kern_synch.c revision 1.289 1 /* $NetBSD: kern_synch.c,v 1.289 2011/05/13 22:16:43 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.289 2011/05/13 22:16:43 rmind Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 #include "opt_dtrace.h"
78
79 #define __MUTEX_PRIVATE
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/kernel.h>
85 #if defined(PERFCTRS)
86 #include <sys/pmc.h>
87 #endif
88 #include <sys/cpu.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/syscall_stats.h>
94 #include <sys/sleepq.h>
95 #include <sys/lockdebug.h>
96 #include <sys/evcnt.h>
97 #include <sys/intr.h>
98 #include <sys/lwpctl.h>
99 #include <sys/atomic.h>
100 #include <sys/simplelock.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <dev/lockstat.h>
105
106 #include <sys/dtrace_bsd.h>
107 int dtrace_vtime_active=0;
108 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
109
110 static void sched_unsleep(struct lwp *, bool);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113 static void resched_cpu(struct lwp *);
114
115 syncobj_t sleep_syncobj = {
116 SOBJ_SLEEPQ_SORTED,
117 sleepq_unsleep,
118 sleepq_changepri,
119 sleepq_lendpri,
120 syncobj_noowner,
121 };
122
123 syncobj_t sched_syncobj = {
124 SOBJ_SLEEPQ_SORTED,
125 sched_unsleep,
126 sched_changepri,
127 sched_lendpri,
128 syncobj_noowner,
129 };
130
131 /* "Lightning bolt": once a second sleep address. */
132 kcondvar_t lbolt __cacheline_aligned;
133
134 u_int sched_pstats_ticks __cacheline_aligned;
135
136 /* Preemption event counters. */
137 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
138 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
139 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
140
141 /*
142 * During autoconfiguration or after a panic, a sleep will simply lower the
143 * priority briefly to allow interrupts, then return. The priority to be
144 * used (safepri) is machine-dependent, thus this value is initialized and
145 * maintained in the machine-dependent layers. This priority will typically
146 * be 0, or the lowest priority that is safe for use on the interrupt stack;
147 * it can be made higher to block network software interrupts after panics.
148 */
149 int safepri;
150
151 void
152 synch_init(void)
153 {
154
155 cv_init(&lbolt, "lbolt");
156
157 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
158 "kpreempt", "defer: critical section");
159 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
160 "kpreempt", "defer: kernel_lock");
161 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
162 "kpreempt", "immediate");
163 }
164
165 /*
166 * OBSOLETE INTERFACE
167 *
168 * General sleep call. Suspends the current LWP until a wakeup is
169 * performed on the specified identifier. The LWP will then be made
170 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
171 * means no timeout). If pri includes PCATCH flag, signals are checked
172 * before and after sleeping, else signals are not checked. Returns 0 if
173 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
174 * signal needs to be delivered, ERESTART is returned if the current system
175 * call should be restarted if possible, and EINTR is returned if the system
176 * call should be interrupted by the signal (return EINTR).
177 *
178 * The interlock is held until we are on a sleep queue. The interlock will
179 * be locked before returning back to the caller unless the PNORELOCK flag
180 * is specified, in which case the interlock will always be unlocked upon
181 * return.
182 */
183 int
184 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 volatile struct simplelock *interlock)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 int error;
191
192 KASSERT((l->l_pflag & LP_INTR) == 0);
193 KASSERT(ident != &lbolt);
194
195 if (sleepq_dontsleep(l)) {
196 (void)sleepq_abort(NULL, 0);
197 if ((priority & PNORELOCK) != 0)
198 simple_unlock(interlock);
199 return 0;
200 }
201
202 l->l_kpriority = true;
203 sq = sleeptab_lookup(&sleeptab, ident, &mp);
204 sleepq_enter(sq, l, mp);
205 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
206
207 if (interlock != NULL) {
208 KASSERT(simple_lock_held(interlock));
209 simple_unlock(interlock);
210 }
211
212 error = sleepq_block(timo, priority & PCATCH);
213
214 if (interlock != NULL && (priority & PNORELOCK) == 0)
215 simple_lock(interlock);
216
217 return error;
218 }
219
220 int
221 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
222 kmutex_t *mtx)
223 {
224 struct lwp *l = curlwp;
225 sleepq_t *sq;
226 kmutex_t *mp;
227 int error;
228
229 KASSERT((l->l_pflag & LP_INTR) == 0);
230 KASSERT(ident != &lbolt);
231
232 if (sleepq_dontsleep(l)) {
233 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
234 return 0;
235 }
236
237 l->l_kpriority = true;
238 sq = sleeptab_lookup(&sleeptab, ident, &mp);
239 sleepq_enter(sq, l, mp);
240 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
241 mutex_exit(mtx);
242 error = sleepq_block(timo, priority & PCATCH);
243
244 if ((priority & PNORELOCK) == 0)
245 mutex_enter(mtx);
246
247 return error;
248 }
249
250 /*
251 * General sleep call for situations where a wake-up is not expected.
252 */
253 int
254 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
255 {
256 struct lwp *l = curlwp;
257 kmutex_t *mp;
258 sleepq_t *sq;
259 int error;
260
261 KASSERT(!(timo == 0 && intr == false));
262
263 if (sleepq_dontsleep(l))
264 return sleepq_abort(NULL, 0);
265
266 if (mtx != NULL)
267 mutex_exit(mtx);
268 l->l_kpriority = true;
269 sq = sleeptab_lookup(&sleeptab, l, &mp);
270 sleepq_enter(sq, l, mp);
271 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
272 error = sleepq_block(timo, intr);
273 if (mtx != NULL)
274 mutex_enter(mtx);
275
276 return error;
277 }
278
279 #ifdef KERN_SA
280 /*
281 * sa_awaken:
282 *
283 * We believe this lwp is an SA lwp. If it's yielding,
284 * let it know it needs to wake up.
285 *
286 * We are called and exit with the lwp locked. We are
287 * called in the middle of wakeup operations, so we need
288 * to not touch the locks at all.
289 */
290 void
291 sa_awaken(struct lwp *l)
292 {
293 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
294
295 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
296 l->l_flag &= ~LW_SA_IDLE;
297 }
298 #endif /* KERN_SA */
299
300 /*
301 * OBSOLETE INTERFACE
302 *
303 * Make all LWPs sleeping on the specified identifier runnable.
304 */
305 void
306 wakeup(wchan_t ident)
307 {
308 sleepq_t *sq;
309 kmutex_t *mp;
310
311 if (__predict_false(cold))
312 return;
313
314 sq = sleeptab_lookup(&sleeptab, ident, &mp);
315 sleepq_wake(sq, ident, (u_int)-1, mp);
316 }
317
318 /*
319 * OBSOLETE INTERFACE
320 *
321 * Make the highest priority LWP first in line on the specified
322 * identifier runnable.
323 */
324 void
325 wakeup_one(wchan_t ident)
326 {
327 sleepq_t *sq;
328 kmutex_t *mp;
329
330 if (__predict_false(cold))
331 return;
332
333 sq = sleeptab_lookup(&sleeptab, ident, &mp);
334 sleepq_wake(sq, ident, 1, mp);
335 }
336
337
338 /*
339 * General yield call. Puts the current LWP back on its run queue and
340 * performs a voluntary context switch. Should only be called when the
341 * current LWP explicitly requests it (eg sched_yield(2)).
342 */
343 void
344 yield(void)
345 {
346 struct lwp *l = curlwp;
347
348 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
349 lwp_lock(l);
350 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
351 KASSERT(l->l_stat == LSONPROC);
352 l->l_kpriority = false;
353 (void)mi_switch(l);
354 KERNEL_LOCK(l->l_biglocks, l);
355 }
356
357 /*
358 * General preemption call. Puts the current LWP back on its run queue
359 * and performs an involuntary context switch.
360 */
361 void
362 preempt(void)
363 {
364 struct lwp *l = curlwp;
365
366 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
367 lwp_lock(l);
368 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
369 KASSERT(l->l_stat == LSONPROC);
370 l->l_kpriority = false;
371 l->l_nivcsw++;
372 (void)mi_switch(l);
373 KERNEL_LOCK(l->l_biglocks, l);
374 }
375
376 /*
377 * Handle a request made by another agent to preempt the current LWP
378 * in-kernel. Usually called when l_dopreempt may be non-zero.
379 *
380 * Character addresses for lockstat only.
381 */
382 static char in_critical_section;
383 static char kernel_lock_held;
384 static char is_softint;
385 static char cpu_kpreempt_enter_fail;
386
387 bool
388 kpreempt(uintptr_t where)
389 {
390 uintptr_t failed;
391 lwp_t *l;
392 int s, dop, lsflag;
393
394 l = curlwp;
395 failed = 0;
396 while ((dop = l->l_dopreempt) != 0) {
397 if (l->l_stat != LSONPROC) {
398 /*
399 * About to block (or die), let it happen.
400 * Doesn't really count as "preemption has
401 * been blocked", since we're going to
402 * context switch.
403 */
404 l->l_dopreempt = 0;
405 return true;
406 }
407 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
408 /* Can't preempt idle loop, don't count as failure. */
409 l->l_dopreempt = 0;
410 return true;
411 }
412 if (__predict_false(l->l_nopreempt != 0)) {
413 /* LWP holds preemption disabled, explicitly. */
414 if ((dop & DOPREEMPT_COUNTED) == 0) {
415 kpreempt_ev_crit.ev_count++;
416 }
417 failed = (uintptr_t)&in_critical_section;
418 break;
419 }
420 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
421 /* Can't preempt soft interrupts yet. */
422 l->l_dopreempt = 0;
423 failed = (uintptr_t)&is_softint;
424 break;
425 }
426 s = splsched();
427 if (__predict_false(l->l_blcnt != 0 ||
428 curcpu()->ci_biglock_wanted != NULL)) {
429 /* Hold or want kernel_lock, code is not MT safe. */
430 splx(s);
431 if ((dop & DOPREEMPT_COUNTED) == 0) {
432 kpreempt_ev_klock.ev_count++;
433 }
434 failed = (uintptr_t)&kernel_lock_held;
435 break;
436 }
437 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
438 /*
439 * It may be that the IPL is too high.
440 * kpreempt_enter() can schedule an
441 * interrupt to retry later.
442 */
443 splx(s);
444 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
445 break;
446 }
447 /* Do it! */
448 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
449 kpreempt_ev_immed.ev_count++;
450 }
451 lwp_lock(l);
452 mi_switch(l);
453 l->l_nopreempt++;
454 splx(s);
455
456 /* Take care of any MD cleanup. */
457 cpu_kpreempt_exit(where);
458 l->l_nopreempt--;
459 }
460
461 if (__predict_true(!failed)) {
462 return false;
463 }
464
465 /* Record preemption failure for reporting via lockstat. */
466 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
467 lsflag = 0;
468 LOCKSTAT_ENTER(lsflag);
469 if (__predict_false(lsflag)) {
470 if (where == 0) {
471 where = (uintptr_t)__builtin_return_address(0);
472 }
473 /* Preemption is on, might recurse, so make it atomic. */
474 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
475 (void *)where) == NULL) {
476 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
477 l->l_pfaillock = failed;
478 }
479 }
480 LOCKSTAT_EXIT(lsflag);
481 return true;
482 }
483
484 /*
485 * Return true if preemption is explicitly disabled.
486 */
487 bool
488 kpreempt_disabled(void)
489 {
490 const lwp_t *l = curlwp;
491
492 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
493 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
494 }
495
496 /*
497 * Disable kernel preemption.
498 */
499 void
500 kpreempt_disable(void)
501 {
502
503 KPREEMPT_DISABLE(curlwp);
504 }
505
506 /*
507 * Reenable kernel preemption.
508 */
509 void
510 kpreempt_enable(void)
511 {
512
513 KPREEMPT_ENABLE(curlwp);
514 }
515
516 /*
517 * Compute the amount of time during which the current lwp was running.
518 *
519 * - update l_rtime unless it's an idle lwp.
520 */
521
522 void
523 updatertime(lwp_t *l, const struct bintime *now)
524 {
525
526 if (__predict_false(l->l_flag & LW_IDLE))
527 return;
528
529 /* rtime += now - stime */
530 bintime_add(&l->l_rtime, now);
531 bintime_sub(&l->l_rtime, &l->l_stime);
532 }
533
534 /*
535 * Select next LWP from the current CPU to run..
536 */
537 static inline lwp_t *
538 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
539 {
540 lwp_t *newl;
541
542 /*
543 * Let sched_nextlwp() select the LWP to run the CPU next.
544 * If no LWP is runnable, select the idle LWP.
545 *
546 * Note that spc_lwplock might not necessary be held, and
547 * new thread would be unlocked after setting the LWP-lock.
548 */
549 newl = sched_nextlwp();
550 if (newl != NULL) {
551 sched_dequeue(newl);
552 KASSERT(lwp_locked(newl, spc->spc_mutex));
553 KASSERT(newl->l_cpu == ci);
554 newl->l_stat = LSONPROC;
555 newl->l_pflag |= LP_RUNNING;
556 lwp_setlock(newl, spc->spc_lwplock);
557 } else {
558 newl = ci->ci_data.cpu_idlelwp;
559 newl->l_stat = LSONPROC;
560 newl->l_pflag |= LP_RUNNING;
561 }
562
563 /*
564 * Only clear want_resched if there are no pending (slow)
565 * software interrupts.
566 */
567 ci->ci_want_resched = ci->ci_data.cpu_softints;
568 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
569 spc->spc_curpriority = lwp_eprio(newl);
570
571 return newl;
572 }
573
574 /*
575 * The machine independent parts of context switch.
576 *
577 * Returns 1 if another LWP was actually run.
578 */
579 int
580 mi_switch(lwp_t *l)
581 {
582 struct cpu_info *ci;
583 struct schedstate_percpu *spc;
584 struct lwp *newl;
585 int retval, oldspl;
586 struct bintime bt;
587 bool returning;
588
589 KASSERT(lwp_locked(l, NULL));
590 KASSERT(kpreempt_disabled());
591 LOCKDEBUG_BARRIER(l->l_mutex, 1);
592
593 kstack_check_magic(l);
594
595 binuptime(&bt);
596
597 KASSERT((l->l_pflag & LP_RUNNING) != 0);
598 KASSERT(l->l_cpu == curcpu());
599 ci = l->l_cpu;
600 spc = &ci->ci_schedstate;
601 returning = false;
602 newl = NULL;
603
604 /*
605 * If we have been asked to switch to a specific LWP, then there
606 * is no need to inspect the run queues. If a soft interrupt is
607 * blocking, then return to the interrupted thread without adjusting
608 * VM context or its start time: neither have been changed in order
609 * to take the interrupt.
610 */
611 if (l->l_switchto != NULL) {
612 if ((l->l_pflag & LP_INTR) != 0) {
613 returning = true;
614 softint_block(l);
615 if ((l->l_pflag & LP_TIMEINTR) != 0)
616 updatertime(l, &bt);
617 }
618 newl = l->l_switchto;
619 l->l_switchto = NULL;
620 }
621 #ifndef __HAVE_FAST_SOFTINTS
622 else if (ci->ci_data.cpu_softints != 0) {
623 /* There are pending soft interrupts, so pick one. */
624 newl = softint_picklwp();
625 newl->l_stat = LSONPROC;
626 newl->l_pflag |= LP_RUNNING;
627 }
628 #endif /* !__HAVE_FAST_SOFTINTS */
629
630 /* Count time spent in current system call */
631 if (!returning) {
632 SYSCALL_TIME_SLEEP(l);
633
634 /*
635 * XXXSMP If we are using h/w performance counters,
636 * save context.
637 */
638 #if PERFCTRS
639 if (PMC_ENABLED(l->l_proc)) {
640 pmc_save_context(l->l_proc);
641 }
642 #endif
643 updatertime(l, &bt);
644 }
645
646 /* Lock the runqueue */
647 KASSERT(l->l_stat != LSRUN);
648 mutex_spin_enter(spc->spc_mutex);
649
650 /*
651 * If on the CPU and we have gotten this far, then we must yield.
652 */
653 if (l->l_stat == LSONPROC && l != newl) {
654 KASSERT(lwp_locked(l, spc->spc_lwplock));
655 if ((l->l_flag & LW_IDLE) == 0) {
656 l->l_stat = LSRUN;
657 lwp_setlock(l, spc->spc_mutex);
658 sched_enqueue(l, true);
659 /*
660 * Handle migration. Note that "migrating LWP" may
661 * be reset here, if interrupt/preemption happens
662 * early in idle LWP.
663 */
664 if (l->l_target_cpu != NULL) {
665 KASSERT((l->l_pflag & LP_INTR) == 0);
666 spc->spc_migrating = l;
667 }
668 } else
669 l->l_stat = LSIDL;
670 }
671
672 /* Pick new LWP to run. */
673 if (newl == NULL) {
674 newl = nextlwp(ci, spc);
675 }
676
677 /* Items that must be updated with the CPU locked. */
678 if (!returning) {
679 /* Update the new LWP's start time. */
680 newl->l_stime = bt;
681
682 /*
683 * ci_curlwp changes when a fast soft interrupt occurs.
684 * We use cpu_onproc to keep track of which kernel or
685 * user thread is running 'underneath' the software
686 * interrupt. This is important for time accounting,
687 * itimers and forcing user threads to preempt (aston).
688 */
689 ci->ci_data.cpu_onproc = newl;
690 }
691
692 /*
693 * Preemption related tasks. Must be done with the current
694 * CPU locked.
695 */
696 cpu_did_resched(l);
697 l->l_dopreempt = 0;
698 if (__predict_false(l->l_pfailaddr != 0)) {
699 LOCKSTAT_FLAG(lsflag);
700 LOCKSTAT_ENTER(lsflag);
701 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
702 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
703 1, l->l_pfailtime, l->l_pfailaddr);
704 LOCKSTAT_EXIT(lsflag);
705 l->l_pfailtime = 0;
706 l->l_pfaillock = 0;
707 l->l_pfailaddr = 0;
708 }
709
710 if (l != newl) {
711 struct lwp *prevlwp;
712
713 /* Release all locks, but leave the current LWP locked */
714 if (l->l_mutex == spc->spc_mutex) {
715 /*
716 * Drop spc_lwplock, if the current LWP has been moved
717 * to the run queue (it is now locked by spc_mutex).
718 */
719 mutex_spin_exit(spc->spc_lwplock);
720 } else {
721 /*
722 * Otherwise, drop the spc_mutex, we are done with the
723 * run queues.
724 */
725 mutex_spin_exit(spc->spc_mutex);
726 }
727
728 /*
729 * Mark that context switch is going to be performed
730 * for this LWP, to protect it from being switched
731 * to on another CPU.
732 */
733 KASSERT(l->l_ctxswtch == 0);
734 l->l_ctxswtch = 1;
735 l->l_ncsw++;
736 KASSERT((l->l_pflag & LP_RUNNING) != 0);
737 l->l_pflag &= ~LP_RUNNING;
738
739 /*
740 * Increase the count of spin-mutexes before the release
741 * of the last lock - we must remain at IPL_SCHED during
742 * the context switch.
743 */
744 KASSERTMSG(ci->ci_mtx_count == -1,
745 ("%s: cpu%u: ci_mtx_count (%d) != -1",
746 __func__, cpu_index(ci), ci->ci_mtx_count));
747 oldspl = MUTEX_SPIN_OLDSPL(ci);
748 ci->ci_mtx_count--;
749 lwp_unlock(l);
750
751 /* Count the context switch on this CPU. */
752 ci->ci_data.cpu_nswtch++;
753
754 /* Update status for lwpctl, if present. */
755 if (l->l_lwpctl != NULL)
756 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
757
758 /*
759 * Save old VM context, unless a soft interrupt
760 * handler is blocking.
761 */
762 if (!returning)
763 pmap_deactivate(l);
764
765 /*
766 * We may need to spin-wait if 'newl' is still
767 * context switching on another CPU.
768 */
769 if (__predict_false(newl->l_ctxswtch != 0)) {
770 u_int count;
771 count = SPINLOCK_BACKOFF_MIN;
772 while (newl->l_ctxswtch)
773 SPINLOCK_BACKOFF(count);
774 }
775
776 /*
777 * If DTrace has set the active vtime enum to anything
778 * other than INACTIVE (0), then it should have set the
779 * function to call.
780 */
781 if (__predict_false(dtrace_vtime_active)) {
782 (*dtrace_vtime_switch_func)(newl);
783 }
784
785 /* Switch to the new LWP.. */
786 prevlwp = cpu_switchto(l, newl, returning);
787 ci = curcpu();
788
789 /*
790 * Switched away - we have new curlwp.
791 * Restore VM context and IPL.
792 */
793 pmap_activate(l);
794 uvm_emap_switch(l);
795 pcu_switchpoint(l);
796
797 if (prevlwp != NULL) {
798 /* Normalize the count of the spin-mutexes */
799 ci->ci_mtx_count++;
800 /* Unmark the state of context switch */
801 membar_exit();
802 prevlwp->l_ctxswtch = 0;
803 }
804
805 /* Update status for lwpctl, if present. */
806 if (l->l_lwpctl != NULL) {
807 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
808 l->l_lwpctl->lc_pctr++;
809 }
810
811 KASSERT(l->l_cpu == ci);
812 splx(oldspl);
813 retval = 1;
814 } else {
815 /* Nothing to do - just unlock and return. */
816 mutex_spin_exit(spc->spc_mutex);
817 lwp_unlock(l);
818 retval = 0;
819 }
820
821 KASSERT(l == curlwp);
822 KASSERT(l->l_stat == LSONPROC);
823
824 /*
825 * XXXSMP If we are using h/w performance counters, restore context.
826 * XXXSMP preemption problem.
827 */
828 #if PERFCTRS
829 if (PMC_ENABLED(l->l_proc)) {
830 pmc_restore_context(l->l_proc);
831 }
832 #endif
833 SYSCALL_TIME_WAKEUP(l);
834 LOCKDEBUG_BARRIER(NULL, 1);
835
836 return retval;
837 }
838
839 /*
840 * The machine independent parts of context switch to oblivion.
841 * Does not return. Call with the LWP unlocked.
842 */
843 void
844 lwp_exit_switchaway(lwp_t *l)
845 {
846 struct cpu_info *ci;
847 struct lwp *newl;
848 struct bintime bt;
849
850 ci = l->l_cpu;
851
852 KASSERT(kpreempt_disabled());
853 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
854 KASSERT(ci == curcpu());
855 LOCKDEBUG_BARRIER(NULL, 0);
856
857 kstack_check_magic(l);
858
859 /* Count time spent in current system call */
860 SYSCALL_TIME_SLEEP(l);
861 binuptime(&bt);
862 updatertime(l, &bt);
863
864 /* Must stay at IPL_SCHED even after releasing run queue lock. */
865 (void)splsched();
866
867 /*
868 * Let sched_nextlwp() select the LWP to run the CPU next.
869 * If no LWP is runnable, select the idle LWP.
870 *
871 * Note that spc_lwplock might not necessary be held, and
872 * new thread would be unlocked after setting the LWP-lock.
873 */
874 spc_lock(ci);
875 #ifndef __HAVE_FAST_SOFTINTS
876 if (ci->ci_data.cpu_softints != 0) {
877 /* There are pending soft interrupts, so pick one. */
878 newl = softint_picklwp();
879 newl->l_stat = LSONPROC;
880 newl->l_pflag |= LP_RUNNING;
881 } else
882 #endif /* !__HAVE_FAST_SOFTINTS */
883 {
884 newl = nextlwp(ci, &ci->ci_schedstate);
885 }
886
887 /* Update the new LWP's start time. */
888 newl->l_stime = bt;
889 l->l_pflag &= ~LP_RUNNING;
890
891 /*
892 * ci_curlwp changes when a fast soft interrupt occurs.
893 * We use cpu_onproc to keep track of which kernel or
894 * user thread is running 'underneath' the software
895 * interrupt. This is important for time accounting,
896 * itimers and forcing user threads to preempt (aston).
897 */
898 ci->ci_data.cpu_onproc = newl;
899
900 /*
901 * Preemption related tasks. Must be done with the current
902 * CPU locked.
903 */
904 cpu_did_resched(l);
905
906 /* Unlock the run queue. */
907 spc_unlock(ci);
908
909 /* Count the context switch on this CPU. */
910 ci->ci_data.cpu_nswtch++;
911
912 /* Update status for lwpctl, if present. */
913 if (l->l_lwpctl != NULL)
914 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
915
916 /*
917 * We may need to spin-wait if 'newl' is still
918 * context switching on another CPU.
919 */
920 if (__predict_false(newl->l_ctxswtch != 0)) {
921 u_int count;
922 count = SPINLOCK_BACKOFF_MIN;
923 while (newl->l_ctxswtch)
924 SPINLOCK_BACKOFF(count);
925 }
926
927 /*
928 * If DTrace has set the active vtime enum to anything
929 * other than INACTIVE (0), then it should have set the
930 * function to call.
931 */
932 if (__predict_false(dtrace_vtime_active)) {
933 (*dtrace_vtime_switch_func)(newl);
934 }
935
936 /* Switch to the new LWP.. */
937 (void)cpu_switchto(NULL, newl, false);
938
939 for (;;) continue; /* XXX: convince gcc about "noreturn" */
940 /* NOTREACHED */
941 }
942
943 /*
944 * setrunnable: change LWP state to be runnable, placing it on the run queue.
945 *
946 * Call with the process and LWP locked. Will return with the LWP unlocked.
947 */
948 void
949 setrunnable(struct lwp *l)
950 {
951 struct proc *p = l->l_proc;
952 struct cpu_info *ci;
953
954 KASSERT((l->l_flag & LW_IDLE) == 0);
955 KASSERT(mutex_owned(p->p_lock));
956 KASSERT(lwp_locked(l, NULL));
957 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
958
959 switch (l->l_stat) {
960 case LSSTOP:
961 /*
962 * If we're being traced (possibly because someone attached us
963 * while we were stopped), check for a signal from the debugger.
964 */
965 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
966 signotify(l);
967 p->p_nrlwps++;
968 break;
969 case LSSUSPENDED:
970 l->l_flag &= ~LW_WSUSPEND;
971 p->p_nrlwps++;
972 cv_broadcast(&p->p_lwpcv);
973 break;
974 case LSSLEEP:
975 KASSERT(l->l_wchan != NULL);
976 break;
977 default:
978 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
979 }
980
981 #ifdef KERN_SA
982 if (l->l_proc->p_sa)
983 sa_awaken(l);
984 #endif /* KERN_SA */
985
986 /*
987 * If the LWP was sleeping, start it again.
988 */
989 if (l->l_wchan != NULL) {
990 l->l_stat = LSSLEEP;
991 /* lwp_unsleep() will release the lock. */
992 lwp_unsleep(l, true);
993 return;
994 }
995
996 /*
997 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
998 * about to call mi_switch(), in which case it will yield.
999 */
1000 if ((l->l_pflag & LP_RUNNING) != 0) {
1001 l->l_stat = LSONPROC;
1002 l->l_slptime = 0;
1003 lwp_unlock(l);
1004 return;
1005 }
1006
1007 /*
1008 * Look for a CPU to run.
1009 * Set the LWP runnable.
1010 */
1011 ci = sched_takecpu(l);
1012 l->l_cpu = ci;
1013 spc_lock(ci);
1014 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1015 sched_setrunnable(l);
1016 l->l_stat = LSRUN;
1017 l->l_slptime = 0;
1018
1019 sched_enqueue(l, false);
1020 resched_cpu(l);
1021 lwp_unlock(l);
1022 }
1023
1024 /*
1025 * suspendsched:
1026 *
1027 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1028 */
1029 void
1030 suspendsched(void)
1031 {
1032 CPU_INFO_ITERATOR cii;
1033 struct cpu_info *ci;
1034 struct lwp *l;
1035 struct proc *p;
1036
1037 /*
1038 * We do this by process in order not to violate the locking rules.
1039 */
1040 mutex_enter(proc_lock);
1041 PROCLIST_FOREACH(p, &allproc) {
1042 mutex_enter(p->p_lock);
1043 if ((p->p_flag & PK_SYSTEM) != 0) {
1044 mutex_exit(p->p_lock);
1045 continue;
1046 }
1047
1048 p->p_stat = SSTOP;
1049
1050 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1051 if (l == curlwp)
1052 continue;
1053
1054 lwp_lock(l);
1055
1056 /*
1057 * Set L_WREBOOT so that the LWP will suspend itself
1058 * when it tries to return to user mode. We want to
1059 * try and get to get as many LWPs as possible to
1060 * the user / kernel boundary, so that they will
1061 * release any locks that they hold.
1062 */
1063 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1064
1065 if (l->l_stat == LSSLEEP &&
1066 (l->l_flag & LW_SINTR) != 0) {
1067 /* setrunnable() will release the lock. */
1068 setrunnable(l);
1069 continue;
1070 }
1071
1072 lwp_unlock(l);
1073 }
1074
1075 mutex_exit(p->p_lock);
1076 }
1077 mutex_exit(proc_lock);
1078
1079 /*
1080 * Kick all CPUs to make them preempt any LWPs running in user mode.
1081 * They'll trap into the kernel and suspend themselves in userret().
1082 */
1083 for (CPU_INFO_FOREACH(cii, ci)) {
1084 spc_lock(ci);
1085 cpu_need_resched(ci, RESCHED_IMMED);
1086 spc_unlock(ci);
1087 }
1088 }
1089
1090 /*
1091 * sched_unsleep:
1092 *
1093 * The is called when the LWP has not been awoken normally but instead
1094 * interrupted: for example, if the sleep timed out. Because of this,
1095 * it's not a valid action for running or idle LWPs.
1096 */
1097 static void
1098 sched_unsleep(struct lwp *l, bool cleanup)
1099 {
1100
1101 lwp_unlock(l);
1102 panic("sched_unsleep");
1103 }
1104
1105 static void
1106 resched_cpu(struct lwp *l)
1107 {
1108 struct cpu_info *ci = l->l_cpu;
1109
1110 KASSERT(lwp_locked(l, NULL));
1111 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1112 cpu_need_resched(ci, 0);
1113 }
1114
1115 static void
1116 sched_changepri(struct lwp *l, pri_t pri)
1117 {
1118
1119 KASSERT(lwp_locked(l, NULL));
1120
1121 if (l->l_stat == LSRUN) {
1122 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1123 sched_dequeue(l);
1124 l->l_priority = pri;
1125 sched_enqueue(l, false);
1126 } else {
1127 l->l_priority = pri;
1128 }
1129 resched_cpu(l);
1130 }
1131
1132 static void
1133 sched_lendpri(struct lwp *l, pri_t pri)
1134 {
1135
1136 KASSERT(lwp_locked(l, NULL));
1137
1138 if (l->l_stat == LSRUN) {
1139 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1140 sched_dequeue(l);
1141 l->l_inheritedprio = pri;
1142 sched_enqueue(l, false);
1143 } else {
1144 l->l_inheritedprio = pri;
1145 }
1146 resched_cpu(l);
1147 }
1148
1149 struct lwp *
1150 syncobj_noowner(wchan_t wchan)
1151 {
1152
1153 return NULL;
1154 }
1155
1156 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1157 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1158
1159 /*
1160 * Constants for averages over 1, 5 and 15 minutes when sampling at
1161 * 5 second intervals.
1162 */
1163 static const fixpt_t cexp[ ] = {
1164 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1165 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1166 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1167 };
1168
1169 /*
1170 * sched_pstats:
1171 *
1172 * => Update process statistics and check CPU resource allocation.
1173 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1174 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1175 */
1176 void
1177 sched_pstats(void)
1178 {
1179 extern struct loadavg averunnable;
1180 struct loadavg *avg = &averunnable;
1181 const int clkhz = (stathz != 0 ? stathz : hz);
1182 static bool backwards = false;
1183 static u_int lavg_count = 0;
1184 struct proc *p;
1185 int nrun;
1186
1187 sched_pstats_ticks++;
1188 if (++lavg_count >= 5) {
1189 lavg_count = 0;
1190 nrun = 0;
1191 }
1192 mutex_enter(proc_lock);
1193 PROCLIST_FOREACH(p, &allproc) {
1194 struct lwp *l;
1195 struct rlimit *rlim;
1196 long runtm;
1197 int sig;
1198
1199 /* Increment sleep time (if sleeping), ignore overflow. */
1200 mutex_enter(p->p_lock);
1201 runtm = p->p_rtime.sec;
1202 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1203 fixpt_t lpctcpu;
1204 u_int lcpticks;
1205
1206 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1207 continue;
1208 lwp_lock(l);
1209 runtm += l->l_rtime.sec;
1210 l->l_swtime++;
1211 sched_lwp_stats(l);
1212
1213 /* For load average calculation. */
1214 if (__predict_false(lavg_count == 0) &&
1215 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1216 switch (l->l_stat) {
1217 case LSSLEEP:
1218 if (l->l_slptime > 1) {
1219 break;
1220 }
1221 case LSRUN:
1222 case LSONPROC:
1223 case LSIDL:
1224 nrun++;
1225 }
1226 }
1227 lwp_unlock(l);
1228
1229 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1230 if (l->l_slptime != 0)
1231 continue;
1232
1233 lpctcpu = l->l_pctcpu;
1234 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1235 lpctcpu += ((FSCALE - ccpu) *
1236 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1237 l->l_pctcpu = lpctcpu;
1238 }
1239 /* Calculating p_pctcpu only for ps(1) */
1240 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1241
1242 /*
1243 * Check if the process exceeds its CPU resource allocation.
1244 * If over max, kill it.
1245 */
1246 rlim = &p->p_rlimit[RLIMIT_CPU];
1247 sig = 0;
1248 if (__predict_false(runtm >= rlim->rlim_cur)) {
1249 if (runtm >= rlim->rlim_max)
1250 sig = SIGKILL;
1251 else {
1252 sig = SIGXCPU;
1253 if (rlim->rlim_cur < rlim->rlim_max)
1254 rlim->rlim_cur += 5;
1255 }
1256 }
1257 mutex_exit(p->p_lock);
1258 if (__predict_false(runtm < 0)) {
1259 if (!backwards) {
1260 backwards = true;
1261 printf("WARNING: negative runtime; "
1262 "monotonic clock has gone backwards\n");
1263 }
1264 } else if (__predict_false(sig)) {
1265 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1266 psignal(p, sig);
1267 }
1268 }
1269 mutex_exit(proc_lock);
1270
1271 /* Load average calculation. */
1272 if (__predict_false(lavg_count == 0)) {
1273 int i;
1274 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1275 for (i = 0; i < __arraycount(cexp); i++) {
1276 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1277 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1278 }
1279 }
1280
1281 /* Lightning bolt. */
1282 cv_broadcast(&lbolt);
1283 }
1284