kern_synch.c revision 1.282 1 /* $NetBSD: kern_synch.c,v 1.282 2010/04/20 16:49:48 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.282 2010/04/20 16:49:48 rmind Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 #include "opt_dtrace.h"
78
79 #define __MUTEX_PRIVATE
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/kernel.h>
85 #if defined(PERFCTRS)
86 #include <sys/pmc.h>
87 #endif
88 #include <sys/cpu.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/syscall_stats.h>
94 #include <sys/sleepq.h>
95 #include <sys/lockdebug.h>
96 #include <sys/evcnt.h>
97 #include <sys/intr.h>
98 #include <sys/lwpctl.h>
99 #include <sys/atomic.h>
100 #include <sys/simplelock.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <dev/lockstat.h>
105
106 #include <sys/dtrace_bsd.h>
107 int dtrace_vtime_active=0;
108 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
109
110 static void sched_unsleep(struct lwp *, bool);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113 static void resched_cpu(struct lwp *);
114
115 syncobj_t sleep_syncobj = {
116 SOBJ_SLEEPQ_SORTED,
117 sleepq_unsleep,
118 sleepq_changepri,
119 sleepq_lendpri,
120 syncobj_noowner,
121 };
122
123 syncobj_t sched_syncobj = {
124 SOBJ_SLEEPQ_SORTED,
125 sched_unsleep,
126 sched_changepri,
127 sched_lendpri,
128 syncobj_noowner,
129 };
130
131 unsigned sched_pstats_ticks;
132 kcondvar_t lbolt; /* once a second sleep address */
133
134 /* Preemption event counters */
135 static struct evcnt kpreempt_ev_crit;
136 static struct evcnt kpreempt_ev_klock;
137 static struct evcnt kpreempt_ev_immed;
138
139 /*
140 * During autoconfiguration or after a panic, a sleep will simply lower the
141 * priority briefly to allow interrupts, then return. The priority to be
142 * used (safepri) is machine-dependent, thus this value is initialized and
143 * maintained in the machine-dependent layers. This priority will typically
144 * be 0, or the lowest priority that is safe for use on the interrupt stack;
145 * it can be made higher to block network software interrupts after panics.
146 */
147 int safepri;
148
149 void
150 synch_init(void)
151 {
152
153 cv_init(&lbolt, "lbolt");
154
155 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "defer: critical section");
157 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
158 "kpreempt", "defer: kernel_lock");
159 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 "kpreempt", "immediate");
161 }
162
163 /*
164 * OBSOLETE INTERFACE
165 *
166 * General sleep call. Suspends the current LWP until a wakeup is
167 * performed on the specified identifier. The LWP will then be made
168 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 * means no timeout). If pri includes PCATCH flag, signals are checked
170 * before and after sleeping, else signals are not checked. Returns 0 if
171 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 * signal needs to be delivered, ERESTART is returned if the current system
173 * call should be restarted if possible, and EINTR is returned if the system
174 * call should be interrupted by the signal (return EINTR).
175 *
176 * The interlock is held until we are on a sleep queue. The interlock will
177 * be locked before returning back to the caller unless the PNORELOCK flag
178 * is specified, in which case the interlock will always be unlocked upon
179 * return.
180 */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 volatile struct simplelock *interlock)
184 {
185 struct lwp *l = curlwp;
186 sleepq_t *sq;
187 kmutex_t *mp;
188 int error;
189
190 KASSERT((l->l_pflag & LP_INTR) == 0);
191 KASSERT(ident != &lbolt);
192
193 if (sleepq_dontsleep(l)) {
194 (void)sleepq_abort(NULL, 0);
195 if ((priority & PNORELOCK) != 0)
196 simple_unlock(interlock);
197 return 0;
198 }
199
200 l->l_kpriority = true;
201 sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 sleepq_enter(sq, l, mp);
203 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204
205 if (interlock != NULL) {
206 KASSERT(simple_lock_held(interlock));
207 simple_unlock(interlock);
208 }
209
210 error = sleepq_block(timo, priority & PCATCH);
211
212 if (interlock != NULL && (priority & PNORELOCK) == 0)
213 simple_lock(interlock);
214
215 return error;
216 }
217
218 int
219 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
220 kmutex_t *mtx)
221 {
222 struct lwp *l = curlwp;
223 sleepq_t *sq;
224 kmutex_t *mp;
225 int error;
226
227 KASSERT((l->l_pflag & LP_INTR) == 0);
228 KASSERT(ident != &lbolt);
229
230 if (sleepq_dontsleep(l)) {
231 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 return 0;
233 }
234
235 l->l_kpriority = true;
236 sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 sleepq_enter(sq, l, mp);
238 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 mutex_exit(mtx);
240 error = sleepq_block(timo, priority & PCATCH);
241
242 if ((priority & PNORELOCK) == 0)
243 mutex_enter(mtx);
244
245 return error;
246 }
247
248 /*
249 * General sleep call for situations where a wake-up is not expected.
250 */
251 int
252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 {
254 struct lwp *l = curlwp;
255 kmutex_t *mp;
256 sleepq_t *sq;
257 int error;
258
259 if (sleepq_dontsleep(l))
260 return sleepq_abort(NULL, 0);
261
262 if (mtx != NULL)
263 mutex_exit(mtx);
264 l->l_kpriority = true;
265 sq = sleeptab_lookup(&sleeptab, l, &mp);
266 sleepq_enter(sq, l, mp);
267 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
268 error = sleepq_block(timo, intr);
269 if (mtx != NULL)
270 mutex_enter(mtx);
271
272 return error;
273 }
274
275 #ifdef KERN_SA
276 /*
277 * sa_awaken:
278 *
279 * We believe this lwp is an SA lwp. If it's yielding,
280 * let it know it needs to wake up.
281 *
282 * We are called and exit with the lwp locked. We are
283 * called in the middle of wakeup operations, so we need
284 * to not touch the locks at all.
285 */
286 void
287 sa_awaken(struct lwp *l)
288 {
289 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
290
291 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
292 l->l_flag &= ~LW_SA_IDLE;
293 }
294 #endif /* KERN_SA */
295
296 /*
297 * OBSOLETE INTERFACE
298 *
299 * Make all LWPs sleeping on the specified identifier runnable.
300 */
301 void
302 wakeup(wchan_t ident)
303 {
304 sleepq_t *sq;
305 kmutex_t *mp;
306
307 if (__predict_false(cold))
308 return;
309
310 sq = sleeptab_lookup(&sleeptab, ident, &mp);
311 sleepq_wake(sq, ident, (u_int)-1, mp);
312 }
313
314 /*
315 * OBSOLETE INTERFACE
316 *
317 * Make the highest priority LWP first in line on the specified
318 * identifier runnable.
319 */
320 void
321 wakeup_one(wchan_t ident)
322 {
323 sleepq_t *sq;
324 kmutex_t *mp;
325
326 if (__predict_false(cold))
327 return;
328
329 sq = sleeptab_lookup(&sleeptab, ident, &mp);
330 sleepq_wake(sq, ident, 1, mp);
331 }
332
333
334 /*
335 * General yield call. Puts the current LWP back on its run queue and
336 * performs a voluntary context switch. Should only be called when the
337 * current LWP explicitly requests it (eg sched_yield(2)).
338 */
339 void
340 yield(void)
341 {
342 struct lwp *l = curlwp;
343
344 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
345 lwp_lock(l);
346 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
347 KASSERT(l->l_stat == LSONPROC);
348 l->l_kpriority = false;
349 (void)mi_switch(l);
350 KERNEL_LOCK(l->l_biglocks, l);
351 }
352
353 /*
354 * General preemption call. Puts the current LWP back on its run queue
355 * and performs an involuntary context switch.
356 */
357 void
358 preempt(void)
359 {
360 struct lwp *l = curlwp;
361
362 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
363 lwp_lock(l);
364 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
365 KASSERT(l->l_stat == LSONPROC);
366 l->l_kpriority = false;
367 l->l_nivcsw++;
368 (void)mi_switch(l);
369 KERNEL_LOCK(l->l_biglocks, l);
370 }
371
372 /*
373 * Handle a request made by another agent to preempt the current LWP
374 * in-kernel. Usually called when l_dopreempt may be non-zero.
375 *
376 * Character addresses for lockstat only.
377 */
378 static char in_critical_section;
379 static char kernel_lock_held;
380 static char is_softint;
381 static char cpu_kpreempt_enter_fail;
382
383 bool
384 kpreempt(uintptr_t where)
385 {
386 uintptr_t failed;
387 lwp_t *l;
388 int s, dop, lsflag;
389
390 l = curlwp;
391 failed = 0;
392 while ((dop = l->l_dopreempt) != 0) {
393 if (l->l_stat != LSONPROC) {
394 /*
395 * About to block (or die), let it happen.
396 * Doesn't really count as "preemption has
397 * been blocked", since we're going to
398 * context switch.
399 */
400 l->l_dopreempt = 0;
401 return true;
402 }
403 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
404 /* Can't preempt idle loop, don't count as failure. */
405 l->l_dopreempt = 0;
406 return true;
407 }
408 if (__predict_false(l->l_nopreempt != 0)) {
409 /* LWP holds preemption disabled, explicitly. */
410 if ((dop & DOPREEMPT_COUNTED) == 0) {
411 kpreempt_ev_crit.ev_count++;
412 }
413 failed = (uintptr_t)&in_critical_section;
414 break;
415 }
416 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
417 /* Can't preempt soft interrupts yet. */
418 l->l_dopreempt = 0;
419 failed = (uintptr_t)&is_softint;
420 break;
421 }
422 s = splsched();
423 if (__predict_false(l->l_blcnt != 0 ||
424 curcpu()->ci_biglock_wanted != NULL)) {
425 /* Hold or want kernel_lock, code is not MT safe. */
426 splx(s);
427 if ((dop & DOPREEMPT_COUNTED) == 0) {
428 kpreempt_ev_klock.ev_count++;
429 }
430 failed = (uintptr_t)&kernel_lock_held;
431 break;
432 }
433 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
434 /*
435 * It may be that the IPL is too high.
436 * kpreempt_enter() can schedule an
437 * interrupt to retry later.
438 */
439 splx(s);
440 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
441 break;
442 }
443 /* Do it! */
444 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
445 kpreempt_ev_immed.ev_count++;
446 }
447 lwp_lock(l);
448 mi_switch(l);
449 l->l_nopreempt++;
450 splx(s);
451
452 /* Take care of any MD cleanup. */
453 cpu_kpreempt_exit(where);
454 l->l_nopreempt--;
455 }
456
457 if (__predict_true(!failed)) {
458 return false;
459 }
460
461 /* Record preemption failure for reporting via lockstat. */
462 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
463 lsflag = 0;
464 LOCKSTAT_ENTER(lsflag);
465 if (__predict_false(lsflag)) {
466 if (where == 0) {
467 where = (uintptr_t)__builtin_return_address(0);
468 }
469 /* Preemption is on, might recurse, so make it atomic. */
470 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
471 (void *)where) == NULL) {
472 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
473 l->l_pfaillock = failed;
474 }
475 }
476 LOCKSTAT_EXIT(lsflag);
477 return true;
478 }
479
480 /*
481 * Return true if preemption is explicitly disabled.
482 */
483 bool
484 kpreempt_disabled(void)
485 {
486 const lwp_t *l = curlwp;
487
488 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
489 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
490 }
491
492 /*
493 * Disable kernel preemption.
494 */
495 void
496 kpreempt_disable(void)
497 {
498
499 KPREEMPT_DISABLE(curlwp);
500 }
501
502 /*
503 * Reenable kernel preemption.
504 */
505 void
506 kpreempt_enable(void)
507 {
508
509 KPREEMPT_ENABLE(curlwp);
510 }
511
512 /*
513 * Compute the amount of time during which the current lwp was running.
514 *
515 * - update l_rtime unless it's an idle lwp.
516 */
517
518 void
519 updatertime(lwp_t *l, const struct bintime *now)
520 {
521
522 if (__predict_false(l->l_flag & LW_IDLE))
523 return;
524
525 /* rtime += now - stime */
526 bintime_add(&l->l_rtime, now);
527 bintime_sub(&l->l_rtime, &l->l_stime);
528 }
529
530 /*
531 * Select next LWP from the current CPU to run..
532 */
533 static inline lwp_t *
534 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
535 {
536 lwp_t *newl;
537
538 /*
539 * Let sched_nextlwp() select the LWP to run the CPU next.
540 * If no LWP is runnable, select the idle LWP.
541 *
542 * Note that spc_lwplock might not necessary be held, and
543 * new thread would be unlocked after setting the LWP-lock.
544 */
545 newl = sched_nextlwp();
546 if (newl != NULL) {
547 sched_dequeue(newl);
548 KASSERT(lwp_locked(newl, spc->spc_mutex));
549 KASSERT(newl->l_cpu == ci);
550 newl->l_stat = LSONPROC;
551 newl->l_pflag |= LP_RUNNING;
552 lwp_setlock(newl, spc->spc_lwplock);
553 } else {
554 newl = ci->ci_data.cpu_idlelwp;
555 newl->l_stat = LSONPROC;
556 newl->l_pflag |= LP_RUNNING;
557 }
558
559 /*
560 * Only clear want_resched if there are no pending (slow)
561 * software interrupts.
562 */
563 ci->ci_want_resched = ci->ci_data.cpu_softints;
564 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
565 spc->spc_curpriority = lwp_eprio(newl);
566
567 return newl;
568 }
569
570 /*
571 * The machine independent parts of context switch.
572 *
573 * Returns 1 if another LWP was actually run.
574 */
575 int
576 mi_switch(lwp_t *l)
577 {
578 struct cpu_info *ci;
579 struct schedstate_percpu *spc;
580 struct lwp *newl;
581 int retval, oldspl;
582 struct bintime bt;
583 bool returning;
584
585 KASSERT(lwp_locked(l, NULL));
586 KASSERT(kpreempt_disabled());
587 LOCKDEBUG_BARRIER(l->l_mutex, 1);
588
589 kstack_check_magic(l);
590
591 binuptime(&bt);
592
593 KASSERT((l->l_pflag & LP_RUNNING) != 0);
594 KASSERT(l->l_cpu == curcpu());
595 ci = l->l_cpu;
596 spc = &ci->ci_schedstate;
597 returning = false;
598 newl = NULL;
599
600 /*
601 * If we have been asked to switch to a specific LWP, then there
602 * is no need to inspect the run queues. If a soft interrupt is
603 * blocking, then return to the interrupted thread without adjusting
604 * VM context or its start time: neither have been changed in order
605 * to take the interrupt.
606 */
607 if (l->l_switchto != NULL) {
608 if ((l->l_pflag & LP_INTR) != 0) {
609 returning = true;
610 softint_block(l);
611 if ((l->l_pflag & LP_TIMEINTR) != 0)
612 updatertime(l, &bt);
613 }
614 newl = l->l_switchto;
615 l->l_switchto = NULL;
616 }
617 #ifndef __HAVE_FAST_SOFTINTS
618 else if (ci->ci_data.cpu_softints != 0) {
619 /* There are pending soft interrupts, so pick one. */
620 newl = softint_picklwp();
621 newl->l_stat = LSONPROC;
622 newl->l_pflag |= LP_RUNNING;
623 }
624 #endif /* !__HAVE_FAST_SOFTINTS */
625
626 /* Count time spent in current system call */
627 if (!returning) {
628 SYSCALL_TIME_SLEEP(l);
629
630 /*
631 * XXXSMP If we are using h/w performance counters,
632 * save context.
633 */
634 #if PERFCTRS
635 if (PMC_ENABLED(l->l_proc)) {
636 pmc_save_context(l->l_proc);
637 }
638 #endif
639 updatertime(l, &bt);
640 }
641
642 /* Lock the runqueue */
643 KASSERT(l->l_stat != LSRUN);
644 mutex_spin_enter(spc->spc_mutex);
645
646 /*
647 * If on the CPU and we have gotten this far, then we must yield.
648 */
649 if (l->l_stat == LSONPROC && l != newl) {
650 KASSERT(lwp_locked(l, spc->spc_lwplock));
651 if ((l->l_flag & LW_IDLE) == 0) {
652 l->l_stat = LSRUN;
653 lwp_setlock(l, spc->spc_mutex);
654 sched_enqueue(l, true);
655 /* Handle migration case */
656 KASSERT(spc->spc_migrating == NULL);
657 if (l->l_target_cpu != NULL) {
658 spc->spc_migrating = l;
659 }
660 } else
661 l->l_stat = LSIDL;
662 }
663
664 /* Pick new LWP to run. */
665 if (newl == NULL) {
666 newl = nextlwp(ci, spc);
667 }
668
669 /* Items that must be updated with the CPU locked. */
670 if (!returning) {
671 /* Update the new LWP's start time. */
672 newl->l_stime = bt;
673
674 /*
675 * ci_curlwp changes when a fast soft interrupt occurs.
676 * We use cpu_onproc to keep track of which kernel or
677 * user thread is running 'underneath' the software
678 * interrupt. This is important for time accounting,
679 * itimers and forcing user threads to preempt (aston).
680 */
681 ci->ci_data.cpu_onproc = newl;
682 }
683
684 /*
685 * Preemption related tasks. Must be done with the current
686 * CPU locked.
687 */
688 cpu_did_resched(l);
689 l->l_dopreempt = 0;
690 if (__predict_false(l->l_pfailaddr != 0)) {
691 LOCKSTAT_FLAG(lsflag);
692 LOCKSTAT_ENTER(lsflag);
693 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
694 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
695 1, l->l_pfailtime, l->l_pfailaddr);
696 LOCKSTAT_EXIT(lsflag);
697 l->l_pfailtime = 0;
698 l->l_pfaillock = 0;
699 l->l_pfailaddr = 0;
700 }
701
702 if (l != newl) {
703 struct lwp *prevlwp;
704
705 /* Release all locks, but leave the current LWP locked */
706 if (l->l_mutex == spc->spc_mutex) {
707 /*
708 * Drop spc_lwplock, if the current LWP has been moved
709 * to the run queue (it is now locked by spc_mutex).
710 */
711 mutex_spin_exit(spc->spc_lwplock);
712 } else {
713 /*
714 * Otherwise, drop the spc_mutex, we are done with the
715 * run queues.
716 */
717 mutex_spin_exit(spc->spc_mutex);
718 }
719
720 /*
721 * Mark that context switch is going to be performed
722 * for this LWP, to protect it from being switched
723 * to on another CPU.
724 */
725 KASSERT(l->l_ctxswtch == 0);
726 l->l_ctxswtch = 1;
727 l->l_ncsw++;
728 KASSERT((l->l_pflag & LP_RUNNING) != 0);
729 l->l_pflag &= ~LP_RUNNING;
730
731 /*
732 * Increase the count of spin-mutexes before the release
733 * of the last lock - we must remain at IPL_SCHED during
734 * the context switch.
735 */
736 oldspl = MUTEX_SPIN_OLDSPL(ci);
737 ci->ci_mtx_count--;
738 lwp_unlock(l);
739
740 /* Count the context switch on this CPU. */
741 ci->ci_data.cpu_nswtch++;
742
743 /* Update status for lwpctl, if present. */
744 if (l->l_lwpctl != NULL)
745 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
746
747 /*
748 * Save old VM context, unless a soft interrupt
749 * handler is blocking.
750 */
751 if (!returning)
752 pmap_deactivate(l);
753
754 /*
755 * We may need to spin-wait if 'newl' is still
756 * context switching on another CPU.
757 */
758 if (__predict_false(newl->l_ctxswtch != 0)) {
759 u_int count;
760 count = SPINLOCK_BACKOFF_MIN;
761 while (newl->l_ctxswtch)
762 SPINLOCK_BACKOFF(count);
763 }
764
765 /*
766 * If DTrace has set the active vtime enum to anything
767 * other than INACTIVE (0), then it should have set the
768 * function to call.
769 */
770 if (__predict_false(dtrace_vtime_active)) {
771 (*dtrace_vtime_switch_func)(newl);
772 }
773
774 /* Switch to the new LWP.. */
775 prevlwp = cpu_switchto(l, newl, returning);
776 ci = curcpu();
777
778 /*
779 * Switched away - we have new curlwp.
780 * Restore VM context and IPL.
781 */
782 pmap_activate(l);
783 uvm_emap_switch(l);
784
785 if (prevlwp != NULL) {
786 /* Normalize the count of the spin-mutexes */
787 ci->ci_mtx_count++;
788 /* Unmark the state of context switch */
789 membar_exit();
790 prevlwp->l_ctxswtch = 0;
791 }
792
793 /* Update status for lwpctl, if present. */
794 if (l->l_lwpctl != NULL) {
795 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
796 l->l_lwpctl->lc_pctr++;
797 }
798
799 KASSERT(l->l_cpu == ci);
800 splx(oldspl);
801 retval = 1;
802 } else {
803 /* Nothing to do - just unlock and return. */
804 mutex_spin_exit(spc->spc_mutex);
805 lwp_unlock(l);
806 retval = 0;
807 }
808
809 KASSERT(l == curlwp);
810 KASSERT(l->l_stat == LSONPROC);
811
812 /*
813 * XXXSMP If we are using h/w performance counters, restore context.
814 * XXXSMP preemption problem.
815 */
816 #if PERFCTRS
817 if (PMC_ENABLED(l->l_proc)) {
818 pmc_restore_context(l->l_proc);
819 }
820 #endif
821 SYSCALL_TIME_WAKEUP(l);
822 LOCKDEBUG_BARRIER(NULL, 1);
823
824 return retval;
825 }
826
827 /*
828 * The machine independent parts of context switch to oblivion.
829 * Does not return. Call with the LWP unlocked.
830 */
831 void
832 lwp_exit_switchaway(lwp_t *l)
833 {
834 struct cpu_info *ci;
835 struct lwp *newl;
836 struct bintime bt;
837
838 ci = l->l_cpu;
839
840 KASSERT(kpreempt_disabled());
841 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
842 KASSERT(ci == curcpu());
843 LOCKDEBUG_BARRIER(NULL, 0);
844
845 kstack_check_magic(l);
846
847 /* Count time spent in current system call */
848 SYSCALL_TIME_SLEEP(l);
849 binuptime(&bt);
850 updatertime(l, &bt);
851
852 /* Must stay at IPL_SCHED even after releasing run queue lock. */
853 (void)splsched();
854
855 /*
856 * Let sched_nextlwp() select the LWP to run the CPU next.
857 * If no LWP is runnable, select the idle LWP.
858 *
859 * Note that spc_lwplock might not necessary be held, and
860 * new thread would be unlocked after setting the LWP-lock.
861 */
862 spc_lock(ci);
863 #ifndef __HAVE_FAST_SOFTINTS
864 if (ci->ci_data.cpu_softints != 0) {
865 /* There are pending soft interrupts, so pick one. */
866 newl = softint_picklwp();
867 newl->l_stat = LSONPROC;
868 newl->l_pflag |= LP_RUNNING;
869 } else
870 #endif /* !__HAVE_FAST_SOFTINTS */
871 {
872 newl = nextlwp(ci, &ci->ci_schedstate);
873 }
874
875 /* Update the new LWP's start time. */
876 newl->l_stime = bt;
877 l->l_pflag &= ~LP_RUNNING;
878
879 /*
880 * ci_curlwp changes when a fast soft interrupt occurs.
881 * We use cpu_onproc to keep track of which kernel or
882 * user thread is running 'underneath' the software
883 * interrupt. This is important for time accounting,
884 * itimers and forcing user threads to preempt (aston).
885 */
886 ci->ci_data.cpu_onproc = newl;
887
888 /*
889 * Preemption related tasks. Must be done with the current
890 * CPU locked.
891 */
892 cpu_did_resched(l);
893
894 /* Unlock the run queue. */
895 spc_unlock(ci);
896
897 /* Count the context switch on this CPU. */
898 ci->ci_data.cpu_nswtch++;
899
900 /* Update status for lwpctl, if present. */
901 if (l->l_lwpctl != NULL)
902 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
903
904 /*
905 * We may need to spin-wait if 'newl' is still
906 * context switching on another CPU.
907 */
908 if (__predict_false(newl->l_ctxswtch != 0)) {
909 u_int count;
910 count = SPINLOCK_BACKOFF_MIN;
911 while (newl->l_ctxswtch)
912 SPINLOCK_BACKOFF(count);
913 }
914
915 /*
916 * If DTrace has set the active vtime enum to anything
917 * other than INACTIVE (0), then it should have set the
918 * function to call.
919 */
920 if (__predict_false(dtrace_vtime_active)) {
921 (*dtrace_vtime_switch_func)(newl);
922 }
923
924 /* Switch to the new LWP.. */
925 (void)cpu_switchto(NULL, newl, false);
926
927 for (;;) continue; /* XXX: convince gcc about "noreturn" */
928 /* NOTREACHED */
929 }
930
931 /*
932 * setrunnable: change LWP state to be runnable, placing it on the run queue.
933 *
934 * Call with the process and LWP locked. Will return with the LWP unlocked.
935 */
936 void
937 setrunnable(struct lwp *l)
938 {
939 struct proc *p = l->l_proc;
940 struct cpu_info *ci;
941
942 KASSERT((l->l_flag & LW_IDLE) == 0);
943 KASSERT(mutex_owned(p->p_lock));
944 KASSERT(lwp_locked(l, NULL));
945 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
946
947 switch (l->l_stat) {
948 case LSSTOP:
949 /*
950 * If we're being traced (possibly because someone attached us
951 * while we were stopped), check for a signal from the debugger.
952 */
953 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
954 signotify(l);
955 p->p_nrlwps++;
956 break;
957 case LSSUSPENDED:
958 l->l_flag &= ~LW_WSUSPEND;
959 p->p_nrlwps++;
960 cv_broadcast(&p->p_lwpcv);
961 break;
962 case LSSLEEP:
963 KASSERT(l->l_wchan != NULL);
964 break;
965 default:
966 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
967 }
968
969 #ifdef KERN_SA
970 if (l->l_proc->p_sa)
971 sa_awaken(l);
972 #endif /* KERN_SA */
973
974 /*
975 * If the LWP was sleeping interruptably, then it's OK to start it
976 * again. If not, mark it as still sleeping.
977 */
978 if (l->l_wchan != NULL) {
979 l->l_stat = LSSLEEP;
980 /* lwp_unsleep() will release the lock. */
981 lwp_unsleep(l, true);
982 return;
983 }
984
985 /*
986 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
987 * about to call mi_switch(), in which case it will yield.
988 */
989 if ((l->l_pflag & LP_RUNNING) != 0) {
990 l->l_stat = LSONPROC;
991 l->l_slptime = 0;
992 lwp_unlock(l);
993 return;
994 }
995
996 /*
997 * Look for a CPU to run.
998 * Set the LWP runnable.
999 */
1000 ci = sched_takecpu(l);
1001 l->l_cpu = ci;
1002 spc_lock(ci);
1003 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1004 sched_setrunnable(l);
1005 l->l_stat = LSRUN;
1006 l->l_slptime = 0;
1007
1008 sched_enqueue(l, false);
1009 resched_cpu(l);
1010 lwp_unlock(l);
1011 }
1012
1013 /*
1014 * suspendsched:
1015 *
1016 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1017 */
1018 void
1019 suspendsched(void)
1020 {
1021 CPU_INFO_ITERATOR cii;
1022 struct cpu_info *ci;
1023 struct lwp *l;
1024 struct proc *p;
1025
1026 /*
1027 * We do this by process in order not to violate the locking rules.
1028 */
1029 mutex_enter(proc_lock);
1030 PROCLIST_FOREACH(p, &allproc) {
1031 mutex_enter(p->p_lock);
1032 if ((p->p_flag & PK_SYSTEM) != 0) {
1033 mutex_exit(p->p_lock);
1034 continue;
1035 }
1036
1037 p->p_stat = SSTOP;
1038
1039 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1040 if (l == curlwp)
1041 continue;
1042
1043 lwp_lock(l);
1044
1045 /*
1046 * Set L_WREBOOT so that the LWP will suspend itself
1047 * when it tries to return to user mode. We want to
1048 * try and get to get as many LWPs as possible to
1049 * the user / kernel boundary, so that they will
1050 * release any locks that they hold.
1051 */
1052 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1053
1054 if (l->l_stat == LSSLEEP &&
1055 (l->l_flag & LW_SINTR) != 0) {
1056 /* setrunnable() will release the lock. */
1057 setrunnable(l);
1058 continue;
1059 }
1060
1061 lwp_unlock(l);
1062 }
1063
1064 mutex_exit(p->p_lock);
1065 }
1066 mutex_exit(proc_lock);
1067
1068 /*
1069 * Kick all CPUs to make them preempt any LWPs running in user mode.
1070 * They'll trap into the kernel and suspend themselves in userret().
1071 */
1072 for (CPU_INFO_FOREACH(cii, ci)) {
1073 spc_lock(ci);
1074 cpu_need_resched(ci, RESCHED_IMMED);
1075 spc_unlock(ci);
1076 }
1077 }
1078
1079 /*
1080 * sched_unsleep:
1081 *
1082 * The is called when the LWP has not been awoken normally but instead
1083 * interrupted: for example, if the sleep timed out. Because of this,
1084 * it's not a valid action for running or idle LWPs.
1085 */
1086 static void
1087 sched_unsleep(struct lwp *l, bool cleanup)
1088 {
1089
1090 lwp_unlock(l);
1091 panic("sched_unsleep");
1092 }
1093
1094 static void
1095 resched_cpu(struct lwp *l)
1096 {
1097 struct cpu_info *ci = l->l_cpu;
1098
1099 KASSERT(lwp_locked(l, NULL));
1100 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1101 cpu_need_resched(ci, 0);
1102 }
1103
1104 static void
1105 sched_changepri(struct lwp *l, pri_t pri)
1106 {
1107
1108 KASSERT(lwp_locked(l, NULL));
1109
1110 if (l->l_stat == LSRUN) {
1111 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1112 sched_dequeue(l);
1113 l->l_priority = pri;
1114 sched_enqueue(l, false);
1115 } else {
1116 l->l_priority = pri;
1117 }
1118 resched_cpu(l);
1119 }
1120
1121 static void
1122 sched_lendpri(struct lwp *l, pri_t pri)
1123 {
1124
1125 KASSERT(lwp_locked(l, NULL));
1126
1127 if (l->l_stat == LSRUN) {
1128 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1129 sched_dequeue(l);
1130 l->l_inheritedprio = pri;
1131 sched_enqueue(l, false);
1132 } else {
1133 l->l_inheritedprio = pri;
1134 }
1135 resched_cpu(l);
1136 }
1137
1138 struct lwp *
1139 syncobj_noowner(wchan_t wchan)
1140 {
1141
1142 return NULL;
1143 }
1144
1145 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1146 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1147
1148 /*
1149 * Constants for averages over 1, 5 and 15 minutes when sampling at
1150 * 5 second intervals.
1151 */
1152 static const fixpt_t cexp[ ] = {
1153 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1154 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1155 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1156 };
1157
1158 /*
1159 * sched_pstats:
1160 *
1161 * => Update process statistics and check CPU resource allocation.
1162 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1163 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1164 */
1165 void
1166 sched_pstats(void)
1167 {
1168 extern struct loadavg averunnable;
1169 struct loadavg *avg = &averunnable;
1170 const int clkhz = (stathz != 0 ? stathz : hz);
1171 static bool backwards = false;
1172 static u_int lavg_count = 0;
1173 struct proc *p;
1174 int nrun;
1175
1176 sched_pstats_ticks++;
1177 if (++lavg_count >= 5) {
1178 lavg_count = 0;
1179 nrun = 0;
1180 }
1181 mutex_enter(proc_lock);
1182 PROCLIST_FOREACH(p, &allproc) {
1183 struct lwp *l;
1184 struct rlimit *rlim;
1185 long runtm;
1186 int sig;
1187
1188 /* Increment sleep time (if sleeping), ignore overflow. */
1189 mutex_enter(p->p_lock);
1190 runtm = p->p_rtime.sec;
1191 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1192 fixpt_t lpctcpu;
1193 u_int lcpticks;
1194
1195 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1196 continue;
1197 lwp_lock(l);
1198 runtm += l->l_rtime.sec;
1199 l->l_swtime++;
1200 sched_lwp_stats(l);
1201
1202 /* For load average calculation. */
1203 if (__predict_false(lavg_count == 0) &&
1204 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1205 switch (l->l_stat) {
1206 case LSSLEEP:
1207 if (l->l_slptime > 1) {
1208 break;
1209 }
1210 case LSRUN:
1211 case LSONPROC:
1212 case LSIDL:
1213 nrun++;
1214 }
1215 }
1216 lwp_unlock(l);
1217
1218 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1219 if (l->l_slptime != 0)
1220 continue;
1221
1222 lpctcpu = l->l_pctcpu;
1223 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1224 lpctcpu += ((FSCALE - ccpu) *
1225 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1226 l->l_pctcpu = lpctcpu;
1227 }
1228 /* Calculating p_pctcpu only for ps(1) */
1229 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1230
1231 /*
1232 * Check if the process exceeds its CPU resource allocation.
1233 * If over max, kill it.
1234 */
1235 rlim = &p->p_rlimit[RLIMIT_CPU];
1236 sig = 0;
1237 if (__predict_false(runtm >= rlim->rlim_cur)) {
1238 if (runtm >= rlim->rlim_max)
1239 sig = SIGKILL;
1240 else {
1241 sig = SIGXCPU;
1242 if (rlim->rlim_cur < rlim->rlim_max)
1243 rlim->rlim_cur += 5;
1244 }
1245 }
1246 mutex_exit(p->p_lock);
1247 if (__predict_false(runtm < 0)) {
1248 if (!backwards) {
1249 backwards = true;
1250 printf("WARNING: negative runtime; "
1251 "monotonic clock has gone backwards\n");
1252 }
1253 } else if (__predict_false(sig)) {
1254 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1255 psignal(p, sig);
1256 }
1257 }
1258 mutex_exit(proc_lock);
1259
1260 /* Load average calculation. */
1261 if (__predict_false(lavg_count == 0)) {
1262 int i;
1263 for (i = 0; i < __arraycount(cexp); i++) {
1264 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1265 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1266 }
1267 }
1268
1269 /* Lightning bolt. */
1270 cv_broadcast(&lbolt);
1271 }
1272