Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.293
      1 /*	$NetBSD: kern_synch.c,v 1.293 2011/10/05 13:22:13 apb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.293 2011/10/05 13:22:13 apb Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/pserialize.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/sched.h>
     92 #include <sys/sa.h>
     93 #include <sys/savar.h>
     94 #include <sys/syscall_stats.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/lockdebug.h>
     97 #include <sys/evcnt.h>
     98 #include <sys/intr.h>
     99 #include <sys/lwpctl.h>
    100 #include <sys/atomic.h>
    101 #include <sys/simplelock.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #include <dev/lockstat.h>
    106 
    107 #include <sys/dtrace_bsd.h>
    108 int                             dtrace_vtime_active=0;
    109 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    110 
    111 static void	sched_unsleep(struct lwp *, bool);
    112 static void	sched_changepri(struct lwp *, pri_t);
    113 static void	sched_lendpri(struct lwp *, pri_t);
    114 static void	resched_cpu(struct lwp *);
    115 
    116 syncobj_t sleep_syncobj = {
    117 	SOBJ_SLEEPQ_SORTED,
    118 	sleepq_unsleep,
    119 	sleepq_changepri,
    120 	sleepq_lendpri,
    121 	syncobj_noowner,
    122 };
    123 
    124 syncobj_t sched_syncobj = {
    125 	SOBJ_SLEEPQ_SORTED,
    126 	sched_unsleep,
    127 	sched_changepri,
    128 	sched_lendpri,
    129 	syncobj_noowner,
    130 };
    131 
    132 /* "Lightning bolt": once a second sleep address. */
    133 kcondvar_t		lbolt			__cacheline_aligned;
    134 
    135 u_int			sched_pstats_ticks	__cacheline_aligned;
    136 
    137 /* Preemption event counters. */
    138 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    139 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    140 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    141 
    142 /*
    143  * During autoconfiguration or after a panic, a sleep will simply lower the
    144  * priority briefly to allow interrupts, then return.  The priority to be
    145  * used (safepri) is machine-dependent, thus this value is initialized and
    146  * maintained in the machine-dependent layers.  This priority will typically
    147  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    148  * it can be made higher to block network software interrupts after panics.
    149  */
    150 int	safepri;
    151 
    152 void
    153 synch_init(void)
    154 {
    155 
    156 	cv_init(&lbolt, "lbolt");
    157 
    158 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    159 	   "kpreempt", "defer: critical section");
    160 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    161 	   "kpreempt", "defer: kernel_lock");
    162 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    163 	   "kpreempt", "immediate");
    164 }
    165 
    166 /*
    167  * OBSOLETE INTERFACE
    168  *
    169  * General sleep call.  Suspends the current LWP until a wakeup is
    170  * performed on the specified identifier.  The LWP will then be made
    171  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    172  * means no timeout).  If pri includes PCATCH flag, signals are checked
    173  * before and after sleeping, else signals are not checked.  Returns 0 if
    174  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    175  * signal needs to be delivered, ERESTART is returned if the current system
    176  * call should be restarted if possible, and EINTR is returned if the system
    177  * call should be interrupted by the signal (return EINTR).
    178  *
    179  * The interlock is held until we are on a sleep queue. The interlock will
    180  * be locked before returning back to the caller unless the PNORELOCK flag
    181  * is specified, in which case the interlock will always be unlocked upon
    182  * return.
    183  */
    184 int
    185 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    186 	volatile struct simplelock *interlock)
    187 {
    188 	struct lwp *l = curlwp;
    189 	sleepq_t *sq;
    190 	kmutex_t *mp;
    191 	int error;
    192 
    193 	KASSERT((l->l_pflag & LP_INTR) == 0);
    194 	KASSERT(ident != &lbolt);
    195 
    196 	if (sleepq_dontsleep(l)) {
    197 		(void)sleepq_abort(NULL, 0);
    198 		if ((priority & PNORELOCK) != 0)
    199 			simple_unlock(interlock);
    200 		return 0;
    201 	}
    202 
    203 	l->l_kpriority = true;
    204 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    205 	sleepq_enter(sq, l, mp);
    206 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    207 
    208 	if (interlock != NULL) {
    209 		KASSERT(simple_lock_held(interlock));
    210 		simple_unlock(interlock);
    211 	}
    212 
    213 	error = sleepq_block(timo, priority & PCATCH);
    214 
    215 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    216 		simple_lock(interlock);
    217 
    218 	return error;
    219 }
    220 
    221 int
    222 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    223 	kmutex_t *mtx)
    224 {
    225 	struct lwp *l = curlwp;
    226 	sleepq_t *sq;
    227 	kmutex_t *mp;
    228 	int error;
    229 
    230 	KASSERT((l->l_pflag & LP_INTR) == 0);
    231 	KASSERT(ident != &lbolt);
    232 
    233 	if (sleepq_dontsleep(l)) {
    234 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    235 		return 0;
    236 	}
    237 
    238 	l->l_kpriority = true;
    239 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    240 	sleepq_enter(sq, l, mp);
    241 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    242 	mutex_exit(mtx);
    243 	error = sleepq_block(timo, priority & PCATCH);
    244 
    245 	if ((priority & PNORELOCK) == 0)
    246 		mutex_enter(mtx);
    247 
    248 	return error;
    249 }
    250 
    251 /*
    252  * General sleep call for situations where a wake-up is not expected.
    253  */
    254 int
    255 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    256 {
    257 	struct lwp *l = curlwp;
    258 	kmutex_t *mp;
    259 	sleepq_t *sq;
    260 	int error;
    261 
    262 	KASSERT(!(timo == 0 && intr == false));
    263 
    264 	if (sleepq_dontsleep(l))
    265 		return sleepq_abort(NULL, 0);
    266 
    267 	if (mtx != NULL)
    268 		mutex_exit(mtx);
    269 	l->l_kpriority = true;
    270 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    271 	sleepq_enter(sq, l, mp);
    272 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    273 	error = sleepq_block(timo, intr);
    274 	if (mtx != NULL)
    275 		mutex_enter(mtx);
    276 
    277 	return error;
    278 }
    279 
    280 #ifdef KERN_SA
    281 /*
    282  * sa_awaken:
    283  *
    284  *	We believe this lwp is an SA lwp. If it's yielding,
    285  * let it know it needs to wake up.
    286  *
    287  *	We are called and exit with the lwp locked. We are
    288  * called in the middle of wakeup operations, so we need
    289  * to not touch the locks at all.
    290  */
    291 void
    292 sa_awaken(struct lwp *l)
    293 {
    294 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    295 
    296 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    297 		l->l_flag &= ~LW_SA_IDLE;
    298 }
    299 #endif /* KERN_SA */
    300 
    301 /*
    302  * OBSOLETE INTERFACE
    303  *
    304  * Make all LWPs sleeping on the specified identifier runnable.
    305  */
    306 void
    307 wakeup(wchan_t ident)
    308 {
    309 	sleepq_t *sq;
    310 	kmutex_t *mp;
    311 
    312 	if (__predict_false(cold))
    313 		return;
    314 
    315 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    316 	sleepq_wake(sq, ident, (u_int)-1, mp);
    317 }
    318 
    319 /*
    320  * OBSOLETE INTERFACE
    321  *
    322  * Make the highest priority LWP first in line on the specified
    323  * identifier runnable.
    324  */
    325 void
    326 wakeup_one(wchan_t ident)
    327 {
    328 	sleepq_t *sq;
    329 	kmutex_t *mp;
    330 
    331 	if (__predict_false(cold))
    332 		return;
    333 
    334 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    335 	sleepq_wake(sq, ident, 1, mp);
    336 }
    337 
    338 
    339 /*
    340  * General yield call.  Puts the current LWP back on its run queue and
    341  * performs a voluntary context switch.  Should only be called when the
    342  * current LWP explicitly requests it (eg sched_yield(2)).
    343  */
    344 void
    345 yield(void)
    346 {
    347 	struct lwp *l = curlwp;
    348 
    349 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    350 	lwp_lock(l);
    351 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    352 	KASSERT(l->l_stat == LSONPROC);
    353 	l->l_kpriority = false;
    354 	(void)mi_switch(l);
    355 	KERNEL_LOCK(l->l_biglocks, l);
    356 }
    357 
    358 /*
    359  * General preemption call.  Puts the current LWP back on its run queue
    360  * and performs an involuntary context switch.
    361  */
    362 void
    363 preempt(void)
    364 {
    365 	struct lwp *l = curlwp;
    366 
    367 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    368 	lwp_lock(l);
    369 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    370 	KASSERT(l->l_stat == LSONPROC);
    371 	l->l_kpriority = false;
    372 	l->l_nivcsw++;
    373 	(void)mi_switch(l);
    374 	KERNEL_LOCK(l->l_biglocks, l);
    375 }
    376 
    377 /*
    378  * Handle a request made by another agent to preempt the current LWP
    379  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    380  *
    381  * Character addresses for lockstat only.
    382  */
    383 static char	in_critical_section;
    384 static char	kernel_lock_held;
    385 static char	is_softint;
    386 static char	cpu_kpreempt_enter_fail;
    387 
    388 bool
    389 kpreempt(uintptr_t where)
    390 {
    391 	uintptr_t failed;
    392 	lwp_t *l;
    393 	int s, dop, lsflag;
    394 
    395 	l = curlwp;
    396 	failed = 0;
    397 	while ((dop = l->l_dopreempt) != 0) {
    398 		if (l->l_stat != LSONPROC) {
    399 			/*
    400 			 * About to block (or die), let it happen.
    401 			 * Doesn't really count as "preemption has
    402 			 * been blocked", since we're going to
    403 			 * context switch.
    404 			 */
    405 			l->l_dopreempt = 0;
    406 			return true;
    407 		}
    408 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    409 			/* Can't preempt idle loop, don't count as failure. */
    410 			l->l_dopreempt = 0;
    411 			return true;
    412 		}
    413 		if (__predict_false(l->l_nopreempt != 0)) {
    414 			/* LWP holds preemption disabled, explicitly. */
    415 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    416 				kpreempt_ev_crit.ev_count++;
    417 			}
    418 			failed = (uintptr_t)&in_critical_section;
    419 			break;
    420 		}
    421 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    422 			/* Can't preempt soft interrupts yet. */
    423 			l->l_dopreempt = 0;
    424 			failed = (uintptr_t)&is_softint;
    425 			break;
    426 		}
    427 		s = splsched();
    428 		if (__predict_false(l->l_blcnt != 0 ||
    429 		    curcpu()->ci_biglock_wanted != NULL)) {
    430 			/* Hold or want kernel_lock, code is not MT safe. */
    431 			splx(s);
    432 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    433 				kpreempt_ev_klock.ev_count++;
    434 			}
    435 			failed = (uintptr_t)&kernel_lock_held;
    436 			break;
    437 		}
    438 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    439 			/*
    440 			 * It may be that the IPL is too high.
    441 			 * kpreempt_enter() can schedule an
    442 			 * interrupt to retry later.
    443 			 */
    444 			splx(s);
    445 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    446 			break;
    447 		}
    448 		/* Do it! */
    449 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    450 			kpreempt_ev_immed.ev_count++;
    451 		}
    452 		lwp_lock(l);
    453 		mi_switch(l);
    454 		l->l_nopreempt++;
    455 		splx(s);
    456 
    457 		/* Take care of any MD cleanup. */
    458 		cpu_kpreempt_exit(where);
    459 		l->l_nopreempt--;
    460 	}
    461 
    462 	if (__predict_true(!failed)) {
    463 		return false;
    464 	}
    465 
    466 	/* Record preemption failure for reporting via lockstat. */
    467 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    468 	lsflag = 0;
    469 	LOCKSTAT_ENTER(lsflag);
    470 	if (__predict_false(lsflag)) {
    471 		if (where == 0) {
    472 			where = (uintptr_t)__builtin_return_address(0);
    473 		}
    474 		/* Preemption is on, might recurse, so make it atomic. */
    475 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    476 		    (void *)where) == NULL) {
    477 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    478 			l->l_pfaillock = failed;
    479 		}
    480 	}
    481 	LOCKSTAT_EXIT(lsflag);
    482 	return true;
    483 }
    484 
    485 /*
    486  * Return true if preemption is explicitly disabled.
    487  */
    488 bool
    489 kpreempt_disabled(void)
    490 {
    491 	const lwp_t *l = curlwp;
    492 
    493 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    494 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    495 }
    496 
    497 /*
    498  * Disable kernel preemption.
    499  */
    500 void
    501 kpreempt_disable(void)
    502 {
    503 
    504 	KPREEMPT_DISABLE(curlwp);
    505 }
    506 
    507 /*
    508  * Reenable kernel preemption.
    509  */
    510 void
    511 kpreempt_enable(void)
    512 {
    513 
    514 	KPREEMPT_ENABLE(curlwp);
    515 }
    516 
    517 /*
    518  * Compute the amount of time during which the current lwp was running.
    519  *
    520  * - update l_rtime unless it's an idle lwp.
    521  */
    522 
    523 void
    524 updatertime(lwp_t *l, const struct bintime *now)
    525 {
    526 
    527 	if (__predict_false(l->l_flag & LW_IDLE))
    528 		return;
    529 
    530 	/* rtime += now - stime */
    531 	bintime_add(&l->l_rtime, now);
    532 	bintime_sub(&l->l_rtime, &l->l_stime);
    533 }
    534 
    535 /*
    536  * Select next LWP from the current CPU to run..
    537  */
    538 static inline lwp_t *
    539 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    540 {
    541 	lwp_t *newl;
    542 
    543 	/*
    544 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    545 	 * If no LWP is runnable, select the idle LWP.
    546 	 *
    547 	 * Note that spc_lwplock might not necessary be held, and
    548 	 * new thread would be unlocked after setting the LWP-lock.
    549 	 */
    550 	newl = sched_nextlwp();
    551 	if (newl != NULL) {
    552 		sched_dequeue(newl);
    553 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    554 		KASSERT(newl->l_cpu == ci);
    555 		newl->l_stat = LSONPROC;
    556 		newl->l_pflag |= LP_RUNNING;
    557 		lwp_setlock(newl, spc->spc_lwplock);
    558 	} else {
    559 		newl = ci->ci_data.cpu_idlelwp;
    560 		newl->l_stat = LSONPROC;
    561 		newl->l_pflag |= LP_RUNNING;
    562 	}
    563 
    564 	/*
    565 	 * Only clear want_resched if there are no pending (slow)
    566 	 * software interrupts.
    567 	 */
    568 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    569 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    570 	spc->spc_curpriority = lwp_eprio(newl);
    571 
    572 	return newl;
    573 }
    574 
    575 /*
    576  * The machine independent parts of context switch.
    577  *
    578  * Returns 1 if another LWP was actually run.
    579  */
    580 int
    581 mi_switch(lwp_t *l)
    582 {
    583 	struct cpu_info *ci;
    584 	struct schedstate_percpu *spc;
    585 	struct lwp *newl;
    586 	int retval, oldspl;
    587 	struct bintime bt;
    588 	bool returning;
    589 
    590 	KASSERT(lwp_locked(l, NULL));
    591 	KASSERT(kpreempt_disabled());
    592 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    593 
    594 	kstack_check_magic(l);
    595 
    596 	binuptime(&bt);
    597 
    598 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    599 	KASSERT(l->l_cpu == curcpu());
    600 	ci = l->l_cpu;
    601 	spc = &ci->ci_schedstate;
    602 	returning = false;
    603 	newl = NULL;
    604 
    605 	/*
    606 	 * If we have been asked to switch to a specific LWP, then there
    607 	 * is no need to inspect the run queues.  If a soft interrupt is
    608 	 * blocking, then return to the interrupted thread without adjusting
    609 	 * VM context or its start time: neither have been changed in order
    610 	 * to take the interrupt.
    611 	 */
    612 	if (l->l_switchto != NULL) {
    613 		if ((l->l_pflag & LP_INTR) != 0) {
    614 			returning = true;
    615 			softint_block(l);
    616 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    617 				updatertime(l, &bt);
    618 		}
    619 		newl = l->l_switchto;
    620 		l->l_switchto = NULL;
    621 	}
    622 #ifndef __HAVE_FAST_SOFTINTS
    623 	else if (ci->ci_data.cpu_softints != 0) {
    624 		/* There are pending soft interrupts, so pick one. */
    625 		newl = softint_picklwp();
    626 		newl->l_stat = LSONPROC;
    627 		newl->l_pflag |= LP_RUNNING;
    628 	}
    629 #endif	/* !__HAVE_FAST_SOFTINTS */
    630 
    631 	/* Count time spent in current system call */
    632 	if (!returning) {
    633 		SYSCALL_TIME_SLEEP(l);
    634 
    635 		/*
    636 		 * XXXSMP If we are using h/w performance counters,
    637 		 * save context.
    638 		 */
    639 #if PERFCTRS
    640 		if (PMC_ENABLED(l->l_proc)) {
    641 			pmc_save_context(l->l_proc);
    642 		}
    643 #endif
    644 		updatertime(l, &bt);
    645 	}
    646 
    647 	/* Lock the runqueue */
    648 	KASSERT(l->l_stat != LSRUN);
    649 	mutex_spin_enter(spc->spc_mutex);
    650 
    651 	/*
    652 	 * If on the CPU and we have gotten this far, then we must yield.
    653 	 */
    654 	if (l->l_stat == LSONPROC && l != newl) {
    655 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    656 		if ((l->l_flag & LW_IDLE) == 0) {
    657 			l->l_stat = LSRUN;
    658 			lwp_setlock(l, spc->spc_mutex);
    659 			sched_enqueue(l, true);
    660 			/*
    661 			 * Handle migration.  Note that "migrating LWP" may
    662 			 * be reset here, if interrupt/preemption happens
    663 			 * early in idle LWP.
    664 			 */
    665 			if (l->l_target_cpu != NULL) {
    666 				KASSERT((l->l_pflag & LP_INTR) == 0);
    667 				spc->spc_migrating = l;
    668 			}
    669 		} else
    670 			l->l_stat = LSIDL;
    671 	}
    672 
    673 	/* Pick new LWP to run. */
    674 	if (newl == NULL) {
    675 		newl = nextlwp(ci, spc);
    676 	}
    677 
    678 	/* Items that must be updated with the CPU locked. */
    679 	if (!returning) {
    680 		/* Update the new LWP's start time. */
    681 		newl->l_stime = bt;
    682 
    683 		/*
    684 		 * ci_curlwp changes when a fast soft interrupt occurs.
    685 		 * We use cpu_onproc to keep track of which kernel or
    686 		 * user thread is running 'underneath' the software
    687 		 * interrupt.  This is important for time accounting,
    688 		 * itimers and forcing user threads to preempt (aston).
    689 		 */
    690 		ci->ci_data.cpu_onproc = newl;
    691 	}
    692 
    693 	/*
    694 	 * Preemption related tasks.  Must be done with the current
    695 	 * CPU locked.
    696 	 */
    697 	cpu_did_resched(l);
    698 	l->l_dopreempt = 0;
    699 	if (__predict_false(l->l_pfailaddr != 0)) {
    700 		LOCKSTAT_FLAG(lsflag);
    701 		LOCKSTAT_ENTER(lsflag);
    702 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    703 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    704 		    1, l->l_pfailtime, l->l_pfailaddr);
    705 		LOCKSTAT_EXIT(lsflag);
    706 		l->l_pfailtime = 0;
    707 		l->l_pfaillock = 0;
    708 		l->l_pfailaddr = 0;
    709 	}
    710 
    711 	if (l != newl) {
    712 		struct lwp *prevlwp;
    713 
    714 		/* Release all locks, but leave the current LWP locked */
    715 		if (l->l_mutex == spc->spc_mutex) {
    716 			/*
    717 			 * Drop spc_lwplock, if the current LWP has been moved
    718 			 * to the run queue (it is now locked by spc_mutex).
    719 			 */
    720 			mutex_spin_exit(spc->spc_lwplock);
    721 		} else {
    722 			/*
    723 			 * Otherwise, drop the spc_mutex, we are done with the
    724 			 * run queues.
    725 			 */
    726 			mutex_spin_exit(spc->spc_mutex);
    727 		}
    728 
    729 		/*
    730 		 * Mark that context switch is going to be performed
    731 		 * for this LWP, to protect it from being switched
    732 		 * to on another CPU.
    733 		 */
    734 		KASSERT(l->l_ctxswtch == 0);
    735 		l->l_ctxswtch = 1;
    736 		l->l_ncsw++;
    737 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    738 		l->l_pflag &= ~LP_RUNNING;
    739 
    740 		/*
    741 		 * Increase the count of spin-mutexes before the release
    742 		 * of the last lock - we must remain at IPL_SCHED during
    743 		 * the context switch.
    744 		 */
    745 		KASSERTMSG(ci->ci_mtx_count == -1,
    746 		    "%s: cpu%u: ci_mtx_count (%d) != -1",
    747 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    748 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    749 		ci->ci_mtx_count--;
    750 		lwp_unlock(l);
    751 
    752 		/* Count the context switch on this CPU. */
    753 		ci->ci_data.cpu_nswtch++;
    754 
    755 		/* Update status for lwpctl, if present. */
    756 		if (l->l_lwpctl != NULL)
    757 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    758 
    759 		/*
    760 		 * Save old VM context, unless a soft interrupt
    761 		 * handler is blocking.
    762 		 */
    763 		if (!returning)
    764 			pmap_deactivate(l);
    765 
    766 		/*
    767 		 * We may need to spin-wait if 'newl' is still
    768 		 * context switching on another CPU.
    769 		 */
    770 		if (__predict_false(newl->l_ctxswtch != 0)) {
    771 			u_int count;
    772 			count = SPINLOCK_BACKOFF_MIN;
    773 			while (newl->l_ctxswtch)
    774 				SPINLOCK_BACKOFF(count);
    775 		}
    776 
    777 		/*
    778 		 * If DTrace has set the active vtime enum to anything
    779 		 * other than INACTIVE (0), then it should have set the
    780 		 * function to call.
    781 		 */
    782 		if (__predict_false(dtrace_vtime_active)) {
    783 			(*dtrace_vtime_switch_func)(newl);
    784 		}
    785 
    786 		/* Switch to the new LWP.. */
    787 		prevlwp = cpu_switchto(l, newl, returning);
    788 		ci = curcpu();
    789 
    790 		/*
    791 		 * Switched away - we have new curlwp.
    792 		 * Restore VM context and IPL.
    793 		 */
    794 		pmap_activate(l);
    795 		uvm_emap_switch(l);
    796 		pcu_switchpoint(l);
    797 
    798 		if (prevlwp != NULL) {
    799 			/* Normalize the count of the spin-mutexes */
    800 			ci->ci_mtx_count++;
    801 			/* Unmark the state of context switch */
    802 			membar_exit();
    803 			prevlwp->l_ctxswtch = 0;
    804 		}
    805 
    806 		/* Update status for lwpctl, if present. */
    807 		if (l->l_lwpctl != NULL) {
    808 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    809 			l->l_lwpctl->lc_pctr++;
    810 		}
    811 
    812 		/* Note trip through cpu_switchto(). */
    813 		pserialize_switchpoint();
    814 
    815 		KASSERT(l->l_cpu == ci);
    816 		splx(oldspl);
    817 		retval = 1;
    818 	} else {
    819 		/* Nothing to do - just unlock and return. */
    820 		mutex_spin_exit(spc->spc_mutex);
    821 		lwp_unlock(l);
    822 		retval = 0;
    823 	}
    824 
    825 	KASSERT(l == curlwp);
    826 	KASSERT(l->l_stat == LSONPROC);
    827 
    828 	/*
    829 	 * XXXSMP If we are using h/w performance counters, restore context.
    830 	 * XXXSMP preemption problem.
    831 	 */
    832 #if PERFCTRS
    833 	if (PMC_ENABLED(l->l_proc)) {
    834 		pmc_restore_context(l->l_proc);
    835 	}
    836 #endif
    837 	SYSCALL_TIME_WAKEUP(l);
    838 	LOCKDEBUG_BARRIER(NULL, 1);
    839 
    840 	return retval;
    841 }
    842 
    843 /*
    844  * The machine independent parts of context switch to oblivion.
    845  * Does not return.  Call with the LWP unlocked.
    846  */
    847 void
    848 lwp_exit_switchaway(lwp_t *l)
    849 {
    850 	struct cpu_info *ci;
    851 	struct lwp *newl;
    852 	struct bintime bt;
    853 
    854 	ci = l->l_cpu;
    855 
    856 	KASSERT(kpreempt_disabled());
    857 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    858 	KASSERT(ci == curcpu());
    859 	LOCKDEBUG_BARRIER(NULL, 0);
    860 
    861 	kstack_check_magic(l);
    862 
    863 	/* Count time spent in current system call */
    864 	SYSCALL_TIME_SLEEP(l);
    865 	binuptime(&bt);
    866 	updatertime(l, &bt);
    867 
    868 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    869 	(void)splsched();
    870 
    871 	/*
    872 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    873 	 * If no LWP is runnable, select the idle LWP.
    874 	 *
    875 	 * Note that spc_lwplock might not necessary be held, and
    876 	 * new thread would be unlocked after setting the LWP-lock.
    877 	 */
    878 	spc_lock(ci);
    879 #ifndef __HAVE_FAST_SOFTINTS
    880 	if (ci->ci_data.cpu_softints != 0) {
    881 		/* There are pending soft interrupts, so pick one. */
    882 		newl = softint_picklwp();
    883 		newl->l_stat = LSONPROC;
    884 		newl->l_pflag |= LP_RUNNING;
    885 	} else
    886 #endif	/* !__HAVE_FAST_SOFTINTS */
    887 	{
    888 		newl = nextlwp(ci, &ci->ci_schedstate);
    889 	}
    890 
    891 	/* Update the new LWP's start time. */
    892 	newl->l_stime = bt;
    893 	l->l_pflag &= ~LP_RUNNING;
    894 
    895 	/*
    896 	 * ci_curlwp changes when a fast soft interrupt occurs.
    897 	 * We use cpu_onproc to keep track of which kernel or
    898 	 * user thread is running 'underneath' the software
    899 	 * interrupt.  This is important for time accounting,
    900 	 * itimers and forcing user threads to preempt (aston).
    901 	 */
    902 	ci->ci_data.cpu_onproc = newl;
    903 
    904 	/*
    905 	 * Preemption related tasks.  Must be done with the current
    906 	 * CPU locked.
    907 	 */
    908 	cpu_did_resched(l);
    909 
    910 	/* Unlock the run queue. */
    911 	spc_unlock(ci);
    912 
    913 	/* Count the context switch on this CPU. */
    914 	ci->ci_data.cpu_nswtch++;
    915 
    916 	/* Update status for lwpctl, if present. */
    917 	if (l->l_lwpctl != NULL)
    918 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    919 
    920 	/*
    921 	 * We may need to spin-wait if 'newl' is still
    922 	 * context switching on another CPU.
    923 	 */
    924 	if (__predict_false(newl->l_ctxswtch != 0)) {
    925 		u_int count;
    926 		count = SPINLOCK_BACKOFF_MIN;
    927 		while (newl->l_ctxswtch)
    928 			SPINLOCK_BACKOFF(count);
    929 	}
    930 
    931 	/*
    932 	 * If DTrace has set the active vtime enum to anything
    933 	 * other than INACTIVE (0), then it should have set the
    934 	 * function to call.
    935 	 */
    936 	if (__predict_false(dtrace_vtime_active)) {
    937 		(*dtrace_vtime_switch_func)(newl);
    938 	}
    939 
    940 	/* Switch to the new LWP.. */
    941 	(void)cpu_switchto(NULL, newl, false);
    942 
    943 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    944 	/* NOTREACHED */
    945 }
    946 
    947 /*
    948  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    949  *
    950  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    951  */
    952 void
    953 setrunnable(struct lwp *l)
    954 {
    955 	struct proc *p = l->l_proc;
    956 	struct cpu_info *ci;
    957 
    958 	KASSERT((l->l_flag & LW_IDLE) == 0);
    959 	KASSERT(mutex_owned(p->p_lock));
    960 	KASSERT(lwp_locked(l, NULL));
    961 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    962 
    963 	switch (l->l_stat) {
    964 	case LSSTOP:
    965 		/*
    966 		 * If we're being traced (possibly because someone attached us
    967 		 * while we were stopped), check for a signal from the debugger.
    968 		 */
    969 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    970 			signotify(l);
    971 		p->p_nrlwps++;
    972 		break;
    973 	case LSSUSPENDED:
    974 		l->l_flag &= ~LW_WSUSPEND;
    975 		p->p_nrlwps++;
    976 		cv_broadcast(&p->p_lwpcv);
    977 		break;
    978 	case LSSLEEP:
    979 		KASSERT(l->l_wchan != NULL);
    980 		break;
    981 	default:
    982 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    983 	}
    984 
    985 #ifdef KERN_SA
    986 	if (l->l_proc->p_sa)
    987 		sa_awaken(l);
    988 #endif /* KERN_SA */
    989 
    990 	/*
    991 	 * If the LWP was sleeping, start it again.
    992 	 */
    993 	if (l->l_wchan != NULL) {
    994 		l->l_stat = LSSLEEP;
    995 		/* lwp_unsleep() will release the lock. */
    996 		lwp_unsleep(l, true);
    997 		return;
    998 	}
    999 
   1000 	/*
   1001 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
   1002 	 * about to call mi_switch(), in which case it will yield.
   1003 	 */
   1004 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1005 		l->l_stat = LSONPROC;
   1006 		l->l_slptime = 0;
   1007 		lwp_unlock(l);
   1008 		return;
   1009 	}
   1010 
   1011 	/*
   1012 	 * Look for a CPU to run.
   1013 	 * Set the LWP runnable.
   1014 	 */
   1015 	ci = sched_takecpu(l);
   1016 	l->l_cpu = ci;
   1017 	spc_lock(ci);
   1018 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1019 	sched_setrunnable(l);
   1020 	l->l_stat = LSRUN;
   1021 	l->l_slptime = 0;
   1022 
   1023 	sched_enqueue(l, false);
   1024 	resched_cpu(l);
   1025 	lwp_unlock(l);
   1026 }
   1027 
   1028 /*
   1029  * suspendsched:
   1030  *
   1031  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1032  */
   1033 void
   1034 suspendsched(void)
   1035 {
   1036 	CPU_INFO_ITERATOR cii;
   1037 	struct cpu_info *ci;
   1038 	struct lwp *l;
   1039 	struct proc *p;
   1040 
   1041 	/*
   1042 	 * We do this by process in order not to violate the locking rules.
   1043 	 */
   1044 	mutex_enter(proc_lock);
   1045 	PROCLIST_FOREACH(p, &allproc) {
   1046 		mutex_enter(p->p_lock);
   1047 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1048 			mutex_exit(p->p_lock);
   1049 			continue;
   1050 		}
   1051 
   1052 		p->p_stat = SSTOP;
   1053 
   1054 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1055 			if (l == curlwp)
   1056 				continue;
   1057 
   1058 			lwp_lock(l);
   1059 
   1060 			/*
   1061 			 * Set L_WREBOOT so that the LWP will suspend itself
   1062 			 * when it tries to return to user mode.  We want to
   1063 			 * try and get to get as many LWPs as possible to
   1064 			 * the user / kernel boundary, so that they will
   1065 			 * release any locks that they hold.
   1066 			 */
   1067 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1068 
   1069 			if (l->l_stat == LSSLEEP &&
   1070 			    (l->l_flag & LW_SINTR) != 0) {
   1071 				/* setrunnable() will release the lock. */
   1072 				setrunnable(l);
   1073 				continue;
   1074 			}
   1075 
   1076 			lwp_unlock(l);
   1077 		}
   1078 
   1079 		mutex_exit(p->p_lock);
   1080 	}
   1081 	mutex_exit(proc_lock);
   1082 
   1083 	/*
   1084 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1085 	 * They'll trap into the kernel and suspend themselves in userret().
   1086 	 */
   1087 	for (CPU_INFO_FOREACH(cii, ci)) {
   1088 		spc_lock(ci);
   1089 		cpu_need_resched(ci, RESCHED_IMMED);
   1090 		spc_unlock(ci);
   1091 	}
   1092 }
   1093 
   1094 /*
   1095  * sched_unsleep:
   1096  *
   1097  *	The is called when the LWP has not been awoken normally but instead
   1098  *	interrupted: for example, if the sleep timed out.  Because of this,
   1099  *	it's not a valid action for running or idle LWPs.
   1100  */
   1101 static void
   1102 sched_unsleep(struct lwp *l, bool cleanup)
   1103 {
   1104 
   1105 	lwp_unlock(l);
   1106 	panic("sched_unsleep");
   1107 }
   1108 
   1109 static void
   1110 resched_cpu(struct lwp *l)
   1111 {
   1112 	struct cpu_info *ci = l->l_cpu;
   1113 
   1114 	KASSERT(lwp_locked(l, NULL));
   1115 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1116 		cpu_need_resched(ci, 0);
   1117 }
   1118 
   1119 static void
   1120 sched_changepri(struct lwp *l, pri_t pri)
   1121 {
   1122 
   1123 	KASSERT(lwp_locked(l, NULL));
   1124 
   1125 	if (l->l_stat == LSRUN) {
   1126 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1127 		sched_dequeue(l);
   1128 		l->l_priority = pri;
   1129 		sched_enqueue(l, false);
   1130 	} else {
   1131 		l->l_priority = pri;
   1132 	}
   1133 	resched_cpu(l);
   1134 }
   1135 
   1136 static void
   1137 sched_lendpri(struct lwp *l, pri_t pri)
   1138 {
   1139 
   1140 	KASSERT(lwp_locked(l, NULL));
   1141 
   1142 	if (l->l_stat == LSRUN) {
   1143 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1144 		sched_dequeue(l);
   1145 		l->l_inheritedprio = pri;
   1146 		sched_enqueue(l, false);
   1147 	} else {
   1148 		l->l_inheritedprio = pri;
   1149 	}
   1150 	resched_cpu(l);
   1151 }
   1152 
   1153 struct lwp *
   1154 syncobj_noowner(wchan_t wchan)
   1155 {
   1156 
   1157 	return NULL;
   1158 }
   1159 
   1160 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1161 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1162 
   1163 /*
   1164  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1165  * 5 second intervals.
   1166  */
   1167 static const fixpt_t cexp[ ] = {
   1168 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1169 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1170 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1171 };
   1172 
   1173 /*
   1174  * sched_pstats:
   1175  *
   1176  * => Update process statistics and check CPU resource allocation.
   1177  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1178  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1179  */
   1180 void
   1181 sched_pstats(void)
   1182 {
   1183 	extern struct loadavg averunnable;
   1184 	struct loadavg *avg = &averunnable;
   1185 	const int clkhz = (stathz != 0 ? stathz : hz);
   1186 	static bool backwards = false;
   1187 	static u_int lavg_count = 0;
   1188 	struct proc *p;
   1189 	int nrun;
   1190 
   1191 	sched_pstats_ticks++;
   1192 	if (++lavg_count >= 5) {
   1193 		lavg_count = 0;
   1194 		nrun = 0;
   1195 	}
   1196 	mutex_enter(proc_lock);
   1197 	PROCLIST_FOREACH(p, &allproc) {
   1198 		struct lwp *l;
   1199 		struct rlimit *rlim;
   1200 		long runtm;
   1201 		int sig;
   1202 
   1203 		/* Increment sleep time (if sleeping), ignore overflow. */
   1204 		mutex_enter(p->p_lock);
   1205 		runtm = p->p_rtime.sec;
   1206 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1207 			fixpt_t lpctcpu;
   1208 			u_int lcpticks;
   1209 
   1210 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1211 				continue;
   1212 			lwp_lock(l);
   1213 			runtm += l->l_rtime.sec;
   1214 			l->l_swtime++;
   1215 			sched_lwp_stats(l);
   1216 
   1217 			/* For load average calculation. */
   1218 			if (__predict_false(lavg_count == 0) &&
   1219 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1220 				switch (l->l_stat) {
   1221 				case LSSLEEP:
   1222 					if (l->l_slptime > 1) {
   1223 						break;
   1224 					}
   1225 				case LSRUN:
   1226 				case LSONPROC:
   1227 				case LSIDL:
   1228 					nrun++;
   1229 				}
   1230 			}
   1231 			lwp_unlock(l);
   1232 
   1233 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1234 			if (l->l_slptime != 0)
   1235 				continue;
   1236 
   1237 			lpctcpu = l->l_pctcpu;
   1238 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1239 			lpctcpu += ((FSCALE - ccpu) *
   1240 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1241 			l->l_pctcpu = lpctcpu;
   1242 		}
   1243 		/* Calculating p_pctcpu only for ps(1) */
   1244 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1245 
   1246 		/*
   1247 		 * Check if the process exceeds its CPU resource allocation.
   1248 		 * If over the hard limit, kill it with SIGKILL.
   1249 		 * If over the soft limit, send SIGXCPU and raise
   1250 		 * the soft limit a little.
   1251 		 */
   1252 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1253 		sig = 0;
   1254 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1255 			if (runtm >= rlim->rlim_max) {
   1256 				sig = SIGKILL;
   1257 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1258 					p->p_pid, "exceeded RLIMIT_CPU");
   1259 				uprintf("pid %d, command %s, is killed: %s\n",
   1260 					p->p_pid, p->p_comm,
   1261 					"exceeded RLIMIT_CPU");
   1262 			} else {
   1263 				sig = SIGXCPU;
   1264 				if (rlim->rlim_cur < rlim->rlim_max)
   1265 					rlim->rlim_cur += 5;
   1266 			}
   1267 		}
   1268 		mutex_exit(p->p_lock);
   1269 		if (__predict_false(runtm < 0)) {
   1270 			if (!backwards) {
   1271 				backwards = true;
   1272 				log(LOG_WARNING, "WARNING: negative runtime; "
   1273 				    "monotonic clock has gone backwards\n");
   1274 			}
   1275 		} else if (__predict_false(sig)) {
   1276 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1277 			psignal(p, sig);
   1278 		}
   1279 	}
   1280 	mutex_exit(proc_lock);
   1281 
   1282 	/* Load average calculation. */
   1283 	if (__predict_false(lavg_count == 0)) {
   1284 		int i;
   1285 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1286 		for (i = 0; i < __arraycount(cexp); i++) {
   1287 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1288 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1289 		}
   1290 	}
   1291 
   1292 	/* Lightning bolt. */
   1293 	cv_broadcast(&lbolt);
   1294 }
   1295