Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.289
      1 /*	$NetBSD: kern_synch.c,v 1.289 2011/05/13 22:16:43 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.289 2011/05/13 22:16:43 rmind Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/sleepq.h>
     95 #include <sys/lockdebug.h>
     96 #include <sys/evcnt.h>
     97 #include <sys/intr.h>
     98 #include <sys/lwpctl.h>
     99 #include <sys/atomic.h>
    100 #include <sys/simplelock.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 #include <dev/lockstat.h>
    105 
    106 #include <sys/dtrace_bsd.h>
    107 int                             dtrace_vtime_active=0;
    108 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    109 
    110 static void	sched_unsleep(struct lwp *, bool);
    111 static void	sched_changepri(struct lwp *, pri_t);
    112 static void	sched_lendpri(struct lwp *, pri_t);
    113 static void	resched_cpu(struct lwp *);
    114 
    115 syncobj_t sleep_syncobj = {
    116 	SOBJ_SLEEPQ_SORTED,
    117 	sleepq_unsleep,
    118 	sleepq_changepri,
    119 	sleepq_lendpri,
    120 	syncobj_noowner,
    121 };
    122 
    123 syncobj_t sched_syncobj = {
    124 	SOBJ_SLEEPQ_SORTED,
    125 	sched_unsleep,
    126 	sched_changepri,
    127 	sched_lendpri,
    128 	syncobj_noowner,
    129 };
    130 
    131 /* "Lightning bolt": once a second sleep address. */
    132 kcondvar_t		lbolt			__cacheline_aligned;
    133 
    134 u_int			sched_pstats_ticks	__cacheline_aligned;
    135 
    136 /* Preemption event counters. */
    137 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    138 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    139 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    140 
    141 /*
    142  * During autoconfiguration or after a panic, a sleep will simply lower the
    143  * priority briefly to allow interrupts, then return.  The priority to be
    144  * used (safepri) is machine-dependent, thus this value is initialized and
    145  * maintained in the machine-dependent layers.  This priority will typically
    146  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    147  * it can be made higher to block network software interrupts after panics.
    148  */
    149 int	safepri;
    150 
    151 void
    152 synch_init(void)
    153 {
    154 
    155 	cv_init(&lbolt, "lbolt");
    156 
    157 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "defer: critical section");
    159 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    160 	   "kpreempt", "defer: kernel_lock");
    161 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    162 	   "kpreempt", "immediate");
    163 }
    164 
    165 /*
    166  * OBSOLETE INTERFACE
    167  *
    168  * General sleep call.  Suspends the current LWP until a wakeup is
    169  * performed on the specified identifier.  The LWP will then be made
    170  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    171  * means no timeout).  If pri includes PCATCH flag, signals are checked
    172  * before and after sleeping, else signals are not checked.  Returns 0 if
    173  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    174  * signal needs to be delivered, ERESTART is returned if the current system
    175  * call should be restarted if possible, and EINTR is returned if the system
    176  * call should be interrupted by the signal (return EINTR).
    177  *
    178  * The interlock is held until we are on a sleep queue. The interlock will
    179  * be locked before returning back to the caller unless the PNORELOCK flag
    180  * is specified, in which case the interlock will always be unlocked upon
    181  * return.
    182  */
    183 int
    184 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    185 	volatile struct simplelock *interlock)
    186 {
    187 	struct lwp *l = curlwp;
    188 	sleepq_t *sq;
    189 	kmutex_t *mp;
    190 	int error;
    191 
    192 	KASSERT((l->l_pflag & LP_INTR) == 0);
    193 	KASSERT(ident != &lbolt);
    194 
    195 	if (sleepq_dontsleep(l)) {
    196 		(void)sleepq_abort(NULL, 0);
    197 		if ((priority & PNORELOCK) != 0)
    198 			simple_unlock(interlock);
    199 		return 0;
    200 	}
    201 
    202 	l->l_kpriority = true;
    203 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    204 	sleepq_enter(sq, l, mp);
    205 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    206 
    207 	if (interlock != NULL) {
    208 		KASSERT(simple_lock_held(interlock));
    209 		simple_unlock(interlock);
    210 	}
    211 
    212 	error = sleepq_block(timo, priority & PCATCH);
    213 
    214 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    215 		simple_lock(interlock);
    216 
    217 	return error;
    218 }
    219 
    220 int
    221 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    222 	kmutex_t *mtx)
    223 {
    224 	struct lwp *l = curlwp;
    225 	sleepq_t *sq;
    226 	kmutex_t *mp;
    227 	int error;
    228 
    229 	KASSERT((l->l_pflag & LP_INTR) == 0);
    230 	KASSERT(ident != &lbolt);
    231 
    232 	if (sleepq_dontsleep(l)) {
    233 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    234 		return 0;
    235 	}
    236 
    237 	l->l_kpriority = true;
    238 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    239 	sleepq_enter(sq, l, mp);
    240 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    241 	mutex_exit(mtx);
    242 	error = sleepq_block(timo, priority & PCATCH);
    243 
    244 	if ((priority & PNORELOCK) == 0)
    245 		mutex_enter(mtx);
    246 
    247 	return error;
    248 }
    249 
    250 /*
    251  * General sleep call for situations where a wake-up is not expected.
    252  */
    253 int
    254 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    255 {
    256 	struct lwp *l = curlwp;
    257 	kmutex_t *mp;
    258 	sleepq_t *sq;
    259 	int error;
    260 
    261 	KASSERT(!(timo == 0 && intr == false));
    262 
    263 	if (sleepq_dontsleep(l))
    264 		return sleepq_abort(NULL, 0);
    265 
    266 	if (mtx != NULL)
    267 		mutex_exit(mtx);
    268 	l->l_kpriority = true;
    269 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    270 	sleepq_enter(sq, l, mp);
    271 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    272 	error = sleepq_block(timo, intr);
    273 	if (mtx != NULL)
    274 		mutex_enter(mtx);
    275 
    276 	return error;
    277 }
    278 
    279 #ifdef KERN_SA
    280 /*
    281  * sa_awaken:
    282  *
    283  *	We believe this lwp is an SA lwp. If it's yielding,
    284  * let it know it needs to wake up.
    285  *
    286  *	We are called and exit with the lwp locked. We are
    287  * called in the middle of wakeup operations, so we need
    288  * to not touch the locks at all.
    289  */
    290 void
    291 sa_awaken(struct lwp *l)
    292 {
    293 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    294 
    295 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    296 		l->l_flag &= ~LW_SA_IDLE;
    297 }
    298 #endif /* KERN_SA */
    299 
    300 /*
    301  * OBSOLETE INTERFACE
    302  *
    303  * Make all LWPs sleeping on the specified identifier runnable.
    304  */
    305 void
    306 wakeup(wchan_t ident)
    307 {
    308 	sleepq_t *sq;
    309 	kmutex_t *mp;
    310 
    311 	if (__predict_false(cold))
    312 		return;
    313 
    314 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    315 	sleepq_wake(sq, ident, (u_int)-1, mp);
    316 }
    317 
    318 /*
    319  * OBSOLETE INTERFACE
    320  *
    321  * Make the highest priority LWP first in line on the specified
    322  * identifier runnable.
    323  */
    324 void
    325 wakeup_one(wchan_t ident)
    326 {
    327 	sleepq_t *sq;
    328 	kmutex_t *mp;
    329 
    330 	if (__predict_false(cold))
    331 		return;
    332 
    333 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    334 	sleepq_wake(sq, ident, 1, mp);
    335 }
    336 
    337 
    338 /*
    339  * General yield call.  Puts the current LWP back on its run queue and
    340  * performs a voluntary context switch.  Should only be called when the
    341  * current LWP explicitly requests it (eg sched_yield(2)).
    342  */
    343 void
    344 yield(void)
    345 {
    346 	struct lwp *l = curlwp;
    347 
    348 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    349 	lwp_lock(l);
    350 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    351 	KASSERT(l->l_stat == LSONPROC);
    352 	l->l_kpriority = false;
    353 	(void)mi_switch(l);
    354 	KERNEL_LOCK(l->l_biglocks, l);
    355 }
    356 
    357 /*
    358  * General preemption call.  Puts the current LWP back on its run queue
    359  * and performs an involuntary context switch.
    360  */
    361 void
    362 preempt(void)
    363 {
    364 	struct lwp *l = curlwp;
    365 
    366 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    367 	lwp_lock(l);
    368 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    369 	KASSERT(l->l_stat == LSONPROC);
    370 	l->l_kpriority = false;
    371 	l->l_nivcsw++;
    372 	(void)mi_switch(l);
    373 	KERNEL_LOCK(l->l_biglocks, l);
    374 }
    375 
    376 /*
    377  * Handle a request made by another agent to preempt the current LWP
    378  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    379  *
    380  * Character addresses for lockstat only.
    381  */
    382 static char	in_critical_section;
    383 static char	kernel_lock_held;
    384 static char	is_softint;
    385 static char	cpu_kpreempt_enter_fail;
    386 
    387 bool
    388 kpreempt(uintptr_t where)
    389 {
    390 	uintptr_t failed;
    391 	lwp_t *l;
    392 	int s, dop, lsflag;
    393 
    394 	l = curlwp;
    395 	failed = 0;
    396 	while ((dop = l->l_dopreempt) != 0) {
    397 		if (l->l_stat != LSONPROC) {
    398 			/*
    399 			 * About to block (or die), let it happen.
    400 			 * Doesn't really count as "preemption has
    401 			 * been blocked", since we're going to
    402 			 * context switch.
    403 			 */
    404 			l->l_dopreempt = 0;
    405 			return true;
    406 		}
    407 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    408 			/* Can't preempt idle loop, don't count as failure. */
    409 			l->l_dopreempt = 0;
    410 			return true;
    411 		}
    412 		if (__predict_false(l->l_nopreempt != 0)) {
    413 			/* LWP holds preemption disabled, explicitly. */
    414 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    415 				kpreempt_ev_crit.ev_count++;
    416 			}
    417 			failed = (uintptr_t)&in_critical_section;
    418 			break;
    419 		}
    420 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    421 			/* Can't preempt soft interrupts yet. */
    422 			l->l_dopreempt = 0;
    423 			failed = (uintptr_t)&is_softint;
    424 			break;
    425 		}
    426 		s = splsched();
    427 		if (__predict_false(l->l_blcnt != 0 ||
    428 		    curcpu()->ci_biglock_wanted != NULL)) {
    429 			/* Hold or want kernel_lock, code is not MT safe. */
    430 			splx(s);
    431 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    432 				kpreempt_ev_klock.ev_count++;
    433 			}
    434 			failed = (uintptr_t)&kernel_lock_held;
    435 			break;
    436 		}
    437 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    438 			/*
    439 			 * It may be that the IPL is too high.
    440 			 * kpreempt_enter() can schedule an
    441 			 * interrupt to retry later.
    442 			 */
    443 			splx(s);
    444 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    445 			break;
    446 		}
    447 		/* Do it! */
    448 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    449 			kpreempt_ev_immed.ev_count++;
    450 		}
    451 		lwp_lock(l);
    452 		mi_switch(l);
    453 		l->l_nopreempt++;
    454 		splx(s);
    455 
    456 		/* Take care of any MD cleanup. */
    457 		cpu_kpreempt_exit(where);
    458 		l->l_nopreempt--;
    459 	}
    460 
    461 	if (__predict_true(!failed)) {
    462 		return false;
    463 	}
    464 
    465 	/* Record preemption failure for reporting via lockstat. */
    466 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    467 	lsflag = 0;
    468 	LOCKSTAT_ENTER(lsflag);
    469 	if (__predict_false(lsflag)) {
    470 		if (where == 0) {
    471 			where = (uintptr_t)__builtin_return_address(0);
    472 		}
    473 		/* Preemption is on, might recurse, so make it atomic. */
    474 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    475 		    (void *)where) == NULL) {
    476 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    477 			l->l_pfaillock = failed;
    478 		}
    479 	}
    480 	LOCKSTAT_EXIT(lsflag);
    481 	return true;
    482 }
    483 
    484 /*
    485  * Return true if preemption is explicitly disabled.
    486  */
    487 bool
    488 kpreempt_disabled(void)
    489 {
    490 	const lwp_t *l = curlwp;
    491 
    492 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    493 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    494 }
    495 
    496 /*
    497  * Disable kernel preemption.
    498  */
    499 void
    500 kpreempt_disable(void)
    501 {
    502 
    503 	KPREEMPT_DISABLE(curlwp);
    504 }
    505 
    506 /*
    507  * Reenable kernel preemption.
    508  */
    509 void
    510 kpreempt_enable(void)
    511 {
    512 
    513 	KPREEMPT_ENABLE(curlwp);
    514 }
    515 
    516 /*
    517  * Compute the amount of time during which the current lwp was running.
    518  *
    519  * - update l_rtime unless it's an idle lwp.
    520  */
    521 
    522 void
    523 updatertime(lwp_t *l, const struct bintime *now)
    524 {
    525 
    526 	if (__predict_false(l->l_flag & LW_IDLE))
    527 		return;
    528 
    529 	/* rtime += now - stime */
    530 	bintime_add(&l->l_rtime, now);
    531 	bintime_sub(&l->l_rtime, &l->l_stime);
    532 }
    533 
    534 /*
    535  * Select next LWP from the current CPU to run..
    536  */
    537 static inline lwp_t *
    538 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    539 {
    540 	lwp_t *newl;
    541 
    542 	/*
    543 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    544 	 * If no LWP is runnable, select the idle LWP.
    545 	 *
    546 	 * Note that spc_lwplock might not necessary be held, and
    547 	 * new thread would be unlocked after setting the LWP-lock.
    548 	 */
    549 	newl = sched_nextlwp();
    550 	if (newl != NULL) {
    551 		sched_dequeue(newl);
    552 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    553 		KASSERT(newl->l_cpu == ci);
    554 		newl->l_stat = LSONPROC;
    555 		newl->l_pflag |= LP_RUNNING;
    556 		lwp_setlock(newl, spc->spc_lwplock);
    557 	} else {
    558 		newl = ci->ci_data.cpu_idlelwp;
    559 		newl->l_stat = LSONPROC;
    560 		newl->l_pflag |= LP_RUNNING;
    561 	}
    562 
    563 	/*
    564 	 * Only clear want_resched if there are no pending (slow)
    565 	 * software interrupts.
    566 	 */
    567 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    568 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    569 	spc->spc_curpriority = lwp_eprio(newl);
    570 
    571 	return newl;
    572 }
    573 
    574 /*
    575  * The machine independent parts of context switch.
    576  *
    577  * Returns 1 if another LWP was actually run.
    578  */
    579 int
    580 mi_switch(lwp_t *l)
    581 {
    582 	struct cpu_info *ci;
    583 	struct schedstate_percpu *spc;
    584 	struct lwp *newl;
    585 	int retval, oldspl;
    586 	struct bintime bt;
    587 	bool returning;
    588 
    589 	KASSERT(lwp_locked(l, NULL));
    590 	KASSERT(kpreempt_disabled());
    591 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    592 
    593 	kstack_check_magic(l);
    594 
    595 	binuptime(&bt);
    596 
    597 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    598 	KASSERT(l->l_cpu == curcpu());
    599 	ci = l->l_cpu;
    600 	spc = &ci->ci_schedstate;
    601 	returning = false;
    602 	newl = NULL;
    603 
    604 	/*
    605 	 * If we have been asked to switch to a specific LWP, then there
    606 	 * is no need to inspect the run queues.  If a soft interrupt is
    607 	 * blocking, then return to the interrupted thread without adjusting
    608 	 * VM context or its start time: neither have been changed in order
    609 	 * to take the interrupt.
    610 	 */
    611 	if (l->l_switchto != NULL) {
    612 		if ((l->l_pflag & LP_INTR) != 0) {
    613 			returning = true;
    614 			softint_block(l);
    615 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    616 				updatertime(l, &bt);
    617 		}
    618 		newl = l->l_switchto;
    619 		l->l_switchto = NULL;
    620 	}
    621 #ifndef __HAVE_FAST_SOFTINTS
    622 	else if (ci->ci_data.cpu_softints != 0) {
    623 		/* There are pending soft interrupts, so pick one. */
    624 		newl = softint_picklwp();
    625 		newl->l_stat = LSONPROC;
    626 		newl->l_pflag |= LP_RUNNING;
    627 	}
    628 #endif	/* !__HAVE_FAST_SOFTINTS */
    629 
    630 	/* Count time spent in current system call */
    631 	if (!returning) {
    632 		SYSCALL_TIME_SLEEP(l);
    633 
    634 		/*
    635 		 * XXXSMP If we are using h/w performance counters,
    636 		 * save context.
    637 		 */
    638 #if PERFCTRS
    639 		if (PMC_ENABLED(l->l_proc)) {
    640 			pmc_save_context(l->l_proc);
    641 		}
    642 #endif
    643 		updatertime(l, &bt);
    644 	}
    645 
    646 	/* Lock the runqueue */
    647 	KASSERT(l->l_stat != LSRUN);
    648 	mutex_spin_enter(spc->spc_mutex);
    649 
    650 	/*
    651 	 * If on the CPU and we have gotten this far, then we must yield.
    652 	 */
    653 	if (l->l_stat == LSONPROC && l != newl) {
    654 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    655 		if ((l->l_flag & LW_IDLE) == 0) {
    656 			l->l_stat = LSRUN;
    657 			lwp_setlock(l, spc->spc_mutex);
    658 			sched_enqueue(l, true);
    659 			/*
    660 			 * Handle migration.  Note that "migrating LWP" may
    661 			 * be reset here, if interrupt/preemption happens
    662 			 * early in idle LWP.
    663 			 */
    664 			if (l->l_target_cpu != NULL) {
    665 				KASSERT((l->l_pflag & LP_INTR) == 0);
    666 				spc->spc_migrating = l;
    667 			}
    668 		} else
    669 			l->l_stat = LSIDL;
    670 	}
    671 
    672 	/* Pick new LWP to run. */
    673 	if (newl == NULL) {
    674 		newl = nextlwp(ci, spc);
    675 	}
    676 
    677 	/* Items that must be updated with the CPU locked. */
    678 	if (!returning) {
    679 		/* Update the new LWP's start time. */
    680 		newl->l_stime = bt;
    681 
    682 		/*
    683 		 * ci_curlwp changes when a fast soft interrupt occurs.
    684 		 * We use cpu_onproc to keep track of which kernel or
    685 		 * user thread is running 'underneath' the software
    686 		 * interrupt.  This is important for time accounting,
    687 		 * itimers and forcing user threads to preempt (aston).
    688 		 */
    689 		ci->ci_data.cpu_onproc = newl;
    690 	}
    691 
    692 	/*
    693 	 * Preemption related tasks.  Must be done with the current
    694 	 * CPU locked.
    695 	 */
    696 	cpu_did_resched(l);
    697 	l->l_dopreempt = 0;
    698 	if (__predict_false(l->l_pfailaddr != 0)) {
    699 		LOCKSTAT_FLAG(lsflag);
    700 		LOCKSTAT_ENTER(lsflag);
    701 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    702 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    703 		    1, l->l_pfailtime, l->l_pfailaddr);
    704 		LOCKSTAT_EXIT(lsflag);
    705 		l->l_pfailtime = 0;
    706 		l->l_pfaillock = 0;
    707 		l->l_pfailaddr = 0;
    708 	}
    709 
    710 	if (l != newl) {
    711 		struct lwp *prevlwp;
    712 
    713 		/* Release all locks, but leave the current LWP locked */
    714 		if (l->l_mutex == spc->spc_mutex) {
    715 			/*
    716 			 * Drop spc_lwplock, if the current LWP has been moved
    717 			 * to the run queue (it is now locked by spc_mutex).
    718 			 */
    719 			mutex_spin_exit(spc->spc_lwplock);
    720 		} else {
    721 			/*
    722 			 * Otherwise, drop the spc_mutex, we are done with the
    723 			 * run queues.
    724 			 */
    725 			mutex_spin_exit(spc->spc_mutex);
    726 		}
    727 
    728 		/*
    729 		 * Mark that context switch is going to be performed
    730 		 * for this LWP, to protect it from being switched
    731 		 * to on another CPU.
    732 		 */
    733 		KASSERT(l->l_ctxswtch == 0);
    734 		l->l_ctxswtch = 1;
    735 		l->l_ncsw++;
    736 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    737 		l->l_pflag &= ~LP_RUNNING;
    738 
    739 		/*
    740 		 * Increase the count of spin-mutexes before the release
    741 		 * of the last lock - we must remain at IPL_SCHED during
    742 		 * the context switch.
    743 		 */
    744 		KASSERTMSG(ci->ci_mtx_count == -1,
    745 		    ("%s: cpu%u: ci_mtx_count (%d) != -1",
    746 		     __func__, cpu_index(ci), ci->ci_mtx_count));
    747 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    748 		ci->ci_mtx_count--;
    749 		lwp_unlock(l);
    750 
    751 		/* Count the context switch on this CPU. */
    752 		ci->ci_data.cpu_nswtch++;
    753 
    754 		/* Update status for lwpctl, if present. */
    755 		if (l->l_lwpctl != NULL)
    756 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    757 
    758 		/*
    759 		 * Save old VM context, unless a soft interrupt
    760 		 * handler is blocking.
    761 		 */
    762 		if (!returning)
    763 			pmap_deactivate(l);
    764 
    765 		/*
    766 		 * We may need to spin-wait if 'newl' is still
    767 		 * context switching on another CPU.
    768 		 */
    769 		if (__predict_false(newl->l_ctxswtch != 0)) {
    770 			u_int count;
    771 			count = SPINLOCK_BACKOFF_MIN;
    772 			while (newl->l_ctxswtch)
    773 				SPINLOCK_BACKOFF(count);
    774 		}
    775 
    776 		/*
    777 		 * If DTrace has set the active vtime enum to anything
    778 		 * other than INACTIVE (0), then it should have set the
    779 		 * function to call.
    780 		 */
    781 		if (__predict_false(dtrace_vtime_active)) {
    782 			(*dtrace_vtime_switch_func)(newl);
    783 		}
    784 
    785 		/* Switch to the new LWP.. */
    786 		prevlwp = cpu_switchto(l, newl, returning);
    787 		ci = curcpu();
    788 
    789 		/*
    790 		 * Switched away - we have new curlwp.
    791 		 * Restore VM context and IPL.
    792 		 */
    793 		pmap_activate(l);
    794 		uvm_emap_switch(l);
    795 		pcu_switchpoint(l);
    796 
    797 		if (prevlwp != NULL) {
    798 			/* Normalize the count of the spin-mutexes */
    799 			ci->ci_mtx_count++;
    800 			/* Unmark the state of context switch */
    801 			membar_exit();
    802 			prevlwp->l_ctxswtch = 0;
    803 		}
    804 
    805 		/* Update status for lwpctl, if present. */
    806 		if (l->l_lwpctl != NULL) {
    807 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    808 			l->l_lwpctl->lc_pctr++;
    809 		}
    810 
    811 		KASSERT(l->l_cpu == ci);
    812 		splx(oldspl);
    813 		retval = 1;
    814 	} else {
    815 		/* Nothing to do - just unlock and return. */
    816 		mutex_spin_exit(spc->spc_mutex);
    817 		lwp_unlock(l);
    818 		retval = 0;
    819 	}
    820 
    821 	KASSERT(l == curlwp);
    822 	KASSERT(l->l_stat == LSONPROC);
    823 
    824 	/*
    825 	 * XXXSMP If we are using h/w performance counters, restore context.
    826 	 * XXXSMP preemption problem.
    827 	 */
    828 #if PERFCTRS
    829 	if (PMC_ENABLED(l->l_proc)) {
    830 		pmc_restore_context(l->l_proc);
    831 	}
    832 #endif
    833 	SYSCALL_TIME_WAKEUP(l);
    834 	LOCKDEBUG_BARRIER(NULL, 1);
    835 
    836 	return retval;
    837 }
    838 
    839 /*
    840  * The machine independent parts of context switch to oblivion.
    841  * Does not return.  Call with the LWP unlocked.
    842  */
    843 void
    844 lwp_exit_switchaway(lwp_t *l)
    845 {
    846 	struct cpu_info *ci;
    847 	struct lwp *newl;
    848 	struct bintime bt;
    849 
    850 	ci = l->l_cpu;
    851 
    852 	KASSERT(kpreempt_disabled());
    853 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    854 	KASSERT(ci == curcpu());
    855 	LOCKDEBUG_BARRIER(NULL, 0);
    856 
    857 	kstack_check_magic(l);
    858 
    859 	/* Count time spent in current system call */
    860 	SYSCALL_TIME_SLEEP(l);
    861 	binuptime(&bt);
    862 	updatertime(l, &bt);
    863 
    864 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    865 	(void)splsched();
    866 
    867 	/*
    868 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    869 	 * If no LWP is runnable, select the idle LWP.
    870 	 *
    871 	 * Note that spc_lwplock might not necessary be held, and
    872 	 * new thread would be unlocked after setting the LWP-lock.
    873 	 */
    874 	spc_lock(ci);
    875 #ifndef __HAVE_FAST_SOFTINTS
    876 	if (ci->ci_data.cpu_softints != 0) {
    877 		/* There are pending soft interrupts, so pick one. */
    878 		newl = softint_picklwp();
    879 		newl->l_stat = LSONPROC;
    880 		newl->l_pflag |= LP_RUNNING;
    881 	} else
    882 #endif	/* !__HAVE_FAST_SOFTINTS */
    883 	{
    884 		newl = nextlwp(ci, &ci->ci_schedstate);
    885 	}
    886 
    887 	/* Update the new LWP's start time. */
    888 	newl->l_stime = bt;
    889 	l->l_pflag &= ~LP_RUNNING;
    890 
    891 	/*
    892 	 * ci_curlwp changes when a fast soft interrupt occurs.
    893 	 * We use cpu_onproc to keep track of which kernel or
    894 	 * user thread is running 'underneath' the software
    895 	 * interrupt.  This is important for time accounting,
    896 	 * itimers and forcing user threads to preempt (aston).
    897 	 */
    898 	ci->ci_data.cpu_onproc = newl;
    899 
    900 	/*
    901 	 * Preemption related tasks.  Must be done with the current
    902 	 * CPU locked.
    903 	 */
    904 	cpu_did_resched(l);
    905 
    906 	/* Unlock the run queue. */
    907 	spc_unlock(ci);
    908 
    909 	/* Count the context switch on this CPU. */
    910 	ci->ci_data.cpu_nswtch++;
    911 
    912 	/* Update status for lwpctl, if present. */
    913 	if (l->l_lwpctl != NULL)
    914 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    915 
    916 	/*
    917 	 * We may need to spin-wait if 'newl' is still
    918 	 * context switching on another CPU.
    919 	 */
    920 	if (__predict_false(newl->l_ctxswtch != 0)) {
    921 		u_int count;
    922 		count = SPINLOCK_BACKOFF_MIN;
    923 		while (newl->l_ctxswtch)
    924 			SPINLOCK_BACKOFF(count);
    925 	}
    926 
    927 	/*
    928 	 * If DTrace has set the active vtime enum to anything
    929 	 * other than INACTIVE (0), then it should have set the
    930 	 * function to call.
    931 	 */
    932 	if (__predict_false(dtrace_vtime_active)) {
    933 		(*dtrace_vtime_switch_func)(newl);
    934 	}
    935 
    936 	/* Switch to the new LWP.. */
    937 	(void)cpu_switchto(NULL, newl, false);
    938 
    939 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    940 	/* NOTREACHED */
    941 }
    942 
    943 /*
    944  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    945  *
    946  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    947  */
    948 void
    949 setrunnable(struct lwp *l)
    950 {
    951 	struct proc *p = l->l_proc;
    952 	struct cpu_info *ci;
    953 
    954 	KASSERT((l->l_flag & LW_IDLE) == 0);
    955 	KASSERT(mutex_owned(p->p_lock));
    956 	KASSERT(lwp_locked(l, NULL));
    957 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    958 
    959 	switch (l->l_stat) {
    960 	case LSSTOP:
    961 		/*
    962 		 * If we're being traced (possibly because someone attached us
    963 		 * while we were stopped), check for a signal from the debugger.
    964 		 */
    965 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    966 			signotify(l);
    967 		p->p_nrlwps++;
    968 		break;
    969 	case LSSUSPENDED:
    970 		l->l_flag &= ~LW_WSUSPEND;
    971 		p->p_nrlwps++;
    972 		cv_broadcast(&p->p_lwpcv);
    973 		break;
    974 	case LSSLEEP:
    975 		KASSERT(l->l_wchan != NULL);
    976 		break;
    977 	default:
    978 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    979 	}
    980 
    981 #ifdef KERN_SA
    982 	if (l->l_proc->p_sa)
    983 		sa_awaken(l);
    984 #endif /* KERN_SA */
    985 
    986 	/*
    987 	 * If the LWP was sleeping, start it again.
    988 	 */
    989 	if (l->l_wchan != NULL) {
    990 		l->l_stat = LSSLEEP;
    991 		/* lwp_unsleep() will release the lock. */
    992 		lwp_unsleep(l, true);
    993 		return;
    994 	}
    995 
    996 	/*
    997 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    998 	 * about to call mi_switch(), in which case it will yield.
    999 	 */
   1000 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1001 		l->l_stat = LSONPROC;
   1002 		l->l_slptime = 0;
   1003 		lwp_unlock(l);
   1004 		return;
   1005 	}
   1006 
   1007 	/*
   1008 	 * Look for a CPU to run.
   1009 	 * Set the LWP runnable.
   1010 	 */
   1011 	ci = sched_takecpu(l);
   1012 	l->l_cpu = ci;
   1013 	spc_lock(ci);
   1014 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1015 	sched_setrunnable(l);
   1016 	l->l_stat = LSRUN;
   1017 	l->l_slptime = 0;
   1018 
   1019 	sched_enqueue(l, false);
   1020 	resched_cpu(l);
   1021 	lwp_unlock(l);
   1022 }
   1023 
   1024 /*
   1025  * suspendsched:
   1026  *
   1027  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1028  */
   1029 void
   1030 suspendsched(void)
   1031 {
   1032 	CPU_INFO_ITERATOR cii;
   1033 	struct cpu_info *ci;
   1034 	struct lwp *l;
   1035 	struct proc *p;
   1036 
   1037 	/*
   1038 	 * We do this by process in order not to violate the locking rules.
   1039 	 */
   1040 	mutex_enter(proc_lock);
   1041 	PROCLIST_FOREACH(p, &allproc) {
   1042 		mutex_enter(p->p_lock);
   1043 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1044 			mutex_exit(p->p_lock);
   1045 			continue;
   1046 		}
   1047 
   1048 		p->p_stat = SSTOP;
   1049 
   1050 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1051 			if (l == curlwp)
   1052 				continue;
   1053 
   1054 			lwp_lock(l);
   1055 
   1056 			/*
   1057 			 * Set L_WREBOOT so that the LWP will suspend itself
   1058 			 * when it tries to return to user mode.  We want to
   1059 			 * try and get to get as many LWPs as possible to
   1060 			 * the user / kernel boundary, so that they will
   1061 			 * release any locks that they hold.
   1062 			 */
   1063 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1064 
   1065 			if (l->l_stat == LSSLEEP &&
   1066 			    (l->l_flag & LW_SINTR) != 0) {
   1067 				/* setrunnable() will release the lock. */
   1068 				setrunnable(l);
   1069 				continue;
   1070 			}
   1071 
   1072 			lwp_unlock(l);
   1073 		}
   1074 
   1075 		mutex_exit(p->p_lock);
   1076 	}
   1077 	mutex_exit(proc_lock);
   1078 
   1079 	/*
   1080 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1081 	 * They'll trap into the kernel and suspend themselves in userret().
   1082 	 */
   1083 	for (CPU_INFO_FOREACH(cii, ci)) {
   1084 		spc_lock(ci);
   1085 		cpu_need_resched(ci, RESCHED_IMMED);
   1086 		spc_unlock(ci);
   1087 	}
   1088 }
   1089 
   1090 /*
   1091  * sched_unsleep:
   1092  *
   1093  *	The is called when the LWP has not been awoken normally but instead
   1094  *	interrupted: for example, if the sleep timed out.  Because of this,
   1095  *	it's not a valid action for running or idle LWPs.
   1096  */
   1097 static void
   1098 sched_unsleep(struct lwp *l, bool cleanup)
   1099 {
   1100 
   1101 	lwp_unlock(l);
   1102 	panic("sched_unsleep");
   1103 }
   1104 
   1105 static void
   1106 resched_cpu(struct lwp *l)
   1107 {
   1108 	struct cpu_info *ci = l->l_cpu;
   1109 
   1110 	KASSERT(lwp_locked(l, NULL));
   1111 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1112 		cpu_need_resched(ci, 0);
   1113 }
   1114 
   1115 static void
   1116 sched_changepri(struct lwp *l, pri_t pri)
   1117 {
   1118 
   1119 	KASSERT(lwp_locked(l, NULL));
   1120 
   1121 	if (l->l_stat == LSRUN) {
   1122 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1123 		sched_dequeue(l);
   1124 		l->l_priority = pri;
   1125 		sched_enqueue(l, false);
   1126 	} else {
   1127 		l->l_priority = pri;
   1128 	}
   1129 	resched_cpu(l);
   1130 }
   1131 
   1132 static void
   1133 sched_lendpri(struct lwp *l, pri_t pri)
   1134 {
   1135 
   1136 	KASSERT(lwp_locked(l, NULL));
   1137 
   1138 	if (l->l_stat == LSRUN) {
   1139 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1140 		sched_dequeue(l);
   1141 		l->l_inheritedprio = pri;
   1142 		sched_enqueue(l, false);
   1143 	} else {
   1144 		l->l_inheritedprio = pri;
   1145 	}
   1146 	resched_cpu(l);
   1147 }
   1148 
   1149 struct lwp *
   1150 syncobj_noowner(wchan_t wchan)
   1151 {
   1152 
   1153 	return NULL;
   1154 }
   1155 
   1156 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1157 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1158 
   1159 /*
   1160  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1161  * 5 second intervals.
   1162  */
   1163 static const fixpt_t cexp[ ] = {
   1164 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1165 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1166 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1167 };
   1168 
   1169 /*
   1170  * sched_pstats:
   1171  *
   1172  * => Update process statistics and check CPU resource allocation.
   1173  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1174  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1175  */
   1176 void
   1177 sched_pstats(void)
   1178 {
   1179 	extern struct loadavg averunnable;
   1180 	struct loadavg *avg = &averunnable;
   1181 	const int clkhz = (stathz != 0 ? stathz : hz);
   1182 	static bool backwards = false;
   1183 	static u_int lavg_count = 0;
   1184 	struct proc *p;
   1185 	int nrun;
   1186 
   1187 	sched_pstats_ticks++;
   1188 	if (++lavg_count >= 5) {
   1189 		lavg_count = 0;
   1190 		nrun = 0;
   1191 	}
   1192 	mutex_enter(proc_lock);
   1193 	PROCLIST_FOREACH(p, &allproc) {
   1194 		struct lwp *l;
   1195 		struct rlimit *rlim;
   1196 		long runtm;
   1197 		int sig;
   1198 
   1199 		/* Increment sleep time (if sleeping), ignore overflow. */
   1200 		mutex_enter(p->p_lock);
   1201 		runtm = p->p_rtime.sec;
   1202 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1203 			fixpt_t lpctcpu;
   1204 			u_int lcpticks;
   1205 
   1206 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1207 				continue;
   1208 			lwp_lock(l);
   1209 			runtm += l->l_rtime.sec;
   1210 			l->l_swtime++;
   1211 			sched_lwp_stats(l);
   1212 
   1213 			/* For load average calculation. */
   1214 			if (__predict_false(lavg_count == 0) &&
   1215 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1216 				switch (l->l_stat) {
   1217 				case LSSLEEP:
   1218 					if (l->l_slptime > 1) {
   1219 						break;
   1220 					}
   1221 				case LSRUN:
   1222 				case LSONPROC:
   1223 				case LSIDL:
   1224 					nrun++;
   1225 				}
   1226 			}
   1227 			lwp_unlock(l);
   1228 
   1229 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1230 			if (l->l_slptime != 0)
   1231 				continue;
   1232 
   1233 			lpctcpu = l->l_pctcpu;
   1234 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1235 			lpctcpu += ((FSCALE - ccpu) *
   1236 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1237 			l->l_pctcpu = lpctcpu;
   1238 		}
   1239 		/* Calculating p_pctcpu only for ps(1) */
   1240 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1241 
   1242 		/*
   1243 		 * Check if the process exceeds its CPU resource allocation.
   1244 		 * If over max, kill it.
   1245 		 */
   1246 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1247 		sig = 0;
   1248 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1249 			if (runtm >= rlim->rlim_max)
   1250 				sig = SIGKILL;
   1251 			else {
   1252 				sig = SIGXCPU;
   1253 				if (rlim->rlim_cur < rlim->rlim_max)
   1254 					rlim->rlim_cur += 5;
   1255 			}
   1256 		}
   1257 		mutex_exit(p->p_lock);
   1258 		if (__predict_false(runtm < 0)) {
   1259 			if (!backwards) {
   1260 				backwards = true;
   1261 				printf("WARNING: negative runtime; "
   1262 				    "monotonic clock has gone backwards\n");
   1263 			}
   1264 		} else if (__predict_false(sig)) {
   1265 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1266 			psignal(p, sig);
   1267 		}
   1268 	}
   1269 	mutex_exit(proc_lock);
   1270 
   1271 	/* Load average calculation. */
   1272 	if (__predict_false(lavg_count == 0)) {
   1273 		int i;
   1274 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1275 		for (i = 0; i < __arraycount(cexp); i++) {
   1276 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1277 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1278 		}
   1279 	}
   1280 
   1281 	/* Lightning bolt. */
   1282 	cv_broadcast(&lbolt);
   1283 }
   1284