Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.280.2.3
      1 /*	$NetBSD: kern_synch.c,v 1.280.2.3 2011/04/21 01:42:08 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.280.2.3 2011/04/21 01:42:08 rmind Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/sleepq.h>
     95 #include <sys/lockdebug.h>
     96 #include <sys/evcnt.h>
     97 #include <sys/intr.h>
     98 #include <sys/lwpctl.h>
     99 #include <sys/atomic.h>
    100 #include <sys/simplelock.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 #include <dev/lockstat.h>
    105 
    106 #include <sys/dtrace_bsd.h>
    107 int                             dtrace_vtime_active=0;
    108 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    109 
    110 static void	sched_unsleep(struct lwp *, bool);
    111 static void	sched_changepri(struct lwp *, pri_t);
    112 static void	sched_lendpri(struct lwp *, pri_t);
    113 static void	resched_cpu(struct lwp *);
    114 
    115 syncobj_t sleep_syncobj = {
    116 	SOBJ_SLEEPQ_SORTED,
    117 	sleepq_unsleep,
    118 	sleepq_changepri,
    119 	sleepq_lendpri,
    120 	syncobj_noowner,
    121 };
    122 
    123 syncobj_t sched_syncobj = {
    124 	SOBJ_SLEEPQ_SORTED,
    125 	sched_unsleep,
    126 	sched_changepri,
    127 	sched_lendpri,
    128 	syncobj_noowner,
    129 };
    130 
    131 unsigned	sched_pstats_ticks;
    132 kcondvar_t	lbolt;			/* once a second sleep address */
    133 
    134 /* Preemption event counters */
    135 static struct evcnt kpreempt_ev_crit;
    136 static struct evcnt kpreempt_ev_klock;
    137 static struct evcnt kpreempt_ev_immed;
    138 
    139 /*
    140  * During autoconfiguration or after a panic, a sleep will simply lower the
    141  * priority briefly to allow interrupts, then return.  The priority to be
    142  * used (safepri) is machine-dependent, thus this value is initialized and
    143  * maintained in the machine-dependent layers.  This priority will typically
    144  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    145  * it can be made higher to block network software interrupts after panics.
    146  */
    147 int	safepri;
    148 
    149 void
    150 synch_init(void)
    151 {
    152 
    153 	cv_init(&lbolt, "lbolt");
    154 
    155 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "defer: critical section");
    157 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "defer: kernel_lock");
    159 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    160 	   "kpreempt", "immediate");
    161 }
    162 
    163 /*
    164  * OBSOLETE INTERFACE
    165  *
    166  * General sleep call.  Suspends the current LWP until a wakeup is
    167  * performed on the specified identifier.  The LWP will then be made
    168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170  * before and after sleeping, else signals are not checked.  Returns 0 if
    171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172  * signal needs to be delivered, ERESTART is returned if the current system
    173  * call should be restarted if possible, and EINTR is returned if the system
    174  * call should be interrupted by the signal (return EINTR).
    175  *
    176  * The interlock is held until we are on a sleep queue. The interlock will
    177  * be locked before returning back to the caller unless the PNORELOCK flag
    178  * is specified, in which case the interlock will always be unlocked upon
    179  * return.
    180  */
    181 int
    182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183 	volatile struct simplelock *interlock)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	kmutex_t *mp;
    188 	int error;
    189 
    190 	KASSERT((l->l_pflag & LP_INTR) == 0);
    191 	KASSERT(ident != &lbolt);
    192 
    193 	if (sleepq_dontsleep(l)) {
    194 		(void)sleepq_abort(NULL, 0);
    195 		if ((priority & PNORELOCK) != 0)
    196 			simple_unlock(interlock);
    197 		return 0;
    198 	}
    199 
    200 	l->l_kpriority = true;
    201 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    202 	sleepq_enter(sq, l, mp);
    203 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    204 
    205 	if (interlock != NULL) {
    206 		KASSERT(simple_lock_held(interlock));
    207 		simple_unlock(interlock);
    208 	}
    209 
    210 	error = sleepq_block(timo, priority & PCATCH);
    211 
    212 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    213 		simple_lock(interlock);
    214 
    215 	return error;
    216 }
    217 
    218 int
    219 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    220 	kmutex_t *mtx)
    221 {
    222 	struct lwp *l = curlwp;
    223 	sleepq_t *sq;
    224 	kmutex_t *mp;
    225 	int error;
    226 
    227 	KASSERT((l->l_pflag & LP_INTR) == 0);
    228 	KASSERT(ident != &lbolt);
    229 
    230 	if (sleepq_dontsleep(l)) {
    231 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    232 		return 0;
    233 	}
    234 
    235 	l->l_kpriority = true;
    236 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    237 	sleepq_enter(sq, l, mp);
    238 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    239 	mutex_exit(mtx);
    240 	error = sleepq_block(timo, priority & PCATCH);
    241 
    242 	if ((priority & PNORELOCK) == 0)
    243 		mutex_enter(mtx);
    244 
    245 	return error;
    246 }
    247 
    248 /*
    249  * General sleep call for situations where a wake-up is not expected.
    250  */
    251 int
    252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    253 {
    254 	struct lwp *l = curlwp;
    255 	kmutex_t *mp;
    256 	sleepq_t *sq;
    257 	int error;
    258 
    259 	KASSERT(!(timo == 0 && intr == false));
    260 
    261 	if (sleepq_dontsleep(l))
    262 		return sleepq_abort(NULL, 0);
    263 
    264 	if (mtx != NULL)
    265 		mutex_exit(mtx);
    266 	l->l_kpriority = true;
    267 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    268 	sleepq_enter(sq, l, mp);
    269 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    270 	error = sleepq_block(timo, intr);
    271 	if (mtx != NULL)
    272 		mutex_enter(mtx);
    273 
    274 	return error;
    275 }
    276 
    277 #ifdef KERN_SA
    278 /*
    279  * sa_awaken:
    280  *
    281  *	We believe this lwp is an SA lwp. If it's yielding,
    282  * let it know it needs to wake up.
    283  *
    284  *	We are called and exit with the lwp locked. We are
    285  * called in the middle of wakeup operations, so we need
    286  * to not touch the locks at all.
    287  */
    288 void
    289 sa_awaken(struct lwp *l)
    290 {
    291 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    292 
    293 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    294 		l->l_flag &= ~LW_SA_IDLE;
    295 }
    296 #endif /* KERN_SA */
    297 
    298 /*
    299  * OBSOLETE INTERFACE
    300  *
    301  * Make all LWPs sleeping on the specified identifier runnable.
    302  */
    303 void
    304 wakeup(wchan_t ident)
    305 {
    306 	sleepq_t *sq;
    307 	kmutex_t *mp;
    308 
    309 	if (__predict_false(cold))
    310 		return;
    311 
    312 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    313 	sleepq_wake(sq, ident, (u_int)-1, mp);
    314 }
    315 
    316 /*
    317  * OBSOLETE INTERFACE
    318  *
    319  * Make the highest priority LWP first in line on the specified
    320  * identifier runnable.
    321  */
    322 void
    323 wakeup_one(wchan_t ident)
    324 {
    325 	sleepq_t *sq;
    326 	kmutex_t *mp;
    327 
    328 	if (__predict_false(cold))
    329 		return;
    330 
    331 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    332 	sleepq_wake(sq, ident, 1, mp);
    333 }
    334 
    335 
    336 /*
    337  * General yield call.  Puts the current LWP back on its run queue and
    338  * performs a voluntary context switch.  Should only be called when the
    339  * current LWP explicitly requests it (eg sched_yield(2)).
    340  */
    341 void
    342 yield(void)
    343 {
    344 	struct lwp *l = curlwp;
    345 
    346 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    347 	lwp_lock(l);
    348 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    349 	KASSERT(l->l_stat == LSONPROC);
    350 	l->l_kpriority = false;
    351 	(void)mi_switch(l);
    352 	KERNEL_LOCK(l->l_biglocks, l);
    353 }
    354 
    355 /*
    356  * General preemption call.  Puts the current LWP back on its run queue
    357  * and performs an involuntary context switch.
    358  */
    359 void
    360 preempt(void)
    361 {
    362 	struct lwp *l = curlwp;
    363 
    364 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    365 	lwp_lock(l);
    366 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    367 	KASSERT(l->l_stat == LSONPROC);
    368 	l->l_kpriority = false;
    369 	l->l_nivcsw++;
    370 	(void)mi_switch(l);
    371 	KERNEL_LOCK(l->l_biglocks, l);
    372 }
    373 
    374 /*
    375  * Handle a request made by another agent to preempt the current LWP
    376  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    377  *
    378  * Character addresses for lockstat only.
    379  */
    380 static char	in_critical_section;
    381 static char	kernel_lock_held;
    382 static char	is_softint;
    383 static char	cpu_kpreempt_enter_fail;
    384 
    385 bool
    386 kpreempt(uintptr_t where)
    387 {
    388 	uintptr_t failed;
    389 	lwp_t *l;
    390 	int s, dop, lsflag;
    391 
    392 	l = curlwp;
    393 	failed = 0;
    394 	while ((dop = l->l_dopreempt) != 0) {
    395 		if (l->l_stat != LSONPROC) {
    396 			/*
    397 			 * About to block (or die), let it happen.
    398 			 * Doesn't really count as "preemption has
    399 			 * been blocked", since we're going to
    400 			 * context switch.
    401 			 */
    402 			l->l_dopreempt = 0;
    403 			return true;
    404 		}
    405 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    406 			/* Can't preempt idle loop, don't count as failure. */
    407 			l->l_dopreempt = 0;
    408 			return true;
    409 		}
    410 		if (__predict_false(l->l_nopreempt != 0)) {
    411 			/* LWP holds preemption disabled, explicitly. */
    412 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    413 				kpreempt_ev_crit.ev_count++;
    414 			}
    415 			failed = (uintptr_t)&in_critical_section;
    416 			break;
    417 		}
    418 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    419 			/* Can't preempt soft interrupts yet. */
    420 			l->l_dopreempt = 0;
    421 			failed = (uintptr_t)&is_softint;
    422 			break;
    423 		}
    424 		s = splsched();
    425 		if (__predict_false(l->l_blcnt != 0 ||
    426 		    curcpu()->ci_biglock_wanted != NULL)) {
    427 			/* Hold or want kernel_lock, code is not MT safe. */
    428 			splx(s);
    429 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    430 				kpreempt_ev_klock.ev_count++;
    431 			}
    432 			failed = (uintptr_t)&kernel_lock_held;
    433 			break;
    434 		}
    435 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    436 			/*
    437 			 * It may be that the IPL is too high.
    438 			 * kpreempt_enter() can schedule an
    439 			 * interrupt to retry later.
    440 			 */
    441 			splx(s);
    442 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    443 			break;
    444 		}
    445 		/* Do it! */
    446 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    447 			kpreempt_ev_immed.ev_count++;
    448 		}
    449 		lwp_lock(l);
    450 		mi_switch(l);
    451 		l->l_nopreempt++;
    452 		splx(s);
    453 
    454 		/* Take care of any MD cleanup. */
    455 		cpu_kpreempt_exit(where);
    456 		l->l_nopreempt--;
    457 	}
    458 
    459 	if (__predict_true(!failed)) {
    460 		return false;
    461 	}
    462 
    463 	/* Record preemption failure for reporting via lockstat. */
    464 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    465 	lsflag = 0;
    466 	LOCKSTAT_ENTER(lsflag);
    467 	if (__predict_false(lsflag)) {
    468 		if (where == 0) {
    469 			where = (uintptr_t)__builtin_return_address(0);
    470 		}
    471 		/* Preemption is on, might recurse, so make it atomic. */
    472 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    473 		    (void *)where) == NULL) {
    474 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    475 			l->l_pfaillock = failed;
    476 		}
    477 	}
    478 	LOCKSTAT_EXIT(lsflag);
    479 	return true;
    480 }
    481 
    482 /*
    483  * Return true if preemption is explicitly disabled.
    484  */
    485 bool
    486 kpreempt_disabled(void)
    487 {
    488 	const lwp_t *l = curlwp;
    489 
    490 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    491 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    492 }
    493 
    494 /*
    495  * Disable kernel preemption.
    496  */
    497 void
    498 kpreempt_disable(void)
    499 {
    500 
    501 	KPREEMPT_DISABLE(curlwp);
    502 }
    503 
    504 /*
    505  * Reenable kernel preemption.
    506  */
    507 void
    508 kpreempt_enable(void)
    509 {
    510 
    511 	KPREEMPT_ENABLE(curlwp);
    512 }
    513 
    514 /*
    515  * Compute the amount of time during which the current lwp was running.
    516  *
    517  * - update l_rtime unless it's an idle lwp.
    518  */
    519 
    520 void
    521 updatertime(lwp_t *l, const struct bintime *now)
    522 {
    523 
    524 	if (__predict_false(l->l_flag & LW_IDLE))
    525 		return;
    526 
    527 	/* rtime += now - stime */
    528 	bintime_add(&l->l_rtime, now);
    529 	bintime_sub(&l->l_rtime, &l->l_stime);
    530 }
    531 
    532 /*
    533  * Select next LWP from the current CPU to run..
    534  */
    535 static inline lwp_t *
    536 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    537 {
    538 	lwp_t *newl;
    539 
    540 	/*
    541 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    542 	 * If no LWP is runnable, select the idle LWP.
    543 	 *
    544 	 * Note that spc_lwplock might not necessary be held, and
    545 	 * new thread would be unlocked after setting the LWP-lock.
    546 	 */
    547 	newl = sched_nextlwp();
    548 	if (newl != NULL) {
    549 		sched_dequeue(newl);
    550 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    551 		KASSERT(newl->l_cpu == ci);
    552 		newl->l_stat = LSONPROC;
    553 		newl->l_pflag |= LP_RUNNING;
    554 		lwp_setlock(newl, spc->spc_lwplock);
    555 	} else {
    556 		newl = ci->ci_data.cpu_idlelwp;
    557 		newl->l_stat = LSONPROC;
    558 		newl->l_pflag |= LP_RUNNING;
    559 	}
    560 
    561 	/*
    562 	 * Only clear want_resched if there are no pending (slow)
    563 	 * software interrupts.
    564 	 */
    565 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    566 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    567 	spc->spc_curpriority = lwp_eprio(newl);
    568 
    569 	return newl;
    570 }
    571 
    572 /*
    573  * The machine independent parts of context switch.
    574  *
    575  * Returns 1 if another LWP was actually run.
    576  */
    577 int
    578 mi_switch(lwp_t *l)
    579 {
    580 	struct cpu_info *ci;
    581 	struct schedstate_percpu *spc;
    582 	struct lwp *newl;
    583 	int retval, oldspl;
    584 	struct bintime bt;
    585 	bool returning;
    586 
    587 	KASSERT(lwp_locked(l, NULL));
    588 	KASSERT(kpreempt_disabled());
    589 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    590 
    591 	kstack_check_magic(l);
    592 
    593 	binuptime(&bt);
    594 
    595 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    596 	KASSERT(l->l_cpu == curcpu());
    597 	ci = l->l_cpu;
    598 	spc = &ci->ci_schedstate;
    599 	returning = false;
    600 	newl = NULL;
    601 
    602 	/*
    603 	 * If we have been asked to switch to a specific LWP, then there
    604 	 * is no need to inspect the run queues.  If a soft interrupt is
    605 	 * blocking, then return to the interrupted thread without adjusting
    606 	 * VM context or its start time: neither have been changed in order
    607 	 * to take the interrupt.
    608 	 */
    609 	if (l->l_switchto != NULL) {
    610 		if ((l->l_pflag & LP_INTR) != 0) {
    611 			returning = true;
    612 			softint_block(l);
    613 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    614 				updatertime(l, &bt);
    615 		}
    616 		newl = l->l_switchto;
    617 		l->l_switchto = NULL;
    618 	}
    619 #ifndef __HAVE_FAST_SOFTINTS
    620 	else if (ci->ci_data.cpu_softints != 0) {
    621 		/* There are pending soft interrupts, so pick one. */
    622 		newl = softint_picklwp();
    623 		newl->l_stat = LSONPROC;
    624 		newl->l_pflag |= LP_RUNNING;
    625 	}
    626 #endif	/* !__HAVE_FAST_SOFTINTS */
    627 
    628 	/* Count time spent in current system call */
    629 	if (!returning) {
    630 		SYSCALL_TIME_SLEEP(l);
    631 
    632 		/*
    633 		 * XXXSMP If we are using h/w performance counters,
    634 		 * save context.
    635 		 */
    636 #if PERFCTRS
    637 		if (PMC_ENABLED(l->l_proc)) {
    638 			pmc_save_context(l->l_proc);
    639 		}
    640 #endif
    641 		updatertime(l, &bt);
    642 	}
    643 
    644 	/* Lock the runqueue */
    645 	KASSERT(l->l_stat != LSRUN);
    646 	mutex_spin_enter(spc->spc_mutex);
    647 
    648 	/*
    649 	 * If on the CPU and we have gotten this far, then we must yield.
    650 	 */
    651 	if (l->l_stat == LSONPROC && l != newl) {
    652 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    653 		if ((l->l_flag & LW_IDLE) == 0) {
    654 			l->l_stat = LSRUN;
    655 			lwp_setlock(l, spc->spc_mutex);
    656 			sched_enqueue(l, true);
    657 			/*
    658 			 * Handle migration.  Note that "migrating LWP" may
    659 			 * be reset here, if interrupt/preemption happens
    660 			 * early in idle LWP.
    661 			 */
    662 			if (l->l_target_cpu != NULL) {
    663 				KASSERT((l->l_pflag & LP_INTR) == 0);
    664 				spc->spc_migrating = l;
    665 			}
    666 		} else
    667 			l->l_stat = LSIDL;
    668 	}
    669 
    670 	/* Pick new LWP to run. */
    671 	if (newl == NULL) {
    672 		newl = nextlwp(ci, spc);
    673 	}
    674 
    675 	/* Items that must be updated with the CPU locked. */
    676 	if (!returning) {
    677 		/* Update the new LWP's start time. */
    678 		newl->l_stime = bt;
    679 
    680 		/*
    681 		 * ci_curlwp changes when a fast soft interrupt occurs.
    682 		 * We use cpu_onproc to keep track of which kernel or
    683 		 * user thread is running 'underneath' the software
    684 		 * interrupt.  This is important for time accounting,
    685 		 * itimers and forcing user threads to preempt (aston).
    686 		 */
    687 		ci->ci_data.cpu_onproc = newl;
    688 	}
    689 
    690 	/*
    691 	 * Preemption related tasks.  Must be done with the current
    692 	 * CPU locked.
    693 	 */
    694 	cpu_did_resched(l);
    695 	l->l_dopreempt = 0;
    696 	if (__predict_false(l->l_pfailaddr != 0)) {
    697 		LOCKSTAT_FLAG(lsflag);
    698 		LOCKSTAT_ENTER(lsflag);
    699 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    700 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    701 		    1, l->l_pfailtime, l->l_pfailaddr);
    702 		LOCKSTAT_EXIT(lsflag);
    703 		l->l_pfailtime = 0;
    704 		l->l_pfaillock = 0;
    705 		l->l_pfailaddr = 0;
    706 	}
    707 
    708 	if (l != newl) {
    709 		struct lwp *prevlwp;
    710 
    711 		/* Release all locks, but leave the current LWP locked */
    712 		if (l->l_mutex == spc->spc_mutex) {
    713 			/*
    714 			 * Drop spc_lwplock, if the current LWP has been moved
    715 			 * to the run queue (it is now locked by spc_mutex).
    716 			 */
    717 			mutex_spin_exit(spc->spc_lwplock);
    718 		} else {
    719 			/*
    720 			 * Otherwise, drop the spc_mutex, we are done with the
    721 			 * run queues.
    722 			 */
    723 			mutex_spin_exit(spc->spc_mutex);
    724 		}
    725 
    726 		/*
    727 		 * Mark that context switch is going to be performed
    728 		 * for this LWP, to protect it from being switched
    729 		 * to on another CPU.
    730 		 */
    731 		KASSERT(l->l_ctxswtch == 0);
    732 		l->l_ctxswtch = 1;
    733 		l->l_ncsw++;
    734 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    735 		l->l_pflag &= ~LP_RUNNING;
    736 
    737 		/*
    738 		 * Increase the count of spin-mutexes before the release
    739 		 * of the last lock - we must remain at IPL_SCHED during
    740 		 * the context switch.
    741 		 */
    742 		KASSERTMSG(ci->ci_mtx_count == -1,
    743 		    ("%s: cpu%u: ci_mtx_count (%d) != -1",
    744 		     __func__, cpu_index(ci), ci->ci_mtx_count));
    745 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    746 		ci->ci_mtx_count--;
    747 		lwp_unlock(l);
    748 
    749 		/* Count the context switch on this CPU. */
    750 		ci->ci_data.cpu_nswtch++;
    751 
    752 		/* Update status for lwpctl, if present. */
    753 		if (l->l_lwpctl != NULL)
    754 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    755 
    756 		/*
    757 		 * Save old VM context, unless a soft interrupt
    758 		 * handler is blocking.
    759 		 */
    760 		if (!returning)
    761 			pmap_deactivate(l);
    762 
    763 		/*
    764 		 * We may need to spin-wait if 'newl' is still
    765 		 * context switching on another CPU.
    766 		 */
    767 		if (__predict_false(newl->l_ctxswtch != 0)) {
    768 			u_int count;
    769 			count = SPINLOCK_BACKOFF_MIN;
    770 			while (newl->l_ctxswtch)
    771 				SPINLOCK_BACKOFF(count);
    772 		}
    773 
    774 		/*
    775 		 * If DTrace has set the active vtime enum to anything
    776 		 * other than INACTIVE (0), then it should have set the
    777 		 * function to call.
    778 		 */
    779 		if (__predict_false(dtrace_vtime_active)) {
    780 			(*dtrace_vtime_switch_func)(newl);
    781 		}
    782 
    783 		/* Switch to the new LWP.. */
    784 		prevlwp = cpu_switchto(l, newl, returning);
    785 		ci = curcpu();
    786 
    787 		/*
    788 		 * Switched away - we have new curlwp.
    789 		 * Restore VM context and IPL.
    790 		 */
    791 		pmap_activate(l);
    792 		uvm_emap_switch(l);
    793 
    794 		if (prevlwp != NULL) {
    795 			/* Normalize the count of the spin-mutexes */
    796 			ci->ci_mtx_count++;
    797 			/* Unmark the state of context switch */
    798 			membar_exit();
    799 			prevlwp->l_ctxswtch = 0;
    800 		}
    801 
    802 		/* Update status for lwpctl, if present. */
    803 		if (l->l_lwpctl != NULL) {
    804 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    805 			l->l_lwpctl->lc_pctr++;
    806 		}
    807 
    808 		KASSERT(l->l_cpu == ci);
    809 		splx(oldspl);
    810 		retval = 1;
    811 	} else {
    812 		/* Nothing to do - just unlock and return. */
    813 		mutex_spin_exit(spc->spc_mutex);
    814 		lwp_unlock(l);
    815 		retval = 0;
    816 	}
    817 
    818 	KASSERT(l == curlwp);
    819 	KASSERT(l->l_stat == LSONPROC);
    820 
    821 	/*
    822 	 * XXXSMP If we are using h/w performance counters, restore context.
    823 	 * XXXSMP preemption problem.
    824 	 */
    825 #if PERFCTRS
    826 	if (PMC_ENABLED(l->l_proc)) {
    827 		pmc_restore_context(l->l_proc);
    828 	}
    829 #endif
    830 	SYSCALL_TIME_WAKEUP(l);
    831 	LOCKDEBUG_BARRIER(NULL, 1);
    832 
    833 	return retval;
    834 }
    835 
    836 /*
    837  * The machine independent parts of context switch to oblivion.
    838  * Does not return.  Call with the LWP unlocked.
    839  */
    840 void
    841 lwp_exit_switchaway(lwp_t *l)
    842 {
    843 	struct cpu_info *ci;
    844 	struct lwp *newl;
    845 	struct bintime bt;
    846 
    847 	ci = l->l_cpu;
    848 
    849 	KASSERT(kpreempt_disabled());
    850 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    851 	KASSERT(ci == curcpu());
    852 	LOCKDEBUG_BARRIER(NULL, 0);
    853 
    854 	kstack_check_magic(l);
    855 
    856 	/* Count time spent in current system call */
    857 	SYSCALL_TIME_SLEEP(l);
    858 	binuptime(&bt);
    859 	updatertime(l, &bt);
    860 
    861 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    862 	(void)splsched();
    863 
    864 	/*
    865 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    866 	 * If no LWP is runnable, select the idle LWP.
    867 	 *
    868 	 * Note that spc_lwplock might not necessary be held, and
    869 	 * new thread would be unlocked after setting the LWP-lock.
    870 	 */
    871 	spc_lock(ci);
    872 #ifndef __HAVE_FAST_SOFTINTS
    873 	if (ci->ci_data.cpu_softints != 0) {
    874 		/* There are pending soft interrupts, so pick one. */
    875 		newl = softint_picklwp();
    876 		newl->l_stat = LSONPROC;
    877 		newl->l_pflag |= LP_RUNNING;
    878 	} else
    879 #endif	/* !__HAVE_FAST_SOFTINTS */
    880 	{
    881 		newl = nextlwp(ci, &ci->ci_schedstate);
    882 	}
    883 
    884 	/* Update the new LWP's start time. */
    885 	newl->l_stime = bt;
    886 	l->l_pflag &= ~LP_RUNNING;
    887 
    888 	/*
    889 	 * ci_curlwp changes when a fast soft interrupt occurs.
    890 	 * We use cpu_onproc to keep track of which kernel or
    891 	 * user thread is running 'underneath' the software
    892 	 * interrupt.  This is important for time accounting,
    893 	 * itimers and forcing user threads to preempt (aston).
    894 	 */
    895 	ci->ci_data.cpu_onproc = newl;
    896 
    897 	/*
    898 	 * Preemption related tasks.  Must be done with the current
    899 	 * CPU locked.
    900 	 */
    901 	cpu_did_resched(l);
    902 
    903 	/* Unlock the run queue. */
    904 	spc_unlock(ci);
    905 
    906 	/* Count the context switch on this CPU. */
    907 	ci->ci_data.cpu_nswtch++;
    908 
    909 	/* Update status for lwpctl, if present. */
    910 	if (l->l_lwpctl != NULL)
    911 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    912 
    913 	/*
    914 	 * We may need to spin-wait if 'newl' is still
    915 	 * context switching on another CPU.
    916 	 */
    917 	if (__predict_false(newl->l_ctxswtch != 0)) {
    918 		u_int count;
    919 		count = SPINLOCK_BACKOFF_MIN;
    920 		while (newl->l_ctxswtch)
    921 			SPINLOCK_BACKOFF(count);
    922 	}
    923 
    924 	/*
    925 	 * If DTrace has set the active vtime enum to anything
    926 	 * other than INACTIVE (0), then it should have set the
    927 	 * function to call.
    928 	 */
    929 	if (__predict_false(dtrace_vtime_active)) {
    930 		(*dtrace_vtime_switch_func)(newl);
    931 	}
    932 
    933 	/* Switch to the new LWP.. */
    934 	(void)cpu_switchto(NULL, newl, false);
    935 
    936 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    937 	/* NOTREACHED */
    938 }
    939 
    940 /*
    941  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    942  *
    943  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    944  */
    945 void
    946 setrunnable(struct lwp *l)
    947 {
    948 	struct proc *p = l->l_proc;
    949 	struct cpu_info *ci;
    950 
    951 	KASSERT((l->l_flag & LW_IDLE) == 0);
    952 	KASSERT(mutex_owned(p->p_lock));
    953 	KASSERT(lwp_locked(l, NULL));
    954 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    955 
    956 	switch (l->l_stat) {
    957 	case LSSTOP:
    958 		/*
    959 		 * If we're being traced (possibly because someone attached us
    960 		 * while we were stopped), check for a signal from the debugger.
    961 		 */
    962 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    963 			signotify(l);
    964 		p->p_nrlwps++;
    965 		break;
    966 	case LSSUSPENDED:
    967 		l->l_flag &= ~LW_WSUSPEND;
    968 		p->p_nrlwps++;
    969 		cv_broadcast(&p->p_lwpcv);
    970 		break;
    971 	case LSSLEEP:
    972 		KASSERT(l->l_wchan != NULL);
    973 		break;
    974 	default:
    975 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    976 	}
    977 
    978 #ifdef KERN_SA
    979 	if (l->l_proc->p_sa)
    980 		sa_awaken(l);
    981 #endif /* KERN_SA */
    982 
    983 	/*
    984 	 * If the LWP was sleeping, start it again.
    985 	 */
    986 	if (l->l_wchan != NULL) {
    987 		l->l_stat = LSSLEEP;
    988 		/* lwp_unsleep() will release the lock. */
    989 		lwp_unsleep(l, true);
    990 		return;
    991 	}
    992 
    993 	/*
    994 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    995 	 * about to call mi_switch(), in which case it will yield.
    996 	 */
    997 	if ((l->l_pflag & LP_RUNNING) != 0) {
    998 		l->l_stat = LSONPROC;
    999 		l->l_slptime = 0;
   1000 		lwp_unlock(l);
   1001 		return;
   1002 	}
   1003 
   1004 	/*
   1005 	 * Look for a CPU to run.
   1006 	 * Set the LWP runnable.
   1007 	 */
   1008 	ci = sched_takecpu(l);
   1009 	l->l_cpu = ci;
   1010 	spc_lock(ci);
   1011 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1012 	sched_setrunnable(l);
   1013 	l->l_stat = LSRUN;
   1014 	l->l_slptime = 0;
   1015 
   1016 	sched_enqueue(l, false);
   1017 	resched_cpu(l);
   1018 	lwp_unlock(l);
   1019 }
   1020 
   1021 /*
   1022  * suspendsched:
   1023  *
   1024  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1025  */
   1026 void
   1027 suspendsched(void)
   1028 {
   1029 	CPU_INFO_ITERATOR cii;
   1030 	struct cpu_info *ci;
   1031 	struct lwp *l;
   1032 	struct proc *p;
   1033 
   1034 	/*
   1035 	 * We do this by process in order not to violate the locking rules.
   1036 	 */
   1037 	mutex_enter(proc_lock);
   1038 	PROCLIST_FOREACH(p, &allproc) {
   1039 		mutex_enter(p->p_lock);
   1040 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1041 			mutex_exit(p->p_lock);
   1042 			continue;
   1043 		}
   1044 
   1045 		p->p_stat = SSTOP;
   1046 
   1047 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1048 			if (l == curlwp)
   1049 				continue;
   1050 
   1051 			lwp_lock(l);
   1052 
   1053 			/*
   1054 			 * Set L_WREBOOT so that the LWP will suspend itself
   1055 			 * when it tries to return to user mode.  We want to
   1056 			 * try and get to get as many LWPs as possible to
   1057 			 * the user / kernel boundary, so that they will
   1058 			 * release any locks that they hold.
   1059 			 */
   1060 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1061 
   1062 			if (l->l_stat == LSSLEEP &&
   1063 			    (l->l_flag & LW_SINTR) != 0) {
   1064 				/* setrunnable() will release the lock. */
   1065 				setrunnable(l);
   1066 				continue;
   1067 			}
   1068 
   1069 			lwp_unlock(l);
   1070 		}
   1071 
   1072 		mutex_exit(p->p_lock);
   1073 	}
   1074 	mutex_exit(proc_lock);
   1075 
   1076 	/*
   1077 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1078 	 * They'll trap into the kernel and suspend themselves in userret().
   1079 	 */
   1080 	for (CPU_INFO_FOREACH(cii, ci)) {
   1081 		spc_lock(ci);
   1082 		cpu_need_resched(ci, RESCHED_IMMED);
   1083 		spc_unlock(ci);
   1084 	}
   1085 }
   1086 
   1087 /*
   1088  * sched_unsleep:
   1089  *
   1090  *	The is called when the LWP has not been awoken normally but instead
   1091  *	interrupted: for example, if the sleep timed out.  Because of this,
   1092  *	it's not a valid action for running or idle LWPs.
   1093  */
   1094 static void
   1095 sched_unsleep(struct lwp *l, bool cleanup)
   1096 {
   1097 
   1098 	lwp_unlock(l);
   1099 	panic("sched_unsleep");
   1100 }
   1101 
   1102 static void
   1103 resched_cpu(struct lwp *l)
   1104 {
   1105 	struct cpu_info *ci = l->l_cpu;
   1106 
   1107 	KASSERT(lwp_locked(l, NULL));
   1108 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1109 		cpu_need_resched(ci, 0);
   1110 }
   1111 
   1112 static void
   1113 sched_changepri(struct lwp *l, pri_t pri)
   1114 {
   1115 
   1116 	KASSERT(lwp_locked(l, NULL));
   1117 
   1118 	if (l->l_stat == LSRUN) {
   1119 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1120 		sched_dequeue(l);
   1121 		l->l_priority = pri;
   1122 		sched_enqueue(l, false);
   1123 	} else {
   1124 		l->l_priority = pri;
   1125 	}
   1126 	resched_cpu(l);
   1127 }
   1128 
   1129 static void
   1130 sched_lendpri(struct lwp *l, pri_t pri)
   1131 {
   1132 
   1133 	KASSERT(lwp_locked(l, NULL));
   1134 
   1135 	if (l->l_stat == LSRUN) {
   1136 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1137 		sched_dequeue(l);
   1138 		l->l_inheritedprio = pri;
   1139 		sched_enqueue(l, false);
   1140 	} else {
   1141 		l->l_inheritedprio = pri;
   1142 	}
   1143 	resched_cpu(l);
   1144 }
   1145 
   1146 struct lwp *
   1147 syncobj_noowner(wchan_t wchan)
   1148 {
   1149 
   1150 	return NULL;
   1151 }
   1152 
   1153 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1154 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1155 
   1156 /*
   1157  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1158  * 5 second intervals.
   1159  */
   1160 static const fixpt_t cexp[ ] = {
   1161 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1162 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1163 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1164 };
   1165 
   1166 /*
   1167  * sched_pstats:
   1168  *
   1169  * => Update process statistics and check CPU resource allocation.
   1170  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1171  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1172  */
   1173 void
   1174 sched_pstats(void)
   1175 {
   1176 	extern struct loadavg averunnable;
   1177 	struct loadavg *avg = &averunnable;
   1178 	const int clkhz = (stathz != 0 ? stathz : hz);
   1179 	static bool backwards = false;
   1180 	static u_int lavg_count = 0;
   1181 	struct proc *p;
   1182 	int nrun;
   1183 
   1184 	sched_pstats_ticks++;
   1185 	if (++lavg_count >= 5) {
   1186 		lavg_count = 0;
   1187 		nrun = 0;
   1188 	}
   1189 	mutex_enter(proc_lock);
   1190 	PROCLIST_FOREACH(p, &allproc) {
   1191 		struct lwp *l;
   1192 		struct rlimit *rlim;
   1193 		long runtm;
   1194 		int sig;
   1195 
   1196 		/* Increment sleep time (if sleeping), ignore overflow. */
   1197 		mutex_enter(p->p_lock);
   1198 		runtm = p->p_rtime.sec;
   1199 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1200 			fixpt_t lpctcpu;
   1201 			u_int lcpticks;
   1202 
   1203 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1204 				continue;
   1205 			lwp_lock(l);
   1206 			runtm += l->l_rtime.sec;
   1207 			l->l_swtime++;
   1208 			sched_lwp_stats(l);
   1209 
   1210 			/* For load average calculation. */
   1211 			if (__predict_false(lavg_count == 0) &&
   1212 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1213 				switch (l->l_stat) {
   1214 				case LSSLEEP:
   1215 					if (l->l_slptime > 1) {
   1216 						break;
   1217 					}
   1218 				case LSRUN:
   1219 				case LSONPROC:
   1220 				case LSIDL:
   1221 					nrun++;
   1222 				}
   1223 			}
   1224 			lwp_unlock(l);
   1225 
   1226 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1227 			if (l->l_slptime != 0)
   1228 				continue;
   1229 
   1230 			lpctcpu = l->l_pctcpu;
   1231 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1232 			lpctcpu += ((FSCALE - ccpu) *
   1233 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1234 			l->l_pctcpu = lpctcpu;
   1235 		}
   1236 		/* Calculating p_pctcpu only for ps(1) */
   1237 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1238 
   1239 		/*
   1240 		 * Check if the process exceeds its CPU resource allocation.
   1241 		 * If over max, kill it.
   1242 		 */
   1243 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1244 		sig = 0;
   1245 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1246 			if (runtm >= rlim->rlim_max)
   1247 				sig = SIGKILL;
   1248 			else {
   1249 				sig = SIGXCPU;
   1250 				if (rlim->rlim_cur < rlim->rlim_max)
   1251 					rlim->rlim_cur += 5;
   1252 			}
   1253 		}
   1254 		mutex_exit(p->p_lock);
   1255 		if (__predict_false(runtm < 0)) {
   1256 			if (!backwards) {
   1257 				backwards = true;
   1258 				printf("WARNING: negative runtime; "
   1259 				    "monotonic clock has gone backwards\n");
   1260 			}
   1261 		} else if (__predict_false(sig)) {
   1262 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1263 			psignal(p, sig);
   1264 		}
   1265 	}
   1266 	mutex_exit(proc_lock);
   1267 
   1268 	/* Load average calculation. */
   1269 	if (__predict_false(lavg_count == 0)) {
   1270 		int i;
   1271 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1272 		for (i = 0; i < __arraycount(cexp); i++) {
   1273 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1274 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1275 		}
   1276 	}
   1277 
   1278 	/* Lightning bolt. */
   1279 	cv_broadcast(&lbolt);
   1280 }
   1281