(l);
1046 continue;
1047 }
1048
1049 lwp_unlock(l);
1050 }
1051
1052 mutex_exit(p->p_lock);
1053 }
1054 mutex_exit(proc_lock);
1055
1056 /*
1057 * Kick all CPUs to make them preempt any LWPs running in user mode.
1058 * They'll trap into the kernel and suspend themselves in userret().
1059 */
1060 for (CPU_INFO_FOREACH(cii, ci)) {
1061 spc_lock(ci);
1062 cpu_need_resched(ci, RESCHED_IMMED);
1063 spc_unlock(ci);
1064 }
1065 }
1066
1067 /*
1068 * sched_unsleep:
1069 *
1070 * The is called when the LWP has not been awoken normally but instead
1071 * interrupted: for example, if the sleep timed out. Because of this,
1072 * it's not a valid action for running or idle LWPs.
1073 */
1074 static u_int
1075 sched_unsleep(struct lwp *l, bool cleanup)
1076 {
1077
1078 lwp_unlock(l);
1079 panic("sched_unsleep");
1080 }
1081
1082 static void
1083 resched_cpu(struct lwp *l)
1084 {
1085 struct cpu_info *ci = ci = l->l_cpu;
1086
1087 KASSERT(lwp_locked(l, NULL));
1088 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1089 cpu_need_resched(ci, 0);
1090 }
1091
1092 static void
1093 sched_changepri(struct lwp *l, pri_t pri)
1094 {
1095
1096 KASSERT(lwp_locked(l, NULL));
1097
1098 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1099 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1100 sched_dequeue(l);
1101 l->l_priority = pri;
1102 sched_enqueue(l, false);
1103 } else {
1104 l->l_priority = pri;
1105 }
1106 resched_cpu(l);
1107 }
1108
1109 static void
1110 sched_lendpri(struct lwp *l, pri_t pri)
1111 {
1112
1113 KASSERT(lwp_locked(l, NULL));
1114
1115 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1116 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1117 sched_dequeue(l);
1118 l->l_inheritedprio = pri;
1119 sched_enqueue(l, false);
1120 } else {
1121 l->l_inheritedprio = pri;
1122 }
1123 resched_cpu(l);
1124 }
1125
1126 struct lwp *
1127 syncobj_noowner(wchan_t wchan)
1128 {
1129
1130 return NULL;
1131 }
1132
1133 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1134 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1135
1136 /*
1137 * sched_pstats:
1138 *
1139 * Update process statistics and check CPU resource allocation.
1140 * Call scheduler-specific hook to eventually adjust process/LWP
1141 * priorities.
1142 */
1143 /* ARGSUSED */
1144 void
1145 sched_pstats(void *arg)
1146 {
1147 const int clkhz = (stathz != 0 ? stathz : hz);
1148 static bool backwards;
1149 struct rlimit *rlim;
1150 struct lwp *l;
1151 struct proc *p;
1152 long runtm;
1153 fixpt_t lpctcpu;
1154 u_int lcpticks;
1155 int sig;
1156
1157 sched_pstats_ticks++;
1158
1159 mutex_enter(proc_lock);
1160 PROCLIST_FOREACH(p, &allproc) {
1161 if (__predict_false((p->p_flag & PK_MARKER) != 0))
1162 continue;
1163
1164 /*
1165 * Increment time in/out of memory and sleep
1166 * time (if sleeping), ignore overflow.
1167 */
1168 mutex_enter(p->p_lock);
1169 runtm = p->p_rtime.sec;
1170 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1171 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1172 continue;
1173 lwp_lock(l);
1174 runtm += l->l_rtime.sec;
1175 l->l_swtime++;
1176 sched_lwp_stats(l);
1177 lwp_unlock(l);
1178
1179 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1180 if (l->l_slptime != 0)
1181 continue;
1182
1183 lpctcpu = l->l_pctcpu;
1184 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1185 lpctcpu += ((FSCALE - ccpu) *
1186 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1187 l->l_pctcpu = lpctcpu;
1188 }
1189 /* Calculating p_pctcpu only for ps(1) */
1190 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1191
1192 /*
1193 * Check if the process exceeds its CPU resource allocation.
1194 * If over max, kill it.
1195 */
1196 rlim = &p->p_rlimit[RLIMIT_CPU];
1197 sig = 0;
1198 if (__predict_false(runtm >= rlim->rlim_cur)) {
1199 if (runtm >= rlim->rlim_max)
1200 sig = SIGKILL;
1201 else {
1202 sig = SIGXCPU;
1203 if (rlim->rlim_cur < rlim->rlim_max)
1204 rlim->rlim_cur += 5;
1205 }
1206 }
1207 mutex_exit(p->p_lock);
1208 if (__predict_false(runtm < 0)) {
1209 if (!backwards) {
1210 backwards = true;
1211 printf("WARNING: negative runtime; "
1212 "monotonic clock has gone backwards\n");
1213 }
1214 } else if (__predict_false(sig)) {
1215 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1216 psignal(p, sig);
1217 }
1218 }
1219 mutex_exit(proc_lock);
1220 uvm_meter();
1221 cv_wakeup(&lbolt);
1222 callout_schedule(&sched_pstats_ch, hz);
1223 }
1224