kern_synch.c revision 1.286 1 /* $NetBSD: kern_synch.c,v 1.286 2011/01/03 13:22:32 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.286 2011/01/03 13:22:32 pooka Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 #include "opt_dtrace.h"
78
79 #define __MUTEX_PRIVATE
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/kernel.h>
85 #if defined(PERFCTRS)
86 #include <sys/pmc.h>
87 #endif
88 #include <sys/cpu.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/syscall_stats.h>
94 #include <sys/sleepq.h>
95 #include <sys/lockdebug.h>
96 #include <sys/evcnt.h>
97 #include <sys/intr.h>
98 #include <sys/lwpctl.h>
99 #include <sys/atomic.h>
100 #include <sys/simplelock.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <dev/lockstat.h>
105
106 #include <sys/dtrace_bsd.h>
107 int dtrace_vtime_active=0;
108 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
109
110 static void sched_unsleep(struct lwp *, bool);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113 static void resched_cpu(struct lwp *);
114
115 syncobj_t sleep_syncobj = {
116 SOBJ_SLEEPQ_SORTED,
117 sleepq_unsleep,
118 sleepq_changepri,
119 sleepq_lendpri,
120 syncobj_noowner,
121 };
122
123 syncobj_t sched_syncobj = {
124 SOBJ_SLEEPQ_SORTED,
125 sched_unsleep,
126 sched_changepri,
127 sched_lendpri,
128 syncobj_noowner,
129 };
130
131 unsigned sched_pstats_ticks;
132 kcondvar_t lbolt; /* once a second sleep address */
133
134 /* Preemption event counters */
135 static struct evcnt kpreempt_ev_crit;
136 static struct evcnt kpreempt_ev_klock;
137 static struct evcnt kpreempt_ev_immed;
138
139 /*
140 * During autoconfiguration or after a panic, a sleep will simply lower the
141 * priority briefly to allow interrupts, then return. The priority to be
142 * used (safepri) is machine-dependent, thus this value is initialized and
143 * maintained in the machine-dependent layers. This priority will typically
144 * be 0, or the lowest priority that is safe for use on the interrupt stack;
145 * it can be made higher to block network software interrupts after panics.
146 */
147 int safepri;
148
149 void
150 synch_init(void)
151 {
152
153 cv_init(&lbolt, "lbolt");
154
155 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "defer: critical section");
157 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
158 "kpreempt", "defer: kernel_lock");
159 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 "kpreempt", "immediate");
161 }
162
163 /*
164 * OBSOLETE INTERFACE
165 *
166 * General sleep call. Suspends the current LWP until a wakeup is
167 * performed on the specified identifier. The LWP will then be made
168 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 * means no timeout). If pri includes PCATCH flag, signals are checked
170 * before and after sleeping, else signals are not checked. Returns 0 if
171 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 * signal needs to be delivered, ERESTART is returned if the current system
173 * call should be restarted if possible, and EINTR is returned if the system
174 * call should be interrupted by the signal (return EINTR).
175 *
176 * The interlock is held until we are on a sleep queue. The interlock will
177 * be locked before returning back to the caller unless the PNORELOCK flag
178 * is specified, in which case the interlock will always be unlocked upon
179 * return.
180 */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 volatile struct simplelock *interlock)
184 {
185 struct lwp *l = curlwp;
186 sleepq_t *sq;
187 kmutex_t *mp;
188 int error;
189
190 KASSERT((l->l_pflag & LP_INTR) == 0);
191 KASSERT(ident != &lbolt);
192
193 if (sleepq_dontsleep(l)) {
194 (void)sleepq_abort(NULL, 0);
195 if ((priority & PNORELOCK) != 0)
196 simple_unlock(interlock);
197 return 0;
198 }
199
200 l->l_kpriority = true;
201 sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 sleepq_enter(sq, l, mp);
203 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204
205 if (interlock != NULL) {
206 KASSERT(simple_lock_held(interlock));
207 simple_unlock(interlock);
208 }
209
210 error = sleepq_block(timo, priority & PCATCH);
211
212 if (interlock != NULL && (priority & PNORELOCK) == 0)
213 simple_lock(interlock);
214
215 return error;
216 }
217
218 int
219 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
220 kmutex_t *mtx)
221 {
222 struct lwp *l = curlwp;
223 sleepq_t *sq;
224 kmutex_t *mp;
225 int error;
226
227 KASSERT((l->l_pflag & LP_INTR) == 0);
228 KASSERT(ident != &lbolt);
229
230 if (sleepq_dontsleep(l)) {
231 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 return 0;
233 }
234
235 l->l_kpriority = true;
236 sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 sleepq_enter(sq, l, mp);
238 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 mutex_exit(mtx);
240 error = sleepq_block(timo, priority & PCATCH);
241
242 if ((priority & PNORELOCK) == 0)
243 mutex_enter(mtx);
244
245 return error;
246 }
247
248 /*
249 * General sleep call for situations where a wake-up is not expected.
250 */
251 int
252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 {
254 struct lwp *l = curlwp;
255 kmutex_t *mp;
256 sleepq_t *sq;
257 int error;
258
259 KASSERT(!(timo == 0 && intr == false));
260
261 if (sleepq_dontsleep(l))
262 return sleepq_abort(NULL, 0);
263
264 if (mtx != NULL)
265 mutex_exit(mtx);
266 l->l_kpriority = true;
267 sq = sleeptab_lookup(&sleeptab, l, &mp);
268 sleepq_enter(sq, l, mp);
269 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
270 error = sleepq_block(timo, intr);
271 if (mtx != NULL)
272 mutex_enter(mtx);
273
274 return error;
275 }
276
277 #ifdef KERN_SA
278 /*
279 * sa_awaken:
280 *
281 * We believe this lwp is an SA lwp. If it's yielding,
282 * let it know it needs to wake up.
283 *
284 * We are called and exit with the lwp locked. We are
285 * called in the middle of wakeup operations, so we need
286 * to not touch the locks at all.
287 */
288 void
289 sa_awaken(struct lwp *l)
290 {
291 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
292
293 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
294 l->l_flag &= ~LW_SA_IDLE;
295 }
296 #endif /* KERN_SA */
297
298 /*
299 * OBSOLETE INTERFACE
300 *
301 * Make all LWPs sleeping on the specified identifier runnable.
302 */
303 void
304 wakeup(wchan_t ident)
305 {
306 sleepq_t *sq;
307 kmutex_t *mp;
308
309 if (__predict_false(cold))
310 return;
311
312 sq = sleeptab_lookup(&sleeptab, ident, &mp);
313 sleepq_wake(sq, ident, (u_int)-1, mp);
314 }
315
316 /*
317 * OBSOLETE INTERFACE
318 *
319 * Make the highest priority LWP first in line on the specified
320 * identifier runnable.
321 */
322 void
323 wakeup_one(wchan_t ident)
324 {
325 sleepq_t *sq;
326 kmutex_t *mp;
327
328 if (__predict_false(cold))
329 return;
330
331 sq = sleeptab_lookup(&sleeptab, ident, &mp);
332 sleepq_wake(sq, ident, 1, mp);
333 }
334
335
336 /*
337 * General yield call. Puts the current LWP back on its run queue and
338 * performs a voluntary context switch. Should only be called when the
339 * current LWP explicitly requests it (eg sched_yield(2)).
340 */
341 void
342 yield(void)
343 {
344 struct lwp *l = curlwp;
345
346 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
347 lwp_lock(l);
348 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
349 KASSERT(l->l_stat == LSONPROC);
350 l->l_kpriority = false;
351 (void)mi_switch(l);
352 KERNEL_LOCK(l->l_biglocks, l);
353 }
354
355 /*
356 * General preemption call. Puts the current LWP back on its run queue
357 * and performs an involuntary context switch.
358 */
359 void
360 preempt(void)
361 {
362 struct lwp *l = curlwp;
363
364 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
365 lwp_lock(l);
366 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
367 KASSERT(l->l_stat == LSONPROC);
368 l->l_kpriority = false;
369 l->l_nivcsw++;
370 (void)mi_switch(l);
371 KERNEL_LOCK(l->l_biglocks, l);
372 }
373
374 /*
375 * Handle a request made by another agent to preempt the current LWP
376 * in-kernel. Usually called when l_dopreempt may be non-zero.
377 *
378 * Character addresses for lockstat only.
379 */
380 static char in_critical_section;
381 static char kernel_lock_held;
382 static char is_softint;
383 static char cpu_kpreempt_enter_fail;
384
385 bool
386 kpreempt(uintptr_t where)
387 {
388 uintptr_t failed;
389 lwp_t *l;
390 int s, dop, lsflag;
391
392 l = curlwp;
393 failed = 0;
394 while ((dop = l->l_dopreempt) != 0) {
395 if (l->l_stat != LSONPROC) {
396 /*
397 * About to block (or die), let it happen.
398 * Doesn't really count as "preemption has
399 * been blocked", since we're going to
400 * context switch.
401 */
402 l->l_dopreempt = 0;
403 return true;
404 }
405 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
406 /* Can't preempt idle loop, don't count as failure. */
407 l->l_dopreempt = 0;
408 return true;
409 }
410 if (__predict_false(l->l_nopreempt != 0)) {
411 /* LWP holds preemption disabled, explicitly. */
412 if ((dop & DOPREEMPT_COUNTED) == 0) {
413 kpreempt_ev_crit.ev_count++;
414 }
415 failed = (uintptr_t)&in_critical_section;
416 break;
417 }
418 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
419 /* Can't preempt soft interrupts yet. */
420 l->l_dopreempt = 0;
421 failed = (uintptr_t)&is_softint;
422 break;
423 }
424 s = splsched();
425 if (__predict_false(l->l_blcnt != 0 ||
426 curcpu()->ci_biglock_wanted != NULL)) {
427 /* Hold or want kernel_lock, code is not MT safe. */
428 splx(s);
429 if ((dop & DOPREEMPT_COUNTED) == 0) {
430 kpreempt_ev_klock.ev_count++;
431 }
432 failed = (uintptr_t)&kernel_lock_held;
433 break;
434 }
435 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
436 /*
437 * It may be that the IPL is too high.
438 * kpreempt_enter() can schedule an
439 * interrupt to retry later.
440 */
441 splx(s);
442 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
443 break;
444 }
445 /* Do it! */
446 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
447 kpreempt_ev_immed.ev_count++;
448 }
449 lwp_lock(l);
450 mi_switch(l);
451 l->l_nopreempt++;
452 splx(s);
453
454 /* Take care of any MD cleanup. */
455 cpu_kpreempt_exit(where);
456 l->l_nopreempt--;
457 }
458
459 if (__predict_true(!failed)) {
460 return false;
461 }
462
463 /* Record preemption failure for reporting via lockstat. */
464 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
465 lsflag = 0;
466 LOCKSTAT_ENTER(lsflag);
467 if (__predict_false(lsflag)) {
468 if (where == 0) {
469 where = (uintptr_t)__builtin_return_address(0);
470 }
471 /* Preemption is on, might recurse, so make it atomic. */
472 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
473 (void *)where) == NULL) {
474 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
475 l->l_pfaillock = failed;
476 }
477 }
478 LOCKSTAT_EXIT(lsflag);
479 return true;
480 }
481
482 /*
483 * Return true if preemption is explicitly disabled.
484 */
485 bool
486 kpreempt_disabled(void)
487 {
488 const lwp_t *l = curlwp;
489
490 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
491 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
492 }
493
494 /*
495 * Disable kernel preemption.
496 */
497 void
498 kpreempt_disable(void)
499 {
500
501 KPREEMPT_DISABLE(curlwp);
502 }
503
504 /*
505 * Reenable kernel preemption.
506 */
507 void
508 kpreempt_enable(void)
509 {
510
511 KPREEMPT_ENABLE(curlwp);
512 }
513
514 /*
515 * Compute the amount of time during which the current lwp was running.
516 *
517 * - update l_rtime unless it's an idle lwp.
518 */
519
520 void
521 updatertime(lwp_t *l, const struct bintime *now)
522 {
523
524 if (__predict_false(l->l_flag & LW_IDLE))
525 return;
526
527 /* rtime += now - stime */
528 bintime_add(&l->l_rtime, now);
529 bintime_sub(&l->l_rtime, &l->l_stime);
530 }
531
532 /*
533 * Select next LWP from the current CPU to run..
534 */
535 static inline lwp_t *
536 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
537 {
538 lwp_t *newl;
539
540 /*
541 * Let sched_nextlwp() select the LWP to run the CPU next.
542 * If no LWP is runnable, select the idle LWP.
543 *
544 * Note that spc_lwplock might not necessary be held, and
545 * new thread would be unlocked after setting the LWP-lock.
546 */
547 newl = sched_nextlwp();
548 if (newl != NULL) {
549 sched_dequeue(newl);
550 KASSERT(lwp_locked(newl, spc->spc_mutex));
551 KASSERT(newl->l_cpu == ci);
552 newl->l_stat = LSONPROC;
553 newl->l_pflag |= LP_RUNNING;
554 lwp_setlock(newl, spc->spc_lwplock);
555 } else {
556 newl = ci->ci_data.cpu_idlelwp;
557 newl->l_stat = LSONPROC;
558 newl->l_pflag |= LP_RUNNING;
559 }
560
561 /*
562 * Only clear want_resched if there are no pending (slow)
563 * software interrupts.
564 */
565 ci->ci_want_resched = ci->ci_data.cpu_softints;
566 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
567 spc->spc_curpriority = lwp_eprio(newl);
568
569 return newl;
570 }
571
572 /*
573 * The machine independent parts of context switch.
574 *
575 * Returns 1 if another LWP was actually run.
576 */
577 int
578 mi_switch(lwp_t *l)
579 {
580 struct cpu_info *ci;
581 struct schedstate_percpu *spc;
582 struct lwp *newl;
583 int retval, oldspl;
584 struct bintime bt;
585 bool returning;
586
587 KASSERT(lwp_locked(l, NULL));
588 KASSERT(kpreempt_disabled());
589 LOCKDEBUG_BARRIER(l->l_mutex, 1);
590
591 kstack_check_magic(l);
592
593 binuptime(&bt);
594
595 KASSERT((l->l_pflag & LP_RUNNING) != 0);
596 KASSERT(l->l_cpu == curcpu());
597 ci = l->l_cpu;
598 spc = &ci->ci_schedstate;
599 returning = false;
600 newl = NULL;
601
602 /*
603 * If we have been asked to switch to a specific LWP, then there
604 * is no need to inspect the run queues. If a soft interrupt is
605 * blocking, then return to the interrupted thread without adjusting
606 * VM context or its start time: neither have been changed in order
607 * to take the interrupt.
608 */
609 if (l->l_switchto != NULL) {
610 if ((l->l_pflag & LP_INTR) != 0) {
611 returning = true;
612 softint_block(l);
613 if ((l->l_pflag & LP_TIMEINTR) != 0)
614 updatertime(l, &bt);
615 }
616 newl = l->l_switchto;
617 l->l_switchto = NULL;
618 }
619 #ifndef __HAVE_FAST_SOFTINTS
620 else if (ci->ci_data.cpu_softints != 0) {
621 /* There are pending soft interrupts, so pick one. */
622 newl = softint_picklwp();
623 newl->l_stat = LSONPROC;
624 newl->l_pflag |= LP_RUNNING;
625 }
626 #endif /* !__HAVE_FAST_SOFTINTS */
627
628 /* Count time spent in current system call */
629 if (!returning) {
630 SYSCALL_TIME_SLEEP(l);
631
632 /*
633 * XXXSMP If we are using h/w performance counters,
634 * save context.
635 */
636 #if PERFCTRS
637 if (PMC_ENABLED(l->l_proc)) {
638 pmc_save_context(l->l_proc);
639 }
640 #endif
641 updatertime(l, &bt);
642 }
643
644 /* Lock the runqueue */
645 KASSERT(l->l_stat != LSRUN);
646 mutex_spin_enter(spc->spc_mutex);
647
648 /*
649 * If on the CPU and we have gotten this far, then we must yield.
650 */
651 if (l->l_stat == LSONPROC && l != newl) {
652 KASSERT(lwp_locked(l, spc->spc_lwplock));
653 if ((l->l_flag & LW_IDLE) == 0) {
654 l->l_stat = LSRUN;
655 lwp_setlock(l, spc->spc_mutex);
656 sched_enqueue(l, true);
657 /*
658 * Handle migration. Note that "migrating LWP" may
659 * be reset here, if interrupt/preemption happens
660 * early in idle LWP.
661 */
662 if (l->l_target_cpu != NULL) {
663 KASSERT((l->l_pflag & LP_INTR) == 0);
664 spc->spc_migrating = l;
665 }
666 } else
667 l->l_stat = LSIDL;
668 }
669
670 /* Pick new LWP to run. */
671 if (newl == NULL) {
672 newl = nextlwp(ci, spc);
673 }
674
675 /* Items that must be updated with the CPU locked. */
676 if (!returning) {
677 /* Update the new LWP's start time. */
678 newl->l_stime = bt;
679
680 /*
681 * ci_curlwp changes when a fast soft interrupt occurs.
682 * We use cpu_onproc to keep track of which kernel or
683 * user thread is running 'underneath' the software
684 * interrupt. This is important for time accounting,
685 * itimers and forcing user threads to preempt (aston).
686 */
687 ci->ci_data.cpu_onproc = newl;
688 }
689
690 /*
691 * Preemption related tasks. Must be done with the current
692 * CPU locked.
693 */
694 cpu_did_resched(l);
695 l->l_dopreempt = 0;
696 if (__predict_false(l->l_pfailaddr != 0)) {
697 LOCKSTAT_FLAG(lsflag);
698 LOCKSTAT_ENTER(lsflag);
699 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
700 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
701 1, l->l_pfailtime, l->l_pfailaddr);
702 LOCKSTAT_EXIT(lsflag);
703 l->l_pfailtime = 0;
704 l->l_pfaillock = 0;
705 l->l_pfailaddr = 0;
706 }
707
708 if (l != newl) {
709 struct lwp *prevlwp;
710
711 /* Release all locks, but leave the current LWP locked */
712 if (l->l_mutex == spc->spc_mutex) {
713 /*
714 * Drop spc_lwplock, if the current LWP has been moved
715 * to the run queue (it is now locked by spc_mutex).
716 */
717 mutex_spin_exit(spc->spc_lwplock);
718 } else {
719 /*
720 * Otherwise, drop the spc_mutex, we are done with the
721 * run queues.
722 */
723 mutex_spin_exit(spc->spc_mutex);
724 }
725
726 /*
727 * Mark that context switch is going to be performed
728 * for this LWP, to protect it from being switched
729 * to on another CPU.
730 */
731 KASSERT(l->l_ctxswtch == 0);
732 l->l_ctxswtch = 1;
733 l->l_ncsw++;
734 KASSERT((l->l_pflag & LP_RUNNING) != 0);
735 l->l_pflag &= ~LP_RUNNING;
736
737 /*
738 * Increase the count of spin-mutexes before the release
739 * of the last lock - we must remain at IPL_SCHED during
740 * the context switch.
741 */
742 oldspl = MUTEX_SPIN_OLDSPL(ci);
743 ci->ci_mtx_count--;
744 lwp_unlock(l);
745
746 /* Count the context switch on this CPU. */
747 ci->ci_data.cpu_nswtch++;
748
749 /* Update status for lwpctl, if present. */
750 if (l->l_lwpctl != NULL)
751 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
752
753 /*
754 * Save old VM context, unless a soft interrupt
755 * handler is blocking.
756 */
757 if (!returning)
758 pmap_deactivate(l);
759
760 /*
761 * We may need to spin-wait if 'newl' is still
762 * context switching on another CPU.
763 */
764 if (__predict_false(newl->l_ctxswtch != 0)) {
765 u_int count;
766 count = SPINLOCK_BACKOFF_MIN;
767 while (newl->l_ctxswtch)
768 SPINLOCK_BACKOFF(count);
769 }
770
771 /*
772 * If DTrace has set the active vtime enum to anything
773 * other than INACTIVE (0), then it should have set the
774 * function to call.
775 */
776 if (__predict_false(dtrace_vtime_active)) {
777 (*dtrace_vtime_switch_func)(newl);
778 }
779
780 /* Switch to the new LWP.. */
781 prevlwp = cpu_switchto(l, newl, returning);
782 ci = curcpu();
783
784 /*
785 * Switched away - we have new curlwp.
786 * Restore VM context and IPL.
787 */
788 pmap_activate(l);
789 uvm_emap_switch(l);
790
791 if (prevlwp != NULL) {
792 /* Normalize the count of the spin-mutexes */
793 ci->ci_mtx_count++;
794 /* Unmark the state of context switch */
795 membar_exit();
796 prevlwp->l_ctxswtch = 0;
797 }
798
799 /* Update status for lwpctl, if present. */
800 if (l->l_lwpctl != NULL) {
801 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
802 l->l_lwpctl->lc_pctr++;
803 }
804
805 KASSERT(l->l_cpu == ci);
806 splx(oldspl);
807 retval = 1;
808 } else {
809 /* Nothing to do - just unlock and return. */
810 mutex_spin_exit(spc->spc_mutex);
811 lwp_unlock(l);
812 retval = 0;
813 }
814
815 KASSERT(l == curlwp);
816 KASSERT(l->l_stat == LSONPROC);
817
818 /*
819 * XXXSMP If we are using h/w performance counters, restore context.
820 * XXXSMP preemption problem.
821 */
822 #if PERFCTRS
823 if (PMC_ENABLED(l->l_proc)) {
824 pmc_restore_context(l->l_proc);
825 }
826 #endif
827 SYSCALL_TIME_WAKEUP(l);
828 LOCKDEBUG_BARRIER(NULL, 1);
829
830 return retval;
831 }
832
833 /*
834 * The machine independent parts of context switch to oblivion.
835 * Does not return. Call with the LWP unlocked.
836 */
837 void
838 lwp_exit_switchaway(lwp_t *l)
839 {
840 struct cpu_info *ci;
841 struct lwp *newl;
842 struct bintime bt;
843
844 ci = l->l_cpu;
845
846 KASSERT(kpreempt_disabled());
847 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
848 KASSERT(ci == curcpu());
849 LOCKDEBUG_BARRIER(NULL, 0);
850
851 kstack_check_magic(l);
852
853 /* Count time spent in current system call */
854 SYSCALL_TIME_SLEEP(l);
855 binuptime(&bt);
856 updatertime(l, &bt);
857
858 /* Must stay at IPL_SCHED even after releasing run queue lock. */
859 (void)splsched();
860
861 /*
862 * Let sched_nextlwp() select the LWP to run the CPU next.
863 * If no LWP is runnable, select the idle LWP.
864 *
865 * Note that spc_lwplock might not necessary be held, and
866 * new thread would be unlocked after setting the LWP-lock.
867 */
868 spc_lock(ci);
869 #ifndef __HAVE_FAST_SOFTINTS
870 if (ci->ci_data.cpu_softints != 0) {
871 /* There are pending soft interrupts, so pick one. */
872 newl = softint_picklwp();
873 newl->l_stat = LSONPROC;
874 newl->l_pflag |= LP_RUNNING;
875 } else
876 #endif /* !__HAVE_FAST_SOFTINTS */
877 {
878 newl = nextlwp(ci, &ci->ci_schedstate);
879 }
880
881 /* Update the new LWP's start time. */
882 newl->l_stime = bt;
883 l->l_pflag &= ~LP_RUNNING;
884
885 /*
886 * ci_curlwp changes when a fast soft interrupt occurs.
887 * We use cpu_onproc to keep track of which kernel or
888 * user thread is running 'underneath' the software
889 * interrupt. This is important for time accounting,
890 * itimers and forcing user threads to preempt (aston).
891 */
892 ci->ci_data.cpu_onproc = newl;
893
894 /*
895 * Preemption related tasks. Must be done with the current
896 * CPU locked.
897 */
898 cpu_did_resched(l);
899
900 /* Unlock the run queue. */
901 spc_unlock(ci);
902
903 /* Count the context switch on this CPU. */
904 ci->ci_data.cpu_nswtch++;
905
906 /* Update status for lwpctl, if present. */
907 if (l->l_lwpctl != NULL)
908 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
909
910 /*
911 * We may need to spin-wait if 'newl' is still
912 * context switching on another CPU.
913 */
914 if (__predict_false(newl->l_ctxswtch != 0)) {
915 u_int count;
916 count = SPINLOCK_BACKOFF_MIN;
917 while (newl->l_ctxswtch)
918 SPINLOCK_BACKOFF(count);
919 }
920
921 /*
922 * If DTrace has set the active vtime enum to anything
923 * other than INACTIVE (0), then it should have set the
924 * function to call.
925 */
926 if (__predict_false(dtrace_vtime_active)) {
927 (*dtrace_vtime_switch_func)(newl);
928 }
929
930 /* Switch to the new LWP.. */
931 (void)cpu_switchto(NULL, newl, false);
932
933 for (;;) continue; /* XXX: convince gcc about "noreturn" */
934 /* NOTREACHED */
935 }
936
937 /*
938 * setrunnable: change LWP state to be runnable, placing it on the run queue.
939 *
940 * Call with the process and LWP locked. Will return with the LWP unlocked.
941 */
942 void
943 setrunnable(struct lwp *l)
944 {
945 struct proc *p = l->l_proc;
946 struct cpu_info *ci;
947
948 KASSERT((l->l_flag & LW_IDLE) == 0);
949 KASSERT(mutex_owned(p->p_lock));
950 KASSERT(lwp_locked(l, NULL));
951 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
952
953 switch (l->l_stat) {
954 case LSSTOP:
955 /*
956 * If we're being traced (possibly because someone attached us
957 * while we were stopped), check for a signal from the debugger.
958 */
959 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
960 signotify(l);
961 p->p_nrlwps++;
962 break;
963 case LSSUSPENDED:
964 l->l_flag &= ~LW_WSUSPEND;
965 p->p_nrlwps++;
966 cv_broadcast(&p->p_lwpcv);
967 break;
968 case LSSLEEP:
969 KASSERT(l->l_wchan != NULL);
970 break;
971 default:
972 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
973 }
974
975 #ifdef KERN_SA
976 if (l->l_proc->p_sa)
977 sa_awaken(l);
978 #endif /* KERN_SA */
979
980 /*
981 * If the LWP was sleeping, start it again.
982 */
983 if (l->l_wchan != NULL) {
984 l->l_stat = LSSLEEP;
985 /* lwp_unsleep() will release the lock. */
986 lwp_unsleep(l, true);
987 return;
988 }
989
990 /*
991 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
992 * about to call mi_switch(), in which case it will yield.
993 */
994 if ((l->l_pflag & LP_RUNNING) != 0) {
995 l->l_stat = LSONPROC;
996 l->l_slptime = 0;
997 lwp_unlock(l);
998 return;
999 }
1000
1001 /*
1002 * Look for a CPU to run.
1003 * Set the LWP runnable.
1004 */
1005 ci = sched_takecpu(l);
1006 l->l_cpu = ci;
1007 spc_lock(ci);
1008 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1009 sched_setrunnable(l);
1010 l->l_stat = LSRUN;
1011 l->l_slptime = 0;
1012
1013 sched_enqueue(l, false);
1014 resched_cpu(l);
1015 lwp_unlock(l);
1016 }
1017
1018 /*
1019 * suspendsched:
1020 *
1021 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1022 */
1023 void
1024 suspendsched(void)
1025 {
1026 CPU_INFO_ITERATOR cii;
1027 struct cpu_info *ci;
1028 struct lwp *l;
1029 struct proc *p;
1030
1031 /*
1032 * We do this by process in order not to violate the locking rules.
1033 */
1034 mutex_enter(proc_lock);
1035 PROCLIST_FOREACH(p, &allproc) {
1036 mutex_enter(p->p_lock);
1037 if ((p->p_flag & PK_SYSTEM) != 0) {
1038 mutex_exit(p->p_lock);
1039 continue;
1040 }
1041
1042 p->p_stat = SSTOP;
1043
1044 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1045 if (l == curlwp)
1046 continue;
1047
1048 lwp_lock(l);
1049
1050 /*
1051 * Set L_WREBOOT so that the LWP will suspend itself
1052 * when it tries to return to user mode. We want to
1053 * try and get to get as many LWPs as possible to
1054 * the user / kernel boundary, so that they will
1055 * release any locks that they hold.
1056 */
1057 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1058
1059 if (l->l_stat == LSSLEEP &&
1060 (l->l_flag & LW_SINTR) != 0) {
1061 /* setrunnable() will release the lock. */
1062 setrunnable(l);
1063 continue;
1064 }
1065
1066 lwp_unlock(l);
1067 }
1068
1069 mutex_exit(p->p_lock);
1070 }
1071 mutex_exit(proc_lock);
1072
1073 /*
1074 * Kick all CPUs to make them preempt any LWPs running in user mode.
1075 * They'll trap into the kernel and suspend themselves in userret().
1076 */
1077 for (CPU_INFO_FOREACH(cii, ci)) {
1078 spc_lock(ci);
1079 cpu_need_resched(ci, RESCHED_IMMED);
1080 spc_unlock(ci);
1081 }
1082 }
1083
1084 /*
1085 * sched_unsleep:
1086 *
1087 * The is called when the LWP has not been awoken normally but instead
1088 * interrupted: for example, if the sleep timed out. Because of this,
1089 * it's not a valid action for running or idle LWPs.
1090 */
1091 static void
1092 sched_unsleep(struct lwp *l, bool cleanup)
1093 {
1094
1095 lwp_unlock(l);
1096 panic("sched_unsleep");
1097 }
1098
1099 static void
1100 resched_cpu(struct lwp *l)
1101 {
1102 struct cpu_info *ci = l->l_cpu;
1103
1104 KASSERT(lwp_locked(l, NULL));
1105 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1106 cpu_need_resched(ci, 0);
1107 }
1108
1109 static void
1110 sched_changepri(struct lwp *l, pri_t pri)
1111 {
1112
1113 KASSERT(lwp_locked(l, NULL));
1114
1115 if (l->l_stat == LSRUN) {
1116 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1117 sched_dequeue(l);
1118 l->l_priority = pri;
1119 sched_enqueue(l, false);
1120 } else {
1121 l->l_priority = pri;
1122 }
1123 resched_cpu(l);
1124 }
1125
1126 static void
1127 sched_lendpri(struct lwp *l, pri_t pri)
1128 {
1129
1130 KASSERT(lwp_locked(l, NULL));
1131
1132 if (l->l_stat == LSRUN) {
1133 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1134 sched_dequeue(l);
1135 l->l_inheritedprio = pri;
1136 sched_enqueue(l, false);
1137 } else {
1138 l->l_inheritedprio = pri;
1139 }
1140 resched_cpu(l);
1141 }
1142
1143 struct lwp *
1144 syncobj_noowner(wchan_t wchan)
1145 {
1146
1147 return NULL;
1148 }
1149
1150 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1151 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1152
1153 /*
1154 * Constants for averages over 1, 5 and 15 minutes when sampling at
1155 * 5 second intervals.
1156 */
1157 static const fixpt_t cexp[ ] = {
1158 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1159 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1160 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1161 };
1162
1163 /*
1164 * sched_pstats:
1165 *
1166 * => Update process statistics and check CPU resource allocation.
1167 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1168 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1169 */
1170 void
1171 sched_pstats(void)
1172 {
1173 extern struct loadavg averunnable;
1174 struct loadavg *avg = &averunnable;
1175 const int clkhz = (stathz != 0 ? stathz : hz);
1176 static bool backwards = false;
1177 static u_int lavg_count = 0;
1178 struct proc *p;
1179 int nrun;
1180
1181 sched_pstats_ticks++;
1182 if (++lavg_count >= 5) {
1183 lavg_count = 0;
1184 nrun = 0;
1185 }
1186 mutex_enter(proc_lock);
1187 PROCLIST_FOREACH(p, &allproc) {
1188 struct lwp *l;
1189 struct rlimit *rlim;
1190 long runtm;
1191 int sig;
1192
1193 /* Increment sleep time (if sleeping), ignore overflow. */
1194 mutex_enter(p->p_lock);
1195 runtm = p->p_rtime.sec;
1196 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1197 fixpt_t lpctcpu;
1198 u_int lcpticks;
1199
1200 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1201 continue;
1202 lwp_lock(l);
1203 runtm += l->l_rtime.sec;
1204 l->l_swtime++;
1205 sched_lwp_stats(l);
1206
1207 /* For load average calculation. */
1208 if (__predict_false(lavg_count == 0) &&
1209 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1210 switch (l->l_stat) {
1211 case LSSLEEP:
1212 if (l->l_slptime > 1) {
1213 break;
1214 }
1215 case LSRUN:
1216 case LSONPROC:
1217 case LSIDL:
1218 nrun++;
1219 }
1220 }
1221 lwp_unlock(l);
1222
1223 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1224 if (l->l_slptime != 0)
1225 continue;
1226
1227 lpctcpu = l->l_pctcpu;
1228 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1229 lpctcpu += ((FSCALE - ccpu) *
1230 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1231 l->l_pctcpu = lpctcpu;
1232 }
1233 /* Calculating p_pctcpu only for ps(1) */
1234 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1235
1236 /*
1237 * Check if the process exceeds its CPU resource allocation.
1238 * If over max, kill it.
1239 */
1240 rlim = &p->p_rlimit[RLIMIT_CPU];
1241 sig = 0;
1242 if (__predict_false(runtm >= rlim->rlim_cur)) {
1243 if (runtm >= rlim->rlim_max)
1244 sig = SIGKILL;
1245 else {
1246 sig = SIGXCPU;
1247 if (rlim->rlim_cur < rlim->rlim_max)
1248 rlim->rlim_cur += 5;
1249 }
1250 }
1251 mutex_exit(p->p_lock);
1252 if (__predict_false(runtm < 0)) {
1253 if (!backwards) {
1254 backwards = true;
1255 printf("WARNING: negative runtime; "
1256 "monotonic clock has gone backwards\n");
1257 }
1258 } else if (__predict_false(sig)) {
1259 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1260 psignal(p, sig);
1261 }
1262 }
1263 mutex_exit(proc_lock);
1264
1265 /* Load average calculation. */
1266 if (__predict_false(lavg_count == 0)) {
1267 int i;
1268 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1269 for (i = 0; i < __arraycount(cexp); i++) {
1270 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1271 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1272 }
1273 }
1274
1275 /* Lightning bolt. */
1276 cv_broadcast(&lbolt);
1277 }
1278