Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.282
      1 /*	$NetBSD: kern_synch.c,v 1.282 2010/04/20 16:49:48 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.282 2010/04/20 16:49:48 rmind Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/sleepq.h>
     95 #include <sys/lockdebug.h>
     96 #include <sys/evcnt.h>
     97 #include <sys/intr.h>
     98 #include <sys/lwpctl.h>
     99 #include <sys/atomic.h>
    100 #include <sys/simplelock.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 #include <dev/lockstat.h>
    105 
    106 #include <sys/dtrace_bsd.h>
    107 int                             dtrace_vtime_active=0;
    108 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    109 
    110 static void	sched_unsleep(struct lwp *, bool);
    111 static void	sched_changepri(struct lwp *, pri_t);
    112 static void	sched_lendpri(struct lwp *, pri_t);
    113 static void	resched_cpu(struct lwp *);
    114 
    115 syncobj_t sleep_syncobj = {
    116 	SOBJ_SLEEPQ_SORTED,
    117 	sleepq_unsleep,
    118 	sleepq_changepri,
    119 	sleepq_lendpri,
    120 	syncobj_noowner,
    121 };
    122 
    123 syncobj_t sched_syncobj = {
    124 	SOBJ_SLEEPQ_SORTED,
    125 	sched_unsleep,
    126 	sched_changepri,
    127 	sched_lendpri,
    128 	syncobj_noowner,
    129 };
    130 
    131 unsigned	sched_pstats_ticks;
    132 kcondvar_t	lbolt;			/* once a second sleep address */
    133 
    134 /* Preemption event counters */
    135 static struct evcnt kpreempt_ev_crit;
    136 static struct evcnt kpreempt_ev_klock;
    137 static struct evcnt kpreempt_ev_immed;
    138 
    139 /*
    140  * During autoconfiguration or after a panic, a sleep will simply lower the
    141  * priority briefly to allow interrupts, then return.  The priority to be
    142  * used (safepri) is machine-dependent, thus this value is initialized and
    143  * maintained in the machine-dependent layers.  This priority will typically
    144  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    145  * it can be made higher to block network software interrupts after panics.
    146  */
    147 int	safepri;
    148 
    149 void
    150 synch_init(void)
    151 {
    152 
    153 	cv_init(&lbolt, "lbolt");
    154 
    155 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "defer: critical section");
    157 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "defer: kernel_lock");
    159 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    160 	   "kpreempt", "immediate");
    161 }
    162 
    163 /*
    164  * OBSOLETE INTERFACE
    165  *
    166  * General sleep call.  Suspends the current LWP until a wakeup is
    167  * performed on the specified identifier.  The LWP will then be made
    168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170  * before and after sleeping, else signals are not checked.  Returns 0 if
    171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172  * signal needs to be delivered, ERESTART is returned if the current system
    173  * call should be restarted if possible, and EINTR is returned if the system
    174  * call should be interrupted by the signal (return EINTR).
    175  *
    176  * The interlock is held until we are on a sleep queue. The interlock will
    177  * be locked before returning back to the caller unless the PNORELOCK flag
    178  * is specified, in which case the interlock will always be unlocked upon
    179  * return.
    180  */
    181 int
    182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183 	volatile struct simplelock *interlock)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	kmutex_t *mp;
    188 	int error;
    189 
    190 	KASSERT((l->l_pflag & LP_INTR) == 0);
    191 	KASSERT(ident != &lbolt);
    192 
    193 	if (sleepq_dontsleep(l)) {
    194 		(void)sleepq_abort(NULL, 0);
    195 		if ((priority & PNORELOCK) != 0)
    196 			simple_unlock(interlock);
    197 		return 0;
    198 	}
    199 
    200 	l->l_kpriority = true;
    201 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    202 	sleepq_enter(sq, l, mp);
    203 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    204 
    205 	if (interlock != NULL) {
    206 		KASSERT(simple_lock_held(interlock));
    207 		simple_unlock(interlock);
    208 	}
    209 
    210 	error = sleepq_block(timo, priority & PCATCH);
    211 
    212 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    213 		simple_lock(interlock);
    214 
    215 	return error;
    216 }
    217 
    218 int
    219 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    220 	kmutex_t *mtx)
    221 {
    222 	struct lwp *l = curlwp;
    223 	sleepq_t *sq;
    224 	kmutex_t *mp;
    225 	int error;
    226 
    227 	KASSERT((l->l_pflag & LP_INTR) == 0);
    228 	KASSERT(ident != &lbolt);
    229 
    230 	if (sleepq_dontsleep(l)) {
    231 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    232 		return 0;
    233 	}
    234 
    235 	l->l_kpriority = true;
    236 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    237 	sleepq_enter(sq, l, mp);
    238 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    239 	mutex_exit(mtx);
    240 	error = sleepq_block(timo, priority & PCATCH);
    241 
    242 	if ((priority & PNORELOCK) == 0)
    243 		mutex_enter(mtx);
    244 
    245 	return error;
    246 }
    247 
    248 /*
    249  * General sleep call for situations where a wake-up is not expected.
    250  */
    251 int
    252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    253 {
    254 	struct lwp *l = curlwp;
    255 	kmutex_t *mp;
    256 	sleepq_t *sq;
    257 	int error;
    258 
    259 	if (sleepq_dontsleep(l))
    260 		return sleepq_abort(NULL, 0);
    261 
    262 	if (mtx != NULL)
    263 		mutex_exit(mtx);
    264 	l->l_kpriority = true;
    265 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    266 	sleepq_enter(sq, l, mp);
    267 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    268 	error = sleepq_block(timo, intr);
    269 	if (mtx != NULL)
    270 		mutex_enter(mtx);
    271 
    272 	return error;
    273 }
    274 
    275 #ifdef KERN_SA
    276 /*
    277  * sa_awaken:
    278  *
    279  *	We believe this lwp is an SA lwp. If it's yielding,
    280  * let it know it needs to wake up.
    281  *
    282  *	We are called and exit with the lwp locked. We are
    283  * called in the middle of wakeup operations, so we need
    284  * to not touch the locks at all.
    285  */
    286 void
    287 sa_awaken(struct lwp *l)
    288 {
    289 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    290 
    291 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    292 		l->l_flag &= ~LW_SA_IDLE;
    293 }
    294 #endif /* KERN_SA */
    295 
    296 /*
    297  * OBSOLETE INTERFACE
    298  *
    299  * Make all LWPs sleeping on the specified identifier runnable.
    300  */
    301 void
    302 wakeup(wchan_t ident)
    303 {
    304 	sleepq_t *sq;
    305 	kmutex_t *mp;
    306 
    307 	if (__predict_false(cold))
    308 		return;
    309 
    310 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    311 	sleepq_wake(sq, ident, (u_int)-1, mp);
    312 }
    313 
    314 /*
    315  * OBSOLETE INTERFACE
    316  *
    317  * Make the highest priority LWP first in line on the specified
    318  * identifier runnable.
    319  */
    320 void
    321 wakeup_one(wchan_t ident)
    322 {
    323 	sleepq_t *sq;
    324 	kmutex_t *mp;
    325 
    326 	if (__predict_false(cold))
    327 		return;
    328 
    329 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    330 	sleepq_wake(sq, ident, 1, mp);
    331 }
    332 
    333 
    334 /*
    335  * General yield call.  Puts the current LWP back on its run queue and
    336  * performs a voluntary context switch.  Should only be called when the
    337  * current LWP explicitly requests it (eg sched_yield(2)).
    338  */
    339 void
    340 yield(void)
    341 {
    342 	struct lwp *l = curlwp;
    343 
    344 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    345 	lwp_lock(l);
    346 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    347 	KASSERT(l->l_stat == LSONPROC);
    348 	l->l_kpriority = false;
    349 	(void)mi_switch(l);
    350 	KERNEL_LOCK(l->l_biglocks, l);
    351 }
    352 
    353 /*
    354  * General preemption call.  Puts the current LWP back on its run queue
    355  * and performs an involuntary context switch.
    356  */
    357 void
    358 preempt(void)
    359 {
    360 	struct lwp *l = curlwp;
    361 
    362 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    363 	lwp_lock(l);
    364 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    365 	KASSERT(l->l_stat == LSONPROC);
    366 	l->l_kpriority = false;
    367 	l->l_nivcsw++;
    368 	(void)mi_switch(l);
    369 	KERNEL_LOCK(l->l_biglocks, l);
    370 }
    371 
    372 /*
    373  * Handle a request made by another agent to preempt the current LWP
    374  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    375  *
    376  * Character addresses for lockstat only.
    377  */
    378 static char	in_critical_section;
    379 static char	kernel_lock_held;
    380 static char	is_softint;
    381 static char	cpu_kpreempt_enter_fail;
    382 
    383 bool
    384 kpreempt(uintptr_t where)
    385 {
    386 	uintptr_t failed;
    387 	lwp_t *l;
    388 	int s, dop, lsflag;
    389 
    390 	l = curlwp;
    391 	failed = 0;
    392 	while ((dop = l->l_dopreempt) != 0) {
    393 		if (l->l_stat != LSONPROC) {
    394 			/*
    395 			 * About to block (or die), let it happen.
    396 			 * Doesn't really count as "preemption has
    397 			 * been blocked", since we're going to
    398 			 * context switch.
    399 			 */
    400 			l->l_dopreempt = 0;
    401 			return true;
    402 		}
    403 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    404 			/* Can't preempt idle loop, don't count as failure. */
    405 			l->l_dopreempt = 0;
    406 			return true;
    407 		}
    408 		if (__predict_false(l->l_nopreempt != 0)) {
    409 			/* LWP holds preemption disabled, explicitly. */
    410 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    411 				kpreempt_ev_crit.ev_count++;
    412 			}
    413 			failed = (uintptr_t)&in_critical_section;
    414 			break;
    415 		}
    416 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    417 			/* Can't preempt soft interrupts yet. */
    418 			l->l_dopreempt = 0;
    419 			failed = (uintptr_t)&is_softint;
    420 			break;
    421 		}
    422 		s = splsched();
    423 		if (__predict_false(l->l_blcnt != 0 ||
    424 		    curcpu()->ci_biglock_wanted != NULL)) {
    425 			/* Hold or want kernel_lock, code is not MT safe. */
    426 			splx(s);
    427 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    428 				kpreempt_ev_klock.ev_count++;
    429 			}
    430 			failed = (uintptr_t)&kernel_lock_held;
    431 			break;
    432 		}
    433 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    434 			/*
    435 			 * It may be that the IPL is too high.
    436 			 * kpreempt_enter() can schedule an
    437 			 * interrupt to retry later.
    438 			 */
    439 			splx(s);
    440 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    441 			break;
    442 		}
    443 		/* Do it! */
    444 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    445 			kpreempt_ev_immed.ev_count++;
    446 		}
    447 		lwp_lock(l);
    448 		mi_switch(l);
    449 		l->l_nopreempt++;
    450 		splx(s);
    451 
    452 		/* Take care of any MD cleanup. */
    453 		cpu_kpreempt_exit(where);
    454 		l->l_nopreempt--;
    455 	}
    456 
    457 	if (__predict_true(!failed)) {
    458 		return false;
    459 	}
    460 
    461 	/* Record preemption failure for reporting via lockstat. */
    462 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    463 	lsflag = 0;
    464 	LOCKSTAT_ENTER(lsflag);
    465 	if (__predict_false(lsflag)) {
    466 		if (where == 0) {
    467 			where = (uintptr_t)__builtin_return_address(0);
    468 		}
    469 		/* Preemption is on, might recurse, so make it atomic. */
    470 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    471 		    (void *)where) == NULL) {
    472 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    473 			l->l_pfaillock = failed;
    474 		}
    475 	}
    476 	LOCKSTAT_EXIT(lsflag);
    477 	return true;
    478 }
    479 
    480 /*
    481  * Return true if preemption is explicitly disabled.
    482  */
    483 bool
    484 kpreempt_disabled(void)
    485 {
    486 	const lwp_t *l = curlwp;
    487 
    488 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    489 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    490 }
    491 
    492 /*
    493  * Disable kernel preemption.
    494  */
    495 void
    496 kpreempt_disable(void)
    497 {
    498 
    499 	KPREEMPT_DISABLE(curlwp);
    500 }
    501 
    502 /*
    503  * Reenable kernel preemption.
    504  */
    505 void
    506 kpreempt_enable(void)
    507 {
    508 
    509 	KPREEMPT_ENABLE(curlwp);
    510 }
    511 
    512 /*
    513  * Compute the amount of time during which the current lwp was running.
    514  *
    515  * - update l_rtime unless it's an idle lwp.
    516  */
    517 
    518 void
    519 updatertime(lwp_t *l, const struct bintime *now)
    520 {
    521 
    522 	if (__predict_false(l->l_flag & LW_IDLE))
    523 		return;
    524 
    525 	/* rtime += now - stime */
    526 	bintime_add(&l->l_rtime, now);
    527 	bintime_sub(&l->l_rtime, &l->l_stime);
    528 }
    529 
    530 /*
    531  * Select next LWP from the current CPU to run..
    532  */
    533 static inline lwp_t *
    534 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    535 {
    536 	lwp_t *newl;
    537 
    538 	/*
    539 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    540 	 * If no LWP is runnable, select the idle LWP.
    541 	 *
    542 	 * Note that spc_lwplock might not necessary be held, and
    543 	 * new thread would be unlocked after setting the LWP-lock.
    544 	 */
    545 	newl = sched_nextlwp();
    546 	if (newl != NULL) {
    547 		sched_dequeue(newl);
    548 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    549 		KASSERT(newl->l_cpu == ci);
    550 		newl->l_stat = LSONPROC;
    551 		newl->l_pflag |= LP_RUNNING;
    552 		lwp_setlock(newl, spc->spc_lwplock);
    553 	} else {
    554 		newl = ci->ci_data.cpu_idlelwp;
    555 		newl->l_stat = LSONPROC;
    556 		newl->l_pflag |= LP_RUNNING;
    557 	}
    558 
    559 	/*
    560 	 * Only clear want_resched if there are no pending (slow)
    561 	 * software interrupts.
    562 	 */
    563 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    564 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    565 	spc->spc_curpriority = lwp_eprio(newl);
    566 
    567 	return newl;
    568 }
    569 
    570 /*
    571  * The machine independent parts of context switch.
    572  *
    573  * Returns 1 if another LWP was actually run.
    574  */
    575 int
    576 mi_switch(lwp_t *l)
    577 {
    578 	struct cpu_info *ci;
    579 	struct schedstate_percpu *spc;
    580 	struct lwp *newl;
    581 	int retval, oldspl;
    582 	struct bintime bt;
    583 	bool returning;
    584 
    585 	KASSERT(lwp_locked(l, NULL));
    586 	KASSERT(kpreempt_disabled());
    587 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    588 
    589 	kstack_check_magic(l);
    590 
    591 	binuptime(&bt);
    592 
    593 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    594 	KASSERT(l->l_cpu == curcpu());
    595 	ci = l->l_cpu;
    596 	spc = &ci->ci_schedstate;
    597 	returning = false;
    598 	newl = NULL;
    599 
    600 	/*
    601 	 * If we have been asked to switch to a specific LWP, then there
    602 	 * is no need to inspect the run queues.  If a soft interrupt is
    603 	 * blocking, then return to the interrupted thread without adjusting
    604 	 * VM context or its start time: neither have been changed in order
    605 	 * to take the interrupt.
    606 	 */
    607 	if (l->l_switchto != NULL) {
    608 		if ((l->l_pflag & LP_INTR) != 0) {
    609 			returning = true;
    610 			softint_block(l);
    611 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    612 				updatertime(l, &bt);
    613 		}
    614 		newl = l->l_switchto;
    615 		l->l_switchto = NULL;
    616 	}
    617 #ifndef __HAVE_FAST_SOFTINTS
    618 	else if (ci->ci_data.cpu_softints != 0) {
    619 		/* There are pending soft interrupts, so pick one. */
    620 		newl = softint_picklwp();
    621 		newl->l_stat = LSONPROC;
    622 		newl->l_pflag |= LP_RUNNING;
    623 	}
    624 #endif	/* !__HAVE_FAST_SOFTINTS */
    625 
    626 	/* Count time spent in current system call */
    627 	if (!returning) {
    628 		SYSCALL_TIME_SLEEP(l);
    629 
    630 		/*
    631 		 * XXXSMP If we are using h/w performance counters,
    632 		 * save context.
    633 		 */
    634 #if PERFCTRS
    635 		if (PMC_ENABLED(l->l_proc)) {
    636 			pmc_save_context(l->l_proc);
    637 		}
    638 #endif
    639 		updatertime(l, &bt);
    640 	}
    641 
    642 	/* Lock the runqueue */
    643 	KASSERT(l->l_stat != LSRUN);
    644 	mutex_spin_enter(spc->spc_mutex);
    645 
    646 	/*
    647 	 * If on the CPU and we have gotten this far, then we must yield.
    648 	 */
    649 	if (l->l_stat == LSONPROC && l != newl) {
    650 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    651 		if ((l->l_flag & LW_IDLE) == 0) {
    652 			l->l_stat = LSRUN;
    653 			lwp_setlock(l, spc->spc_mutex);
    654 			sched_enqueue(l, true);
    655 			/* Handle migration case */
    656 			KASSERT(spc->spc_migrating == NULL);
    657 			if (l->l_target_cpu !=  NULL) {
    658 				spc->spc_migrating = l;
    659 			}
    660 		} else
    661 			l->l_stat = LSIDL;
    662 	}
    663 
    664 	/* Pick new LWP to run. */
    665 	if (newl == NULL) {
    666 		newl = nextlwp(ci, spc);
    667 	}
    668 
    669 	/* Items that must be updated with the CPU locked. */
    670 	if (!returning) {
    671 		/* Update the new LWP's start time. */
    672 		newl->l_stime = bt;
    673 
    674 		/*
    675 		 * ci_curlwp changes when a fast soft interrupt occurs.
    676 		 * We use cpu_onproc to keep track of which kernel or
    677 		 * user thread is running 'underneath' the software
    678 		 * interrupt.  This is important for time accounting,
    679 		 * itimers and forcing user threads to preempt (aston).
    680 		 */
    681 		ci->ci_data.cpu_onproc = newl;
    682 	}
    683 
    684 	/*
    685 	 * Preemption related tasks.  Must be done with the current
    686 	 * CPU locked.
    687 	 */
    688 	cpu_did_resched(l);
    689 	l->l_dopreempt = 0;
    690 	if (__predict_false(l->l_pfailaddr != 0)) {
    691 		LOCKSTAT_FLAG(lsflag);
    692 		LOCKSTAT_ENTER(lsflag);
    693 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    694 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    695 		    1, l->l_pfailtime, l->l_pfailaddr);
    696 		LOCKSTAT_EXIT(lsflag);
    697 		l->l_pfailtime = 0;
    698 		l->l_pfaillock = 0;
    699 		l->l_pfailaddr = 0;
    700 	}
    701 
    702 	if (l != newl) {
    703 		struct lwp *prevlwp;
    704 
    705 		/* Release all locks, but leave the current LWP locked */
    706 		if (l->l_mutex == spc->spc_mutex) {
    707 			/*
    708 			 * Drop spc_lwplock, if the current LWP has been moved
    709 			 * to the run queue (it is now locked by spc_mutex).
    710 			 */
    711 			mutex_spin_exit(spc->spc_lwplock);
    712 		} else {
    713 			/*
    714 			 * Otherwise, drop the spc_mutex, we are done with the
    715 			 * run queues.
    716 			 */
    717 			mutex_spin_exit(spc->spc_mutex);
    718 		}
    719 
    720 		/*
    721 		 * Mark that context switch is going to be performed
    722 		 * for this LWP, to protect it from being switched
    723 		 * to on another CPU.
    724 		 */
    725 		KASSERT(l->l_ctxswtch == 0);
    726 		l->l_ctxswtch = 1;
    727 		l->l_ncsw++;
    728 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    729 		l->l_pflag &= ~LP_RUNNING;
    730 
    731 		/*
    732 		 * Increase the count of spin-mutexes before the release
    733 		 * of the last lock - we must remain at IPL_SCHED during
    734 		 * the context switch.
    735 		 */
    736 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    737 		ci->ci_mtx_count--;
    738 		lwp_unlock(l);
    739 
    740 		/* Count the context switch on this CPU. */
    741 		ci->ci_data.cpu_nswtch++;
    742 
    743 		/* Update status for lwpctl, if present. */
    744 		if (l->l_lwpctl != NULL)
    745 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    746 
    747 		/*
    748 		 * Save old VM context, unless a soft interrupt
    749 		 * handler is blocking.
    750 		 */
    751 		if (!returning)
    752 			pmap_deactivate(l);
    753 
    754 		/*
    755 		 * We may need to spin-wait if 'newl' is still
    756 		 * context switching on another CPU.
    757 		 */
    758 		if (__predict_false(newl->l_ctxswtch != 0)) {
    759 			u_int count;
    760 			count = SPINLOCK_BACKOFF_MIN;
    761 			while (newl->l_ctxswtch)
    762 				SPINLOCK_BACKOFF(count);
    763 		}
    764 
    765 		/*
    766 		 * If DTrace has set the active vtime enum to anything
    767 		 * other than INACTIVE (0), then it should have set the
    768 		 * function to call.
    769 		 */
    770 		if (__predict_false(dtrace_vtime_active)) {
    771 			(*dtrace_vtime_switch_func)(newl);
    772 		}
    773 
    774 		/* Switch to the new LWP.. */
    775 		prevlwp = cpu_switchto(l, newl, returning);
    776 		ci = curcpu();
    777 
    778 		/*
    779 		 * Switched away - we have new curlwp.
    780 		 * Restore VM context and IPL.
    781 		 */
    782 		pmap_activate(l);
    783 		uvm_emap_switch(l);
    784 
    785 		if (prevlwp != NULL) {
    786 			/* Normalize the count of the spin-mutexes */
    787 			ci->ci_mtx_count++;
    788 			/* Unmark the state of context switch */
    789 			membar_exit();
    790 			prevlwp->l_ctxswtch = 0;
    791 		}
    792 
    793 		/* Update status for lwpctl, if present. */
    794 		if (l->l_lwpctl != NULL) {
    795 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    796 			l->l_lwpctl->lc_pctr++;
    797 		}
    798 
    799 		KASSERT(l->l_cpu == ci);
    800 		splx(oldspl);
    801 		retval = 1;
    802 	} else {
    803 		/* Nothing to do - just unlock and return. */
    804 		mutex_spin_exit(spc->spc_mutex);
    805 		lwp_unlock(l);
    806 		retval = 0;
    807 	}
    808 
    809 	KASSERT(l == curlwp);
    810 	KASSERT(l->l_stat == LSONPROC);
    811 
    812 	/*
    813 	 * XXXSMP If we are using h/w performance counters, restore context.
    814 	 * XXXSMP preemption problem.
    815 	 */
    816 #if PERFCTRS
    817 	if (PMC_ENABLED(l->l_proc)) {
    818 		pmc_restore_context(l->l_proc);
    819 	}
    820 #endif
    821 	SYSCALL_TIME_WAKEUP(l);
    822 	LOCKDEBUG_BARRIER(NULL, 1);
    823 
    824 	return retval;
    825 }
    826 
    827 /*
    828  * The machine independent parts of context switch to oblivion.
    829  * Does not return.  Call with the LWP unlocked.
    830  */
    831 void
    832 lwp_exit_switchaway(lwp_t *l)
    833 {
    834 	struct cpu_info *ci;
    835 	struct lwp *newl;
    836 	struct bintime bt;
    837 
    838 	ci = l->l_cpu;
    839 
    840 	KASSERT(kpreempt_disabled());
    841 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    842 	KASSERT(ci == curcpu());
    843 	LOCKDEBUG_BARRIER(NULL, 0);
    844 
    845 	kstack_check_magic(l);
    846 
    847 	/* Count time spent in current system call */
    848 	SYSCALL_TIME_SLEEP(l);
    849 	binuptime(&bt);
    850 	updatertime(l, &bt);
    851 
    852 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    853 	(void)splsched();
    854 
    855 	/*
    856 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    857 	 * If no LWP is runnable, select the idle LWP.
    858 	 *
    859 	 * Note that spc_lwplock might not necessary be held, and
    860 	 * new thread would be unlocked after setting the LWP-lock.
    861 	 */
    862 	spc_lock(ci);
    863 #ifndef __HAVE_FAST_SOFTINTS
    864 	if (ci->ci_data.cpu_softints != 0) {
    865 		/* There are pending soft interrupts, so pick one. */
    866 		newl = softint_picklwp();
    867 		newl->l_stat = LSONPROC;
    868 		newl->l_pflag |= LP_RUNNING;
    869 	} else
    870 #endif	/* !__HAVE_FAST_SOFTINTS */
    871 	{
    872 		newl = nextlwp(ci, &ci->ci_schedstate);
    873 	}
    874 
    875 	/* Update the new LWP's start time. */
    876 	newl->l_stime = bt;
    877 	l->l_pflag &= ~LP_RUNNING;
    878 
    879 	/*
    880 	 * ci_curlwp changes when a fast soft interrupt occurs.
    881 	 * We use cpu_onproc to keep track of which kernel or
    882 	 * user thread is running 'underneath' the software
    883 	 * interrupt.  This is important for time accounting,
    884 	 * itimers and forcing user threads to preempt (aston).
    885 	 */
    886 	ci->ci_data.cpu_onproc = newl;
    887 
    888 	/*
    889 	 * Preemption related tasks.  Must be done with the current
    890 	 * CPU locked.
    891 	 */
    892 	cpu_did_resched(l);
    893 
    894 	/* Unlock the run queue. */
    895 	spc_unlock(ci);
    896 
    897 	/* Count the context switch on this CPU. */
    898 	ci->ci_data.cpu_nswtch++;
    899 
    900 	/* Update status for lwpctl, if present. */
    901 	if (l->l_lwpctl != NULL)
    902 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    903 
    904 	/*
    905 	 * We may need to spin-wait if 'newl' is still
    906 	 * context switching on another CPU.
    907 	 */
    908 	if (__predict_false(newl->l_ctxswtch != 0)) {
    909 		u_int count;
    910 		count = SPINLOCK_BACKOFF_MIN;
    911 		while (newl->l_ctxswtch)
    912 			SPINLOCK_BACKOFF(count);
    913 	}
    914 
    915 	/*
    916 	 * If DTrace has set the active vtime enum to anything
    917 	 * other than INACTIVE (0), then it should have set the
    918 	 * function to call.
    919 	 */
    920 	if (__predict_false(dtrace_vtime_active)) {
    921 		(*dtrace_vtime_switch_func)(newl);
    922 	}
    923 
    924 	/* Switch to the new LWP.. */
    925 	(void)cpu_switchto(NULL, newl, false);
    926 
    927 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    928 	/* NOTREACHED */
    929 }
    930 
    931 /*
    932  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    933  *
    934  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    935  */
    936 void
    937 setrunnable(struct lwp *l)
    938 {
    939 	struct proc *p = l->l_proc;
    940 	struct cpu_info *ci;
    941 
    942 	KASSERT((l->l_flag & LW_IDLE) == 0);
    943 	KASSERT(mutex_owned(p->p_lock));
    944 	KASSERT(lwp_locked(l, NULL));
    945 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    946 
    947 	switch (l->l_stat) {
    948 	case LSSTOP:
    949 		/*
    950 		 * If we're being traced (possibly because someone attached us
    951 		 * while we were stopped), check for a signal from the debugger.
    952 		 */
    953 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    954 			signotify(l);
    955 		p->p_nrlwps++;
    956 		break;
    957 	case LSSUSPENDED:
    958 		l->l_flag &= ~LW_WSUSPEND;
    959 		p->p_nrlwps++;
    960 		cv_broadcast(&p->p_lwpcv);
    961 		break;
    962 	case LSSLEEP:
    963 		KASSERT(l->l_wchan != NULL);
    964 		break;
    965 	default:
    966 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    967 	}
    968 
    969 #ifdef KERN_SA
    970 	if (l->l_proc->p_sa)
    971 		sa_awaken(l);
    972 #endif /* KERN_SA */
    973 
    974 	/*
    975 	 * If the LWP was sleeping interruptably, then it's OK to start it
    976 	 * again.  If not, mark it as still sleeping.
    977 	 */
    978 	if (l->l_wchan != NULL) {
    979 		l->l_stat = LSSLEEP;
    980 		/* lwp_unsleep() will release the lock. */
    981 		lwp_unsleep(l, true);
    982 		return;
    983 	}
    984 
    985 	/*
    986 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    987 	 * about to call mi_switch(), in which case it will yield.
    988 	 */
    989 	if ((l->l_pflag & LP_RUNNING) != 0) {
    990 		l->l_stat = LSONPROC;
    991 		l->l_slptime = 0;
    992 		lwp_unlock(l);
    993 		return;
    994 	}
    995 
    996 	/*
    997 	 * Look for a CPU to run.
    998 	 * Set the LWP runnable.
    999 	 */
   1000 	ci = sched_takecpu(l);
   1001 	l->l_cpu = ci;
   1002 	spc_lock(ci);
   1003 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1004 	sched_setrunnable(l);
   1005 	l->l_stat = LSRUN;
   1006 	l->l_slptime = 0;
   1007 
   1008 	sched_enqueue(l, false);
   1009 	resched_cpu(l);
   1010 	lwp_unlock(l);
   1011 }
   1012 
   1013 /*
   1014  * suspendsched:
   1015  *
   1016  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1017  */
   1018 void
   1019 suspendsched(void)
   1020 {
   1021 	CPU_INFO_ITERATOR cii;
   1022 	struct cpu_info *ci;
   1023 	struct lwp *l;
   1024 	struct proc *p;
   1025 
   1026 	/*
   1027 	 * We do this by process in order not to violate the locking rules.
   1028 	 */
   1029 	mutex_enter(proc_lock);
   1030 	PROCLIST_FOREACH(p, &allproc) {
   1031 		mutex_enter(p->p_lock);
   1032 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1033 			mutex_exit(p->p_lock);
   1034 			continue;
   1035 		}
   1036 
   1037 		p->p_stat = SSTOP;
   1038 
   1039 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1040 			if (l == curlwp)
   1041 				continue;
   1042 
   1043 			lwp_lock(l);
   1044 
   1045 			/*
   1046 			 * Set L_WREBOOT so that the LWP will suspend itself
   1047 			 * when it tries to return to user mode.  We want to
   1048 			 * try and get to get as many LWPs as possible to
   1049 			 * the user / kernel boundary, so that they will
   1050 			 * release any locks that they hold.
   1051 			 */
   1052 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1053 
   1054 			if (l->l_stat == LSSLEEP &&
   1055 			    (l->l_flag & LW_SINTR) != 0) {
   1056 				/* setrunnable() will release the lock. */
   1057 				setrunnable(l);
   1058 				continue;
   1059 			}
   1060 
   1061 			lwp_unlock(l);
   1062 		}
   1063 
   1064 		mutex_exit(p->p_lock);
   1065 	}
   1066 	mutex_exit(proc_lock);
   1067 
   1068 	/*
   1069 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1070 	 * They'll trap into the kernel and suspend themselves in userret().
   1071 	 */
   1072 	for (CPU_INFO_FOREACH(cii, ci)) {
   1073 		spc_lock(ci);
   1074 		cpu_need_resched(ci, RESCHED_IMMED);
   1075 		spc_unlock(ci);
   1076 	}
   1077 }
   1078 
   1079 /*
   1080  * sched_unsleep:
   1081  *
   1082  *	The is called when the LWP has not been awoken normally but instead
   1083  *	interrupted: for example, if the sleep timed out.  Because of this,
   1084  *	it's not a valid action for running or idle LWPs.
   1085  */
   1086 static void
   1087 sched_unsleep(struct lwp *l, bool cleanup)
   1088 {
   1089 
   1090 	lwp_unlock(l);
   1091 	panic("sched_unsleep");
   1092 }
   1093 
   1094 static void
   1095 resched_cpu(struct lwp *l)
   1096 {
   1097 	struct cpu_info *ci = l->l_cpu;
   1098 
   1099 	KASSERT(lwp_locked(l, NULL));
   1100 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1101 		cpu_need_resched(ci, 0);
   1102 }
   1103 
   1104 static void
   1105 sched_changepri(struct lwp *l, pri_t pri)
   1106 {
   1107 
   1108 	KASSERT(lwp_locked(l, NULL));
   1109 
   1110 	if (l->l_stat == LSRUN) {
   1111 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1112 		sched_dequeue(l);
   1113 		l->l_priority = pri;
   1114 		sched_enqueue(l, false);
   1115 	} else {
   1116 		l->l_priority = pri;
   1117 	}
   1118 	resched_cpu(l);
   1119 }
   1120 
   1121 static void
   1122 sched_lendpri(struct lwp *l, pri_t pri)
   1123 {
   1124 
   1125 	KASSERT(lwp_locked(l, NULL));
   1126 
   1127 	if (l->l_stat == LSRUN) {
   1128 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1129 		sched_dequeue(l);
   1130 		l->l_inheritedprio = pri;
   1131 		sched_enqueue(l, false);
   1132 	} else {
   1133 		l->l_inheritedprio = pri;
   1134 	}
   1135 	resched_cpu(l);
   1136 }
   1137 
   1138 struct lwp *
   1139 syncobj_noowner(wchan_t wchan)
   1140 {
   1141 
   1142 	return NULL;
   1143 }
   1144 
   1145 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1146 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1147 
   1148 /*
   1149  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1150  * 5 second intervals.
   1151  */
   1152 static const fixpt_t cexp[ ] = {
   1153 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1154 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1155 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1156 };
   1157 
   1158 /*
   1159  * sched_pstats:
   1160  *
   1161  * => Update process statistics and check CPU resource allocation.
   1162  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1163  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1164  */
   1165 void
   1166 sched_pstats(void)
   1167 {
   1168 	extern struct loadavg averunnable;
   1169 	struct loadavg *avg = &averunnable;
   1170 	const int clkhz = (stathz != 0 ? stathz : hz);
   1171 	static bool backwards = false;
   1172 	static u_int lavg_count = 0;
   1173 	struct proc *p;
   1174 	int nrun;
   1175 
   1176 	sched_pstats_ticks++;
   1177 	if (++lavg_count >= 5) {
   1178 		lavg_count = 0;
   1179 		nrun = 0;
   1180 	}
   1181 	mutex_enter(proc_lock);
   1182 	PROCLIST_FOREACH(p, &allproc) {
   1183 		struct lwp *l;
   1184 		struct rlimit *rlim;
   1185 		long runtm;
   1186 		int sig;
   1187 
   1188 		/* Increment sleep time (if sleeping), ignore overflow. */
   1189 		mutex_enter(p->p_lock);
   1190 		runtm = p->p_rtime.sec;
   1191 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1192 			fixpt_t lpctcpu;
   1193 			u_int lcpticks;
   1194 
   1195 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1196 				continue;
   1197 			lwp_lock(l);
   1198 			runtm += l->l_rtime.sec;
   1199 			l->l_swtime++;
   1200 			sched_lwp_stats(l);
   1201 
   1202 			/* For load average calculation. */
   1203 			if (__predict_false(lavg_count == 0) &&
   1204 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1205 				switch (l->l_stat) {
   1206 				case LSSLEEP:
   1207 					if (l->l_slptime > 1) {
   1208 						break;
   1209 					}
   1210 				case LSRUN:
   1211 				case LSONPROC:
   1212 				case LSIDL:
   1213 					nrun++;
   1214 				}
   1215 			}
   1216 			lwp_unlock(l);
   1217 
   1218 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1219 			if (l->l_slptime != 0)
   1220 				continue;
   1221 
   1222 			lpctcpu = l->l_pctcpu;
   1223 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1224 			lpctcpu += ((FSCALE - ccpu) *
   1225 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1226 			l->l_pctcpu = lpctcpu;
   1227 		}
   1228 		/* Calculating p_pctcpu only for ps(1) */
   1229 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1230 
   1231 		/*
   1232 		 * Check if the process exceeds its CPU resource allocation.
   1233 		 * If over max, kill it.
   1234 		 */
   1235 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1236 		sig = 0;
   1237 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1238 			if (runtm >= rlim->rlim_max)
   1239 				sig = SIGKILL;
   1240 			else {
   1241 				sig = SIGXCPU;
   1242 				if (rlim->rlim_cur < rlim->rlim_max)
   1243 					rlim->rlim_cur += 5;
   1244 			}
   1245 		}
   1246 		mutex_exit(p->p_lock);
   1247 		if (__predict_false(runtm < 0)) {
   1248 			if (!backwards) {
   1249 				backwards = true;
   1250 				printf("WARNING: negative runtime; "
   1251 				    "monotonic clock has gone backwards\n");
   1252 			}
   1253 		} else if (__predict_false(sig)) {
   1254 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1255 			psignal(p, sig);
   1256 		}
   1257 	}
   1258 	mutex_exit(proc_lock);
   1259 
   1260 	/* Load average calculation. */
   1261 	if (__predict_false(lavg_count == 0)) {
   1262 		int i;
   1263 		for (i = 0; i < __arraycount(cexp); i++) {
   1264 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1265 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1266 		}
   1267 	}
   1268 
   1269 	/* Lightning bolt. */
   1270 	cv_broadcast(&lbolt);
   1271 }
   1272