kern_synch.c revision 1.268 1 /* $NetBSD: kern_synch.c,v 1.268 2009/10/03 01:30:25 elad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.268 2009/10/03 01:30:25 elad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/syscall_stats.h>
93 #include <sys/sleepq.h>
94 #include <sys/lockdebug.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/lwpctl.h>
98 #include <sys/atomic.h>
99 #include <sys/simplelock.h>
100 #include <sys/kauth.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <dev/lockstat.h>
105
106 static u_int sched_unsleep(struct lwp *, bool);
107 static void sched_changepri(struct lwp *, pri_t);
108 static void sched_lendpri(struct lwp *, pri_t);
109 static void resched_cpu(struct lwp *);
110
111 syncobj_t sleep_syncobj = {
112 SOBJ_SLEEPQ_SORTED,
113 sleepq_unsleep,
114 sleepq_changepri,
115 sleepq_lendpri,
116 syncobj_noowner,
117 };
118
119 syncobj_t sched_syncobj = {
120 SOBJ_SLEEPQ_SORTED,
121 sched_unsleep,
122 sched_changepri,
123 sched_lendpri,
124 syncobj_noowner,
125 };
126
127 callout_t sched_pstats_ch;
128 unsigned sched_pstats_ticks;
129 kcondvar_t lbolt; /* once a second sleep address */
130
131 kauth_listener_t sched_listener;
132
133 /* Preemption event counters */
134 static struct evcnt kpreempt_ev_crit;
135 static struct evcnt kpreempt_ev_klock;
136 static struct evcnt kpreempt_ev_immed;
137
138 /*
139 * During autoconfiguration or after a panic, a sleep will simply lower the
140 * priority briefly to allow interrupts, then return. The priority to be
141 * used (safepri) is machine-dependent, thus this value is initialized and
142 * maintained in the machine-dependent layers. This priority will typically
143 * be 0, or the lowest priority that is safe for use on the interrupt stack;
144 * it can be made higher to block network software interrupts after panics.
145 */
146 int safepri;
147
148 static int
149 sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
150 void *arg0, void *arg1, void *arg2, void *arg3)
151 {
152 struct proc *p;
153 int result;
154
155 result = KAUTH_RESULT_DEFER;
156 p = arg0;
157
158 switch (action) {
159 case KAUTH_PROCESS_SCHEDULER_GETPARAM:
160 if (kauth_cred_uidmatch(cred, p->p_cred))
161 result = KAUTH_RESULT_ALLOW;
162 break;
163
164 case KAUTH_PROCESS_SCHEDULER_SETPARAM:
165 if (kauth_cred_uidmatch(cred, p->p_cred)) {
166 struct lwp *l;
167 int policy;
168 pri_t priority;
169
170 l = arg1;
171 policy = (int)(unsigned long)arg2;
172 priority = (pri_t)(unsigned long)arg3;
173
174 if ((policy == l->l_class ||
175 (policy != SCHED_FIFO && policy != SCHED_RR)) &&
176 priority <= l->l_priority)
177 result = KAUTH_RESULT_ALLOW;
178 }
179
180 break;
181
182 case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
183 result = KAUTH_RESULT_ALLOW;
184 break;
185
186 case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
187 /* Privileged; we let the secmodel handle this. */
188 break;
189
190 default:
191 break;
192 }
193
194 return result;
195 }
196
197 void
198 sched_init(void)
199 {
200
201 cv_init(&lbolt, "lbolt");
202 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
203 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
204
205 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
206 "kpreempt", "defer: critical section");
207 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
208 "kpreempt", "defer: kernel_lock");
209 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
210 "kpreempt", "immediate");
211
212 sched_pstats(NULL);
213
214 sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
215 sched_listener_cb, NULL);
216 }
217
218 /*
219 * OBSOLETE INTERFACE
220 *
221 * General sleep call. Suspends the current LWP until a wakeup is
222 * performed on the specified identifier. The LWP will then be made
223 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
224 * means no timeout). If pri includes PCATCH flag, signals are checked
225 * before and after sleeping, else signals are not checked. Returns 0 if
226 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
227 * signal needs to be delivered, ERESTART is returned if the current system
228 * call should be restarted if possible, and EINTR is returned if the system
229 * call should be interrupted by the signal (return EINTR).
230 *
231 * The interlock is held until we are on a sleep queue. The interlock will
232 * be locked before returning back to the caller unless the PNORELOCK flag
233 * is specified, in which case the interlock will always be unlocked upon
234 * return.
235 */
236 int
237 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
238 volatile struct simplelock *interlock)
239 {
240 struct lwp *l = curlwp;
241 sleepq_t *sq;
242 kmutex_t *mp;
243 int error;
244
245 KASSERT((l->l_pflag & LP_INTR) == 0);
246
247 if (sleepq_dontsleep(l)) {
248 (void)sleepq_abort(NULL, 0);
249 if ((priority & PNORELOCK) != 0)
250 simple_unlock(interlock);
251 return 0;
252 }
253
254 l->l_kpriority = true;
255 sq = sleeptab_lookup(&sleeptab, ident, &mp);
256 sleepq_enter(sq, l, mp);
257 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
258
259 if (interlock != NULL) {
260 KASSERT(simple_lock_held(interlock));
261 simple_unlock(interlock);
262 }
263
264 error = sleepq_block(timo, priority & PCATCH);
265
266 if (interlock != NULL && (priority & PNORELOCK) == 0)
267 simple_lock(interlock);
268
269 return error;
270 }
271
272 int
273 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
274 kmutex_t *mtx)
275 {
276 struct lwp *l = curlwp;
277 sleepq_t *sq;
278 kmutex_t *mp;
279 int error;
280
281 KASSERT((l->l_pflag & LP_INTR) == 0);
282
283 if (sleepq_dontsleep(l)) {
284 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
285 return 0;
286 }
287
288 l->l_kpriority = true;
289 sq = sleeptab_lookup(&sleeptab, ident, &mp);
290 sleepq_enter(sq, l, mp);
291 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
292 mutex_exit(mtx);
293 error = sleepq_block(timo, priority & PCATCH);
294
295 if ((priority & PNORELOCK) == 0)
296 mutex_enter(mtx);
297
298 return error;
299 }
300
301 /*
302 * General sleep call for situations where a wake-up is not expected.
303 */
304 int
305 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
306 {
307 struct lwp *l = curlwp;
308 kmutex_t *mp;
309 sleepq_t *sq;
310 int error;
311
312 if (sleepq_dontsleep(l))
313 return sleepq_abort(NULL, 0);
314
315 if (mtx != NULL)
316 mutex_exit(mtx);
317 l->l_kpriority = true;
318 sq = sleeptab_lookup(&sleeptab, l, &mp);
319 sleepq_enter(sq, l, mp);
320 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
321 error = sleepq_block(timo, intr);
322 if (mtx != NULL)
323 mutex_enter(mtx);
324
325 return error;
326 }
327
328 #ifdef KERN_SA
329 /*
330 * sa_awaken:
331 *
332 * We believe this lwp is an SA lwp. If it's yielding,
333 * let it know it needs to wake up.
334 *
335 * We are called and exit with the lwp locked. We are
336 * called in the middle of wakeup operations, so we need
337 * to not touch the locks at all.
338 */
339 void
340 sa_awaken(struct lwp *l)
341 {
342 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
343
344 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
345 l->l_flag &= ~LW_SA_IDLE;
346 }
347 #endif /* KERN_SA */
348
349 /*
350 * OBSOLETE INTERFACE
351 *
352 * Make all LWPs sleeping on the specified identifier runnable.
353 */
354 void
355 wakeup(wchan_t ident)
356 {
357 sleepq_t *sq;
358 kmutex_t *mp;
359
360 if (__predict_false(cold))
361 return;
362
363 sq = sleeptab_lookup(&sleeptab, ident, &mp);
364 sleepq_wake(sq, ident, (u_int)-1, mp);
365 }
366
367 /*
368 * OBSOLETE INTERFACE
369 *
370 * Make the highest priority LWP first in line on the specified
371 * identifier runnable.
372 */
373 void
374 wakeup_one(wchan_t ident)
375 {
376 sleepq_t *sq;
377 kmutex_t *mp;
378
379 if (__predict_false(cold))
380 return;
381
382 sq = sleeptab_lookup(&sleeptab, ident, &mp);
383 sleepq_wake(sq, ident, 1, mp);
384 }
385
386
387 /*
388 * General yield call. Puts the current LWP back on its run queue and
389 * performs a voluntary context switch. Should only be called when the
390 * current LWP explicitly requests it (eg sched_yield(2)).
391 */
392 void
393 yield(void)
394 {
395 struct lwp *l = curlwp;
396
397 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
398 lwp_lock(l);
399 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
400 KASSERT(l->l_stat == LSONPROC);
401 l->l_kpriority = false;
402 (void)mi_switch(l);
403 KERNEL_LOCK(l->l_biglocks, l);
404 }
405
406 /*
407 * General preemption call. Puts the current LWP back on its run queue
408 * and performs an involuntary context switch.
409 */
410 void
411 preempt(void)
412 {
413 struct lwp *l = curlwp;
414
415 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
416 lwp_lock(l);
417 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
418 KASSERT(l->l_stat == LSONPROC);
419 l->l_kpriority = false;
420 l->l_nivcsw++;
421 (void)mi_switch(l);
422 KERNEL_LOCK(l->l_biglocks, l);
423 }
424
425 /*
426 * Handle a request made by another agent to preempt the current LWP
427 * in-kernel. Usually called when l_dopreempt may be non-zero.
428 *
429 * Character addresses for lockstat only.
430 */
431 static char in_critical_section;
432 static char kernel_lock_held;
433 static char is_softint;
434 static char cpu_kpreempt_enter_fail;
435
436 bool
437 kpreempt(uintptr_t where)
438 {
439 uintptr_t failed;
440 lwp_t *l;
441 int s, dop, lsflag;
442
443 l = curlwp;
444 failed = 0;
445 while ((dop = l->l_dopreempt) != 0) {
446 if (l->l_stat != LSONPROC) {
447 /*
448 * About to block (or die), let it happen.
449 * Doesn't really count as "preemption has
450 * been blocked", since we're going to
451 * context switch.
452 */
453 l->l_dopreempt = 0;
454 return true;
455 }
456 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
457 /* Can't preempt idle loop, don't count as failure. */
458 l->l_dopreempt = 0;
459 return true;
460 }
461 if (__predict_false(l->l_nopreempt != 0)) {
462 /* LWP holds preemption disabled, explicitly. */
463 if ((dop & DOPREEMPT_COUNTED) == 0) {
464 kpreempt_ev_crit.ev_count++;
465 }
466 failed = (uintptr_t)&in_critical_section;
467 break;
468 }
469 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
470 /* Can't preempt soft interrupts yet. */
471 l->l_dopreempt = 0;
472 failed = (uintptr_t)&is_softint;
473 break;
474 }
475 s = splsched();
476 if (__predict_false(l->l_blcnt != 0 ||
477 curcpu()->ci_biglock_wanted != NULL)) {
478 /* Hold or want kernel_lock, code is not MT safe. */
479 splx(s);
480 if ((dop & DOPREEMPT_COUNTED) == 0) {
481 kpreempt_ev_klock.ev_count++;
482 }
483 failed = (uintptr_t)&kernel_lock_held;
484 break;
485 }
486 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
487 /*
488 * It may be that the IPL is too high.
489 * kpreempt_enter() can schedule an
490 * interrupt to retry later.
491 */
492 splx(s);
493 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
494 break;
495 }
496 /* Do it! */
497 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
498 kpreempt_ev_immed.ev_count++;
499 }
500 lwp_lock(l);
501 mi_switch(l);
502 l->l_nopreempt++;
503 splx(s);
504
505 /* Take care of any MD cleanup. */
506 cpu_kpreempt_exit(where);
507 l->l_nopreempt--;
508 }
509
510 if (__predict_true(!failed)) {
511 return false;
512 }
513
514 /* Record preemption failure for reporting via lockstat. */
515 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
516 lsflag = 0;
517 LOCKSTAT_ENTER(lsflag);
518 if (__predict_false(lsflag)) {
519 if (where == 0) {
520 where = (uintptr_t)__builtin_return_address(0);
521 }
522 /* Preemption is on, might recurse, so make it atomic. */
523 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
524 (void *)where) == NULL) {
525 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
526 l->l_pfaillock = failed;
527 }
528 }
529 LOCKSTAT_EXIT(lsflag);
530 return true;
531 }
532
533 /*
534 * Return true if preemption is explicitly disabled.
535 */
536 bool
537 kpreempt_disabled(void)
538 {
539 const lwp_t *l = curlwp;
540
541 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
542 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
543 }
544
545 /*
546 * Disable kernel preemption.
547 */
548 void
549 kpreempt_disable(void)
550 {
551
552 KPREEMPT_DISABLE(curlwp);
553 }
554
555 /*
556 * Reenable kernel preemption.
557 */
558 void
559 kpreempt_enable(void)
560 {
561
562 KPREEMPT_ENABLE(curlwp);
563 }
564
565 /*
566 * Compute the amount of time during which the current lwp was running.
567 *
568 * - update l_rtime unless it's an idle lwp.
569 */
570
571 void
572 updatertime(lwp_t *l, const struct bintime *now)
573 {
574
575 if (__predict_false(l->l_flag & LW_IDLE))
576 return;
577
578 /* rtime += now - stime */
579 bintime_add(&l->l_rtime, now);
580 bintime_sub(&l->l_rtime, &l->l_stime);
581 }
582
583 /*
584 * Select next LWP from the current CPU to run..
585 */
586 static inline lwp_t *
587 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
588 {
589 lwp_t *newl;
590
591 /*
592 * Let sched_nextlwp() select the LWP to run the CPU next.
593 * If no LWP is runnable, select the idle LWP.
594 *
595 * Note that spc_lwplock might not necessary be held, and
596 * new thread would be unlocked after setting the LWP-lock.
597 */
598 newl = sched_nextlwp();
599 if (newl != NULL) {
600 sched_dequeue(newl);
601 KASSERT(lwp_locked(newl, spc->spc_mutex));
602 newl->l_stat = LSONPROC;
603 newl->l_cpu = ci;
604 newl->l_pflag |= LP_RUNNING;
605 lwp_setlock(newl, spc->spc_lwplock);
606 } else {
607 newl = ci->ci_data.cpu_idlelwp;
608 newl->l_stat = LSONPROC;
609 newl->l_pflag |= LP_RUNNING;
610 }
611
612 /*
613 * Only clear want_resched if there are no pending (slow)
614 * software interrupts.
615 */
616 ci->ci_want_resched = ci->ci_data.cpu_softints;
617 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
618 spc->spc_curpriority = lwp_eprio(newl);
619
620 return newl;
621 }
622
623 /*
624 * The machine independent parts of context switch.
625 *
626 * Returns 1 if another LWP was actually run.
627 */
628 int
629 mi_switch(lwp_t *l)
630 {
631 struct cpu_info *ci;
632 struct schedstate_percpu *spc;
633 struct lwp *newl;
634 int retval, oldspl;
635 struct bintime bt;
636 bool returning;
637
638 KASSERT(lwp_locked(l, NULL));
639 KASSERT(kpreempt_disabled());
640 LOCKDEBUG_BARRIER(l->l_mutex, 1);
641
642 kstack_check_magic(l);
643
644 binuptime(&bt);
645
646 KASSERT((l->l_pflag & LP_RUNNING) != 0);
647 KASSERT(l->l_cpu == curcpu());
648 ci = l->l_cpu;
649 spc = &ci->ci_schedstate;
650 returning = false;
651 newl = NULL;
652
653 /*
654 * If we have been asked to switch to a specific LWP, then there
655 * is no need to inspect the run queues. If a soft interrupt is
656 * blocking, then return to the interrupted thread without adjusting
657 * VM context or its start time: neither have been changed in order
658 * to take the interrupt.
659 */
660 if (l->l_switchto != NULL) {
661 if ((l->l_pflag & LP_INTR) != 0) {
662 returning = true;
663 softint_block(l);
664 if ((l->l_pflag & LP_TIMEINTR) != 0)
665 updatertime(l, &bt);
666 }
667 newl = l->l_switchto;
668 l->l_switchto = NULL;
669 }
670 #ifndef __HAVE_FAST_SOFTINTS
671 else if (ci->ci_data.cpu_softints != 0) {
672 /* There are pending soft interrupts, so pick one. */
673 newl = softint_picklwp();
674 newl->l_stat = LSONPROC;
675 newl->l_pflag |= LP_RUNNING;
676 }
677 #endif /* !__HAVE_FAST_SOFTINTS */
678
679 /* Count time spent in current system call */
680 if (!returning) {
681 SYSCALL_TIME_SLEEP(l);
682
683 /*
684 * XXXSMP If we are using h/w performance counters,
685 * save context.
686 */
687 #if PERFCTRS
688 if (PMC_ENABLED(l->l_proc)) {
689 pmc_save_context(l->l_proc);
690 }
691 #endif
692 updatertime(l, &bt);
693 }
694
695 /* Lock the runqueue */
696 KASSERT(l->l_stat != LSRUN);
697 mutex_spin_enter(spc->spc_mutex);
698
699 /*
700 * If on the CPU and we have gotten this far, then we must yield.
701 */
702 if (l->l_stat == LSONPROC && l != newl) {
703 KASSERT(lwp_locked(l, spc->spc_lwplock));
704 if ((l->l_flag & LW_IDLE) == 0) {
705 l->l_stat = LSRUN;
706 lwp_setlock(l, spc->spc_mutex);
707 sched_enqueue(l, true);
708 /* Handle migration case */
709 KASSERT(spc->spc_migrating == NULL);
710 if (l->l_target_cpu != NULL) {
711 spc->spc_migrating = l;
712 }
713 } else
714 l->l_stat = LSIDL;
715 }
716
717 /* Pick new LWP to run. */
718 if (newl == NULL) {
719 newl = nextlwp(ci, spc);
720 }
721
722 /* Items that must be updated with the CPU locked. */
723 if (!returning) {
724 /* Update the new LWP's start time. */
725 newl->l_stime = bt;
726
727 /*
728 * ci_curlwp changes when a fast soft interrupt occurs.
729 * We use cpu_onproc to keep track of which kernel or
730 * user thread is running 'underneath' the software
731 * interrupt. This is important for time accounting,
732 * itimers and forcing user threads to preempt (aston).
733 */
734 ci->ci_data.cpu_onproc = newl;
735 }
736
737 /*
738 * Preemption related tasks. Must be done with the current
739 * CPU locked.
740 */
741 cpu_did_resched(l);
742 l->l_dopreempt = 0;
743 if (__predict_false(l->l_pfailaddr != 0)) {
744 LOCKSTAT_FLAG(lsflag);
745 LOCKSTAT_ENTER(lsflag);
746 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
747 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
748 1, l->l_pfailtime, l->l_pfailaddr);
749 LOCKSTAT_EXIT(lsflag);
750 l->l_pfailtime = 0;
751 l->l_pfaillock = 0;
752 l->l_pfailaddr = 0;
753 }
754
755 if (l != newl) {
756 struct lwp *prevlwp;
757
758 /* Release all locks, but leave the current LWP locked */
759 if (l->l_mutex == spc->spc_mutex) {
760 /*
761 * Drop spc_lwplock, if the current LWP has been moved
762 * to the run queue (it is now locked by spc_mutex).
763 */
764 mutex_spin_exit(spc->spc_lwplock);
765 } else {
766 /*
767 * Otherwise, drop the spc_mutex, we are done with the
768 * run queues.
769 */
770 mutex_spin_exit(spc->spc_mutex);
771 }
772
773 /*
774 * Mark that context switch is going to be performed
775 * for this LWP, to protect it from being switched
776 * to on another CPU.
777 */
778 KASSERT(l->l_ctxswtch == 0);
779 l->l_ctxswtch = 1;
780 l->l_ncsw++;
781 KASSERT((l->l_pflag & LP_RUNNING) != 0);
782 l->l_pflag &= ~LP_RUNNING;
783
784 /*
785 * Increase the count of spin-mutexes before the release
786 * of the last lock - we must remain at IPL_SCHED during
787 * the context switch.
788 */
789 oldspl = MUTEX_SPIN_OLDSPL(ci);
790 ci->ci_mtx_count--;
791 lwp_unlock(l);
792
793 /* Count the context switch on this CPU. */
794 ci->ci_data.cpu_nswtch++;
795
796 /* Update status for lwpctl, if present. */
797 if (l->l_lwpctl != NULL)
798 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
799
800 /*
801 * Save old VM context, unless a soft interrupt
802 * handler is blocking.
803 */
804 if (!returning)
805 pmap_deactivate(l);
806
807 /*
808 * We may need to spin-wait for if 'newl' is still
809 * context switching on another CPU.
810 */
811 if (__predict_false(newl->l_ctxswtch != 0)) {
812 u_int count;
813 count = SPINLOCK_BACKOFF_MIN;
814 while (newl->l_ctxswtch)
815 SPINLOCK_BACKOFF(count);
816 }
817
818 /* Switch to the new LWP.. */
819 prevlwp = cpu_switchto(l, newl, returning);
820 ci = curcpu();
821
822 /*
823 * Switched away - we have new curlwp.
824 * Restore VM context and IPL.
825 */
826 pmap_activate(l);
827 uvm_emap_switch(l);
828
829 if (prevlwp != NULL) {
830 /* Normalize the count of the spin-mutexes */
831 ci->ci_mtx_count++;
832 /* Unmark the state of context switch */
833 membar_exit();
834 prevlwp->l_ctxswtch = 0;
835 }
836
837 /* Update status for lwpctl, if present. */
838 if (l->l_lwpctl != NULL) {
839 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
840 l->l_lwpctl->lc_pctr++;
841 }
842
843 KASSERT(l->l_cpu == ci);
844 splx(oldspl);
845 retval = 1;
846 } else {
847 /* Nothing to do - just unlock and return. */
848 mutex_spin_exit(spc->spc_mutex);
849 lwp_unlock(l);
850 retval = 0;
851 }
852
853 KASSERT(l == curlwp);
854 KASSERT(l->l_stat == LSONPROC);
855
856 /*
857 * XXXSMP If we are using h/w performance counters, restore context.
858 * XXXSMP preemption problem.
859 */
860 #if PERFCTRS
861 if (PMC_ENABLED(l->l_proc)) {
862 pmc_restore_context(l->l_proc);
863 }
864 #endif
865 SYSCALL_TIME_WAKEUP(l);
866 LOCKDEBUG_BARRIER(NULL, 1);
867
868 return retval;
869 }
870
871 /*
872 * The machine independent parts of context switch to oblivion.
873 * Does not return. Call with the LWP unlocked.
874 */
875 void
876 lwp_exit_switchaway(lwp_t *l)
877 {
878 struct cpu_info *ci;
879 struct lwp *newl;
880 struct bintime bt;
881
882 ci = l->l_cpu;
883
884 KASSERT(kpreempt_disabled());
885 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
886 KASSERT(ci == curcpu());
887 LOCKDEBUG_BARRIER(NULL, 0);
888
889 kstack_check_magic(l);
890
891 /* Count time spent in current system call */
892 SYSCALL_TIME_SLEEP(l);
893 binuptime(&bt);
894 updatertime(l, &bt);
895
896 /* Must stay at IPL_SCHED even after releasing run queue lock. */
897 (void)splsched();
898
899 /*
900 * Let sched_nextlwp() select the LWP to run the CPU next.
901 * If no LWP is runnable, select the idle LWP.
902 *
903 * Note that spc_lwplock might not necessary be held, and
904 * new thread would be unlocked after setting the LWP-lock.
905 */
906 spc_lock(ci);
907 #ifndef __HAVE_FAST_SOFTINTS
908 if (ci->ci_data.cpu_softints != 0) {
909 /* There are pending soft interrupts, so pick one. */
910 newl = softint_picklwp();
911 newl->l_stat = LSONPROC;
912 newl->l_pflag |= LP_RUNNING;
913 } else
914 #endif /* !__HAVE_FAST_SOFTINTS */
915 {
916 newl = nextlwp(ci, &ci->ci_schedstate);
917 }
918
919 /* Update the new LWP's start time. */
920 newl->l_stime = bt;
921 l->l_pflag &= ~LP_RUNNING;
922
923 /*
924 * ci_curlwp changes when a fast soft interrupt occurs.
925 * We use cpu_onproc to keep track of which kernel or
926 * user thread is running 'underneath' the software
927 * interrupt. This is important for time accounting,
928 * itimers and forcing user threads to preempt (aston).
929 */
930 ci->ci_data.cpu_onproc = newl;
931
932 /*
933 * Preemption related tasks. Must be done with the current
934 * CPU locked.
935 */
936 cpu_did_resched(l);
937
938 /* Unlock the run queue. */
939 spc_unlock(ci);
940
941 /* Count the context switch on this CPU. */
942 ci->ci_data.cpu_nswtch++;
943
944 /* Update status for lwpctl, if present. */
945 if (l->l_lwpctl != NULL)
946 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
947
948 /*
949 * We may need to spin-wait for if 'newl' is still
950 * context switching on another CPU.
951 */
952 if (__predict_false(newl->l_ctxswtch != 0)) {
953 u_int count;
954 count = SPINLOCK_BACKOFF_MIN;
955 while (newl->l_ctxswtch)
956 SPINLOCK_BACKOFF(count);
957 }
958
959 /* Switch to the new LWP.. */
960 (void)cpu_switchto(NULL, newl, false);
961
962 for (;;) continue; /* XXX: convince gcc about "noreturn" */
963 /* NOTREACHED */
964 }
965
966 /*
967 * Change LWP state to be runnable, placing it on the run queue if it is
968 * in memory, and awakening the swapper if it isn't in memory.
969 *
970 * Call with the process and LWP locked. Will return with the LWP unlocked.
971 */
972 void
973 setrunnable(struct lwp *l)
974 {
975 struct proc *p = l->l_proc;
976 struct cpu_info *ci;
977
978 KASSERT((l->l_flag & LW_IDLE) == 0);
979 KASSERT(mutex_owned(p->p_lock));
980 KASSERT(lwp_locked(l, NULL));
981 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
982
983 switch (l->l_stat) {
984 case LSSTOP:
985 /*
986 * If we're being traced (possibly because someone attached us
987 * while we were stopped), check for a signal from the debugger.
988 */
989 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
990 signotify(l);
991 p->p_nrlwps++;
992 break;
993 case LSSUSPENDED:
994 l->l_flag &= ~LW_WSUSPEND;
995 p->p_nrlwps++;
996 cv_broadcast(&p->p_lwpcv);
997 break;
998 case LSSLEEP:
999 KASSERT(l->l_wchan != NULL);
1000 break;
1001 default:
1002 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1003 }
1004
1005 #ifdef KERN_SA
1006 if (l->l_proc->p_sa)
1007 sa_awaken(l);
1008 #endif /* KERN_SA */
1009
1010 /*
1011 * If the LWP was sleeping interruptably, then it's OK to start it
1012 * again. If not, mark it as still sleeping.
1013 */
1014 if (l->l_wchan != NULL) {
1015 l->l_stat = LSSLEEP;
1016 /* lwp_unsleep() will release the lock. */
1017 lwp_unsleep(l, true);
1018 return;
1019 }
1020
1021 /*
1022 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
1023 * about to call mi_switch(), in which case it will yield.
1024 */
1025 if ((l->l_pflag & LP_RUNNING) != 0) {
1026 l->l_stat = LSONPROC;
1027 l->l_slptime = 0;
1028 lwp_unlock(l);
1029 return;
1030 }
1031
1032 /*
1033 * Look for a CPU to run.
1034 * Set the LWP runnable.
1035 */
1036 ci = sched_takecpu(l);
1037 l->l_cpu = ci;
1038 spc_lock(ci);
1039 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1040 sched_setrunnable(l);
1041 l->l_stat = LSRUN;
1042 l->l_slptime = 0;
1043
1044 /*
1045 * If thread is swapped out - wake the swapper to bring it back in.
1046 * Otherwise, enter it into a run queue.
1047 */
1048 if (l->l_flag & LW_INMEM) {
1049 sched_enqueue(l, false);
1050 resched_cpu(l);
1051 lwp_unlock(l);
1052 } else {
1053 lwp_unlock(l);
1054 uvm_kick_scheduler();
1055 }
1056 }
1057
1058 /*
1059 * suspendsched:
1060 *
1061 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1062 */
1063 void
1064 suspendsched(void)
1065 {
1066 CPU_INFO_ITERATOR cii;
1067 struct cpu_info *ci;
1068 struct lwp *l;
1069 struct proc *p;
1070
1071 /*
1072 * We do this by process in order not to violate the locking rules.
1073 */
1074 mutex_enter(proc_lock);
1075 PROCLIST_FOREACH(p, &allproc) {
1076 if ((p->p_flag & PK_MARKER) != 0)
1077 continue;
1078
1079 mutex_enter(p->p_lock);
1080 if ((p->p_flag & PK_SYSTEM) != 0) {
1081 mutex_exit(p->p_lock);
1082 continue;
1083 }
1084
1085 p->p_stat = SSTOP;
1086
1087 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1088 if (l == curlwp)
1089 continue;
1090
1091 lwp_lock(l);
1092
1093 /*
1094 * Set L_WREBOOT so that the LWP will suspend itself
1095 * when it tries to return to user mode. We want to
1096 * try and get to get as many LWPs as possible to
1097 * the user / kernel boundary, so that they will
1098 * release any locks that they hold.
1099 */
1100 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1101
1102 if (l->l_stat == LSSLEEP &&
1103 (l->l_flag & LW_SINTR) != 0) {
1104 /* setrunnable() will release the lock. */
1105 setrunnable(l);
1106 continue;
1107 }
1108
1109 lwp_unlock(l);
1110 }
1111
1112 mutex_exit(p->p_lock);
1113 }
1114 mutex_exit(proc_lock);
1115
1116 /*
1117 * Kick all CPUs to make them preempt any LWPs running in user mode.
1118 * They'll trap into the kernel and suspend themselves in userret().
1119 */
1120 for (CPU_INFO_FOREACH(cii, ci)) {
1121 spc_lock(ci);
1122 cpu_need_resched(ci, RESCHED_IMMED);
1123 spc_unlock(ci);
1124 }
1125 }
1126
1127 /*
1128 * sched_unsleep:
1129 *
1130 * The is called when the LWP has not been awoken normally but instead
1131 * interrupted: for example, if the sleep timed out. Because of this,
1132 * it's not a valid action for running or idle LWPs.
1133 */
1134 static u_int
1135 sched_unsleep(struct lwp *l, bool cleanup)
1136 {
1137
1138 lwp_unlock(l);
1139 panic("sched_unsleep");
1140 }
1141
1142 static void
1143 resched_cpu(struct lwp *l)
1144 {
1145 struct cpu_info *ci = ci = l->l_cpu;
1146
1147 KASSERT(lwp_locked(l, NULL));
1148 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1149 cpu_need_resched(ci, 0);
1150 }
1151
1152 static void
1153 sched_changepri(struct lwp *l, pri_t pri)
1154 {
1155
1156 KASSERT(lwp_locked(l, NULL));
1157
1158 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1159 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1160 sched_dequeue(l);
1161 l->l_priority = pri;
1162 sched_enqueue(l, false);
1163 } else {
1164 l->l_priority = pri;
1165 }
1166 resched_cpu(l);
1167 }
1168
1169 static void
1170 sched_lendpri(struct lwp *l, pri_t pri)
1171 {
1172
1173 KASSERT(lwp_locked(l, NULL));
1174
1175 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1176 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1177 sched_dequeue(l);
1178 l->l_inheritedprio = pri;
1179 sched_enqueue(l, false);
1180 } else {
1181 l->l_inheritedprio = pri;
1182 }
1183 resched_cpu(l);
1184 }
1185
1186 struct lwp *
1187 syncobj_noowner(wchan_t wchan)
1188 {
1189
1190 return NULL;
1191 }
1192
1193 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1194 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1195
1196 /*
1197 * sched_pstats:
1198 *
1199 * Update process statistics and check CPU resource allocation.
1200 * Call scheduler-specific hook to eventually adjust process/LWP
1201 * priorities.
1202 */
1203 /* ARGSUSED */
1204 void
1205 sched_pstats(void *arg)
1206 {
1207 const int clkhz = (stathz != 0 ? stathz : hz);
1208 static bool backwards;
1209 struct rlimit *rlim;
1210 struct lwp *l;
1211 struct proc *p;
1212 long runtm;
1213 fixpt_t lpctcpu;
1214 u_int lcpticks;
1215 int sig;
1216
1217 sched_pstats_ticks++;
1218
1219 mutex_enter(proc_lock);
1220 PROCLIST_FOREACH(p, &allproc) {
1221 if (__predict_false((p->p_flag & PK_MARKER) != 0))
1222 continue;
1223
1224 /*
1225 * Increment time in/out of memory and sleep
1226 * time (if sleeping), ignore overflow.
1227 */
1228 mutex_enter(p->p_lock);
1229 runtm = p->p_rtime.sec;
1230 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1231 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1232 continue;
1233 lwp_lock(l);
1234 runtm += l->l_rtime.sec;
1235 l->l_swtime++;
1236 sched_lwp_stats(l);
1237 lwp_unlock(l);
1238
1239 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1240 if (l->l_slptime != 0)
1241 continue;
1242
1243 lpctcpu = l->l_pctcpu;
1244 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1245 lpctcpu += ((FSCALE - ccpu) *
1246 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1247 l->l_pctcpu = lpctcpu;
1248 }
1249 /* Calculating p_pctcpu only for ps(1) */
1250 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1251
1252 /*
1253 * Check if the process exceeds its CPU resource allocation.
1254 * If over max, kill it.
1255 */
1256 rlim = &p->p_rlimit[RLIMIT_CPU];
1257 sig = 0;
1258 if (__predict_false(runtm >= rlim->rlim_cur)) {
1259 if (runtm >= rlim->rlim_max)
1260 sig = SIGKILL;
1261 else {
1262 sig = SIGXCPU;
1263 if (rlim->rlim_cur < rlim->rlim_max)
1264 rlim->rlim_cur += 5;
1265 }
1266 }
1267 mutex_exit(p->p_lock);
1268 if (__predict_false(runtm < 0)) {
1269 if (!backwards) {
1270 backwards = true;
1271 printf("WARNING: negative runtime; "
1272 "monotonic clock has gone backwards\n");
1273 }
1274 } else if (__predict_false(sig)) {
1275 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1276 psignal(p, sig);
1277 }
1278 }
1279 mutex_exit(proc_lock);
1280 uvm_meter();
1281 cv_wakeup(&lbolt);
1282 callout_schedule(&sched_pstats_ch, hz);
1283 }
1284