kern_synch.c revision 1.296 1 /* $NetBSD: kern_synch.c,v 1.296 2011/11/06 14:11:00 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.296 2011/11/06 14:11:00 dholland Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 #include "opt_dtrace.h"
78
79 #define __MUTEX_PRIVATE
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/kernel.h>
85 #if defined(PERFCTRS)
86 #include <sys/pmc.h>
87 #endif
88 #include <sys/cpu.h>
89 #include <sys/pserialize.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/sa.h>
93 #include <sys/savar.h>
94 #include <sys/syscall_stats.h>
95 #include <sys/sleepq.h>
96 #include <sys/lockdebug.h>
97 #include <sys/evcnt.h>
98 #include <sys/intr.h>
99 #include <sys/lwpctl.h>
100 #include <sys/atomic.h>
101 #include <sys/simplelock.h>
102 #include <sys/syslog.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <dev/lockstat.h>
107
108 #include <sys/dtrace_bsd.h>
109 int dtrace_vtime_active=0;
110 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
111
112 static void sched_unsleep(struct lwp *, bool);
113 static void sched_changepri(struct lwp *, pri_t);
114 static void sched_lendpri(struct lwp *, pri_t);
115 static void resched_cpu(struct lwp *);
116
117 syncobj_t sleep_syncobj = {
118 SOBJ_SLEEPQ_SORTED,
119 sleepq_unsleep,
120 sleepq_changepri,
121 sleepq_lendpri,
122 syncobj_noowner,
123 };
124
125 syncobj_t sched_syncobj = {
126 SOBJ_SLEEPQ_SORTED,
127 sched_unsleep,
128 sched_changepri,
129 sched_lendpri,
130 syncobj_noowner,
131 };
132
133 /* "Lightning bolt": once a second sleep address. */
134 kcondvar_t lbolt __cacheline_aligned;
135
136 u_int sched_pstats_ticks __cacheline_aligned;
137
138 /* Preemption event counters. */
139 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
140 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
141 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
142
143 /*
144 * During autoconfiguration or after a panic, a sleep will simply lower the
145 * priority briefly to allow interrupts, then return. The priority to be
146 * used (safepri) is machine-dependent, thus this value is initialized and
147 * maintained in the machine-dependent layers. This priority will typically
148 * be 0, or the lowest priority that is safe for use on the interrupt stack;
149 * it can be made higher to block network software interrupts after panics.
150 */
151 int safepri;
152
153 void
154 synch_init(void)
155 {
156
157 cv_init(&lbolt, "lbolt");
158
159 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
160 "kpreempt", "defer: critical section");
161 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
162 "kpreempt", "defer: kernel_lock");
163 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
164 "kpreempt", "immediate");
165 }
166
167 /*
168 * OBSOLETE INTERFACE
169 *
170 * General sleep call. Suspends the current LWP until a wakeup is
171 * performed on the specified identifier. The LWP will then be made
172 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
173 * means no timeout). If pri includes PCATCH flag, signals are checked
174 * before and after sleeping, else signals are not checked. Returns 0 if
175 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
176 * signal needs to be delivered, ERESTART is returned if the current system
177 * call should be restarted if possible, and EINTR is returned if the system
178 * call should be interrupted by the signal (return EINTR).
179 *
180 * The interlock is held until we are on a sleep queue. The interlock will
181 * be locked before returning back to the caller unless the PNORELOCK flag
182 * is specified, in which case the interlock will always be unlocked upon
183 * return.
184 */
185 int
186 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
187 volatile struct simplelock *interlock)
188 {
189 struct lwp *l = curlwp;
190 sleepq_t *sq;
191 kmutex_t *mp;
192 int error;
193
194 KASSERT((l->l_pflag & LP_INTR) == 0);
195 KASSERT(ident != &lbolt);
196
197 if (sleepq_dontsleep(l)) {
198 (void)sleepq_abort(NULL, 0);
199 if ((priority & PNORELOCK) != 0)
200 simple_unlock(interlock);
201 return 0;
202 }
203
204 l->l_kpriority = true;
205 sq = sleeptab_lookup(&sleeptab, ident, &mp);
206 sleepq_enter(sq, l, mp);
207 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
208
209 if (interlock != NULL) {
210 KASSERT(simple_lock_held(interlock));
211 simple_unlock(interlock);
212 }
213
214 error = sleepq_block(timo, priority & PCATCH);
215
216 if (interlock != NULL && (priority & PNORELOCK) == 0)
217 simple_lock(interlock);
218
219 return error;
220 }
221
222 int
223 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
224 kmutex_t *mtx)
225 {
226 struct lwp *l = curlwp;
227 sleepq_t *sq;
228 kmutex_t *mp;
229 int error;
230
231 KASSERT((l->l_pflag & LP_INTR) == 0);
232 KASSERT(ident != &lbolt);
233
234 if (sleepq_dontsleep(l)) {
235 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
236 return 0;
237 }
238
239 l->l_kpriority = true;
240 sq = sleeptab_lookup(&sleeptab, ident, &mp);
241 sleepq_enter(sq, l, mp);
242 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
243 mutex_exit(mtx);
244 error = sleepq_block(timo, priority & PCATCH);
245
246 if ((priority & PNORELOCK) == 0)
247 mutex_enter(mtx);
248
249 return error;
250 }
251
252 /*
253 * General sleep call for situations where a wake-up is not expected.
254 */
255 int
256 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
257 {
258 struct lwp *l = curlwp;
259 kmutex_t *mp;
260 sleepq_t *sq;
261 int error;
262
263 KASSERT(!(timo == 0 && intr == false));
264
265 if (sleepq_dontsleep(l))
266 return sleepq_abort(NULL, 0);
267
268 if (mtx != NULL)
269 mutex_exit(mtx);
270 l->l_kpriority = true;
271 sq = sleeptab_lookup(&sleeptab, l, &mp);
272 sleepq_enter(sq, l, mp);
273 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
274 error = sleepq_block(timo, intr);
275 if (mtx != NULL)
276 mutex_enter(mtx);
277
278 return error;
279 }
280
281 #ifdef KERN_SA
282 /*
283 * sa_awaken:
284 *
285 * We believe this lwp is an SA lwp. If it's yielding,
286 * let it know it needs to wake up.
287 *
288 * We are called and exit with the lwp locked. We are
289 * called in the middle of wakeup operations, so we need
290 * to not touch the locks at all.
291 */
292 void
293 sa_awaken(struct lwp *l)
294 {
295 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
296
297 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
298 l->l_flag &= ~LW_SA_IDLE;
299 }
300 #endif /* KERN_SA */
301
302 /*
303 * OBSOLETE INTERFACE
304 *
305 * Make all LWPs sleeping on the specified identifier runnable.
306 */
307 void
308 wakeup(wchan_t ident)
309 {
310 sleepq_t *sq;
311 kmutex_t *mp;
312
313 if (__predict_false(cold))
314 return;
315
316 sq = sleeptab_lookup(&sleeptab, ident, &mp);
317 sleepq_wake(sq, ident, (u_int)-1, mp);
318 }
319
320 /*
321 * OBSOLETE INTERFACE
322 *
323 * Make the highest priority LWP first in line on the specified
324 * identifier runnable.
325 */
326 void
327 wakeup_one(wchan_t ident)
328 {
329 sleepq_t *sq;
330 kmutex_t *mp;
331
332 if (__predict_false(cold))
333 return;
334
335 sq = sleeptab_lookup(&sleeptab, ident, &mp);
336 sleepq_wake(sq, ident, 1, mp);
337 }
338
339
340 /*
341 * General yield call. Puts the current LWP back on its run queue and
342 * performs a voluntary context switch. Should only be called when the
343 * current LWP explicitly requests it (eg sched_yield(2)).
344 */
345 void
346 yield(void)
347 {
348 struct lwp *l = curlwp;
349
350 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
351 lwp_lock(l);
352 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
353 KASSERT(l->l_stat == LSONPROC);
354 l->l_kpriority = false;
355 (void)mi_switch(l);
356 KERNEL_LOCK(l->l_biglocks, l);
357 }
358
359 /*
360 * General preemption call. Puts the current LWP back on its run queue
361 * and performs an involuntary context switch.
362 */
363 void
364 preempt(void)
365 {
366 struct lwp *l = curlwp;
367
368 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
369 lwp_lock(l);
370 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
371 KASSERT(l->l_stat == LSONPROC);
372 l->l_kpriority = false;
373 l->l_nivcsw++;
374 (void)mi_switch(l);
375 KERNEL_LOCK(l->l_biglocks, l);
376 }
377
378 /*
379 * Handle a request made by another agent to preempt the current LWP
380 * in-kernel. Usually called when l_dopreempt may be non-zero.
381 *
382 * Character addresses for lockstat only.
383 */
384 static char in_critical_section;
385 static char kernel_lock_held;
386 static char is_softint;
387 static char cpu_kpreempt_enter_fail;
388
389 bool
390 kpreempt(uintptr_t where)
391 {
392 uintptr_t failed;
393 lwp_t *l;
394 int s, dop, lsflag;
395
396 l = curlwp;
397 failed = 0;
398 while ((dop = l->l_dopreempt) != 0) {
399 if (l->l_stat != LSONPROC) {
400 /*
401 * About to block (or die), let it happen.
402 * Doesn't really count as "preemption has
403 * been blocked", since we're going to
404 * context switch.
405 */
406 l->l_dopreempt = 0;
407 return true;
408 }
409 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
410 /* Can't preempt idle loop, don't count as failure. */
411 l->l_dopreempt = 0;
412 return true;
413 }
414 if (__predict_false(l->l_nopreempt != 0)) {
415 /* LWP holds preemption disabled, explicitly. */
416 if ((dop & DOPREEMPT_COUNTED) == 0) {
417 kpreempt_ev_crit.ev_count++;
418 }
419 failed = (uintptr_t)&in_critical_section;
420 break;
421 }
422 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
423 /* Can't preempt soft interrupts yet. */
424 l->l_dopreempt = 0;
425 failed = (uintptr_t)&is_softint;
426 break;
427 }
428 s = splsched();
429 if (__predict_false(l->l_blcnt != 0 ||
430 curcpu()->ci_biglock_wanted != NULL)) {
431 /* Hold or want kernel_lock, code is not MT safe. */
432 splx(s);
433 if ((dop & DOPREEMPT_COUNTED) == 0) {
434 kpreempt_ev_klock.ev_count++;
435 }
436 failed = (uintptr_t)&kernel_lock_held;
437 break;
438 }
439 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
440 /*
441 * It may be that the IPL is too high.
442 * kpreempt_enter() can schedule an
443 * interrupt to retry later.
444 */
445 splx(s);
446 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
447 break;
448 }
449 /* Do it! */
450 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
451 kpreempt_ev_immed.ev_count++;
452 }
453 lwp_lock(l);
454 mi_switch(l);
455 l->l_nopreempt++;
456 splx(s);
457
458 /* Take care of any MD cleanup. */
459 cpu_kpreempt_exit(where);
460 l->l_nopreempt--;
461 }
462
463 if (__predict_true(!failed)) {
464 return false;
465 }
466
467 /* Record preemption failure for reporting via lockstat. */
468 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
469 lsflag = 0;
470 LOCKSTAT_ENTER(lsflag);
471 if (__predict_false(lsflag)) {
472 if (where == 0) {
473 where = (uintptr_t)__builtin_return_address(0);
474 }
475 /* Preemption is on, might recurse, so make it atomic. */
476 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
477 (void *)where) == NULL) {
478 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
479 l->l_pfaillock = failed;
480 }
481 }
482 LOCKSTAT_EXIT(lsflag);
483 return true;
484 }
485
486 /*
487 * Return true if preemption is explicitly disabled.
488 */
489 bool
490 kpreempt_disabled(void)
491 {
492 const lwp_t *l = curlwp;
493
494 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
495 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
496 }
497
498 /*
499 * Disable kernel preemption.
500 */
501 void
502 kpreempt_disable(void)
503 {
504
505 KPREEMPT_DISABLE(curlwp);
506 }
507
508 /*
509 * Reenable kernel preemption.
510 */
511 void
512 kpreempt_enable(void)
513 {
514
515 KPREEMPT_ENABLE(curlwp);
516 }
517
518 /*
519 * Compute the amount of time during which the current lwp was running.
520 *
521 * - update l_rtime unless it's an idle lwp.
522 */
523
524 void
525 updatertime(lwp_t *l, const struct bintime *now)
526 {
527
528 if (__predict_false(l->l_flag & LW_IDLE))
529 return;
530
531 /* rtime += now - stime */
532 bintime_add(&l->l_rtime, now);
533 bintime_sub(&l->l_rtime, &l->l_stime);
534 }
535
536 /*
537 * Select next LWP from the current CPU to run..
538 */
539 static inline lwp_t *
540 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
541 {
542 lwp_t *newl;
543
544 /*
545 * Let sched_nextlwp() select the LWP to run the CPU next.
546 * If no LWP is runnable, select the idle LWP.
547 *
548 * Note that spc_lwplock might not necessary be held, and
549 * new thread would be unlocked after setting the LWP-lock.
550 */
551 newl = sched_nextlwp();
552 if (newl != NULL) {
553 sched_dequeue(newl);
554 KASSERT(lwp_locked(newl, spc->spc_mutex));
555 KASSERT(newl->l_cpu == ci);
556 newl->l_stat = LSONPROC;
557 newl->l_pflag |= LP_RUNNING;
558 lwp_setlock(newl, spc->spc_lwplock);
559 } else {
560 newl = ci->ci_data.cpu_idlelwp;
561 newl->l_stat = LSONPROC;
562 newl->l_pflag |= LP_RUNNING;
563 }
564
565 /*
566 * Only clear want_resched if there are no pending (slow)
567 * software interrupts.
568 */
569 ci->ci_want_resched = ci->ci_data.cpu_softints;
570 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
571 spc->spc_curpriority = lwp_eprio(newl);
572
573 return newl;
574 }
575
576 /*
577 * The machine independent parts of context switch.
578 *
579 * Returns 1 if another LWP was actually run.
580 */
581 int
582 mi_switch(lwp_t *l)
583 {
584 struct cpu_info *ci;
585 struct schedstate_percpu *spc;
586 struct lwp *newl;
587 int retval, oldspl;
588 struct bintime bt;
589 bool returning;
590
591 KASSERT(lwp_locked(l, NULL));
592 KASSERT(kpreempt_disabled());
593 LOCKDEBUG_BARRIER(l->l_mutex, 1);
594
595 kstack_check_magic(l);
596
597 binuptime(&bt);
598
599 KASSERT((l->l_pflag & LP_RUNNING) != 0);
600 KASSERT(l->l_cpu == curcpu());
601 ci = l->l_cpu;
602 spc = &ci->ci_schedstate;
603 returning = false;
604 newl = NULL;
605
606 /*
607 * If we have been asked to switch to a specific LWP, then there
608 * is no need to inspect the run queues. If a soft interrupt is
609 * blocking, then return to the interrupted thread without adjusting
610 * VM context or its start time: neither have been changed in order
611 * to take the interrupt.
612 */
613 if (l->l_switchto != NULL) {
614 if ((l->l_pflag & LP_INTR) != 0) {
615 returning = true;
616 softint_block(l);
617 if ((l->l_pflag & LP_TIMEINTR) != 0)
618 updatertime(l, &bt);
619 }
620 newl = l->l_switchto;
621 l->l_switchto = NULL;
622 }
623 #ifndef __HAVE_FAST_SOFTINTS
624 else if (ci->ci_data.cpu_softints != 0) {
625 /* There are pending soft interrupts, so pick one. */
626 newl = softint_picklwp();
627 newl->l_stat = LSONPROC;
628 newl->l_pflag |= LP_RUNNING;
629 }
630 #endif /* !__HAVE_FAST_SOFTINTS */
631
632 /* Count time spent in current system call */
633 if (!returning) {
634 SYSCALL_TIME_SLEEP(l);
635
636 /*
637 * XXXSMP If we are using h/w performance counters,
638 * save context.
639 */
640 #if PERFCTRS
641 if (PMC_ENABLED(l->l_proc)) {
642 pmc_save_context(l->l_proc);
643 }
644 #endif
645 updatertime(l, &bt);
646 }
647
648 /* Lock the runqueue */
649 KASSERT(l->l_stat != LSRUN);
650 mutex_spin_enter(spc->spc_mutex);
651
652 /*
653 * If on the CPU and we have gotten this far, then we must yield.
654 */
655 if (l->l_stat == LSONPROC && l != newl) {
656 KASSERT(lwp_locked(l, spc->spc_lwplock));
657 if ((l->l_flag & LW_IDLE) == 0) {
658 l->l_stat = LSRUN;
659 lwp_setlock(l, spc->spc_mutex);
660 sched_enqueue(l, true);
661 /*
662 * Handle migration. Note that "migrating LWP" may
663 * be reset here, if interrupt/preemption happens
664 * early in idle LWP.
665 */
666 if (l->l_target_cpu != NULL) {
667 KASSERT((l->l_pflag & LP_INTR) == 0);
668 spc->spc_migrating = l;
669 }
670 } else
671 l->l_stat = LSIDL;
672 }
673
674 /* Pick new LWP to run. */
675 if (newl == NULL) {
676 newl = nextlwp(ci, spc);
677 }
678
679 /* Items that must be updated with the CPU locked. */
680 if (!returning) {
681 /* Update the new LWP's start time. */
682 newl->l_stime = bt;
683
684 /*
685 * ci_curlwp changes when a fast soft interrupt occurs.
686 * We use cpu_onproc to keep track of which kernel or
687 * user thread is running 'underneath' the software
688 * interrupt. This is important for time accounting,
689 * itimers and forcing user threads to preempt (aston).
690 */
691 ci->ci_data.cpu_onproc = newl;
692 }
693
694 /*
695 * Preemption related tasks. Must be done with the current
696 * CPU locked.
697 */
698 cpu_did_resched(l);
699 l->l_dopreempt = 0;
700 if (__predict_false(l->l_pfailaddr != 0)) {
701 LOCKSTAT_FLAG(lsflag);
702 LOCKSTAT_ENTER(lsflag);
703 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
704 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
705 1, l->l_pfailtime, l->l_pfailaddr);
706 LOCKSTAT_EXIT(lsflag);
707 l->l_pfailtime = 0;
708 l->l_pfaillock = 0;
709 l->l_pfailaddr = 0;
710 }
711
712 if (l != newl) {
713 struct lwp *prevlwp;
714
715 /* Release all locks, but leave the current LWP locked */
716 if (l->l_mutex == spc->spc_mutex) {
717 /*
718 * Drop spc_lwplock, if the current LWP has been moved
719 * to the run queue (it is now locked by spc_mutex).
720 */
721 mutex_spin_exit(spc->spc_lwplock);
722 } else {
723 /*
724 * Otherwise, drop the spc_mutex, we are done with the
725 * run queues.
726 */
727 mutex_spin_exit(spc->spc_mutex);
728 }
729
730 /*
731 * Mark that context switch is going to be performed
732 * for this LWP, to protect it from being switched
733 * to on another CPU.
734 */
735 KASSERT(l->l_ctxswtch == 0);
736 l->l_ctxswtch = 1;
737 l->l_ncsw++;
738 KASSERT((l->l_pflag & LP_RUNNING) != 0);
739 l->l_pflag &= ~LP_RUNNING;
740
741 /*
742 * Increase the count of spin-mutexes before the release
743 * of the last lock - we must remain at IPL_SCHED during
744 * the context switch.
745 */
746 KASSERTMSG(ci->ci_mtx_count == -1,
747 "%s: cpu%u: ci_mtx_count (%d) != -1",
748 __func__, cpu_index(ci), ci->ci_mtx_count);
749 oldspl = MUTEX_SPIN_OLDSPL(ci);
750 ci->ci_mtx_count--;
751 lwp_unlock(l);
752
753 /* Count the context switch on this CPU. */
754 ci->ci_data.cpu_nswtch++;
755
756 /* Update status for lwpctl, if present. */
757 if (l->l_lwpctl != NULL)
758 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
759
760 /*
761 * Save old VM context, unless a soft interrupt
762 * handler is blocking.
763 */
764 if (!returning)
765 pmap_deactivate(l);
766
767 /*
768 * We may need to spin-wait if 'newl' is still
769 * context switching on another CPU.
770 */
771 if (__predict_false(newl->l_ctxswtch != 0)) {
772 u_int count;
773 count = SPINLOCK_BACKOFF_MIN;
774 while (newl->l_ctxswtch)
775 SPINLOCK_BACKOFF(count);
776 }
777
778 /*
779 * If DTrace has set the active vtime enum to anything
780 * other than INACTIVE (0), then it should have set the
781 * function to call.
782 */
783 if (__predict_false(dtrace_vtime_active)) {
784 (*dtrace_vtime_switch_func)(newl);
785 }
786
787 /* Switch to the new LWP.. */
788 prevlwp = cpu_switchto(l, newl, returning);
789 ci = curcpu();
790
791 /*
792 * Switched away - we have new curlwp.
793 * Restore VM context and IPL.
794 */
795 pmap_activate(l);
796 uvm_emap_switch(l);
797 pcu_switchpoint(l);
798
799 if (prevlwp != NULL) {
800 /* Normalize the count of the spin-mutexes */
801 ci->ci_mtx_count++;
802 /* Unmark the state of context switch */
803 membar_exit();
804 prevlwp->l_ctxswtch = 0;
805 }
806
807 /* Update status for lwpctl, if present. */
808 if (l->l_lwpctl != NULL) {
809 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
810 l->l_lwpctl->lc_pctr++;
811 }
812
813 /* Note trip through cpu_switchto(). */
814 pserialize_switchpoint();
815
816 KASSERT(l->l_cpu == ci);
817 splx(oldspl);
818 retval = 1;
819 } else {
820 /* Nothing to do - just unlock and return. */
821 mutex_spin_exit(spc->spc_mutex);
822 lwp_unlock(l);
823 retval = 0;
824 }
825
826 KASSERT(l == curlwp);
827 KASSERT(l->l_stat == LSONPROC);
828
829 /*
830 * XXXSMP If we are using h/w performance counters, restore context.
831 * XXXSMP preemption problem.
832 */
833 #if PERFCTRS
834 if (PMC_ENABLED(l->l_proc)) {
835 pmc_restore_context(l->l_proc);
836 }
837 #endif
838 SYSCALL_TIME_WAKEUP(l);
839 LOCKDEBUG_BARRIER(NULL, 1);
840
841 return retval;
842 }
843
844 /*
845 * The machine independent parts of context switch to oblivion.
846 * Does not return. Call with the LWP unlocked.
847 */
848 void
849 lwp_exit_switchaway(lwp_t *l)
850 {
851 struct cpu_info *ci;
852 struct lwp *newl;
853 struct bintime bt;
854
855 ci = l->l_cpu;
856
857 KASSERT(kpreempt_disabled());
858 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
859 KASSERT(ci == curcpu());
860 LOCKDEBUG_BARRIER(NULL, 0);
861
862 kstack_check_magic(l);
863
864 /* Count time spent in current system call */
865 SYSCALL_TIME_SLEEP(l);
866 binuptime(&bt);
867 updatertime(l, &bt);
868
869 /* Must stay at IPL_SCHED even after releasing run queue lock. */
870 (void)splsched();
871
872 /*
873 * Let sched_nextlwp() select the LWP to run the CPU next.
874 * If no LWP is runnable, select the idle LWP.
875 *
876 * Note that spc_lwplock might not necessary be held, and
877 * new thread would be unlocked after setting the LWP-lock.
878 */
879 spc_lock(ci);
880 #ifndef __HAVE_FAST_SOFTINTS
881 if (ci->ci_data.cpu_softints != 0) {
882 /* There are pending soft interrupts, so pick one. */
883 newl = softint_picklwp();
884 newl->l_stat = LSONPROC;
885 newl->l_pflag |= LP_RUNNING;
886 } else
887 #endif /* !__HAVE_FAST_SOFTINTS */
888 {
889 newl = nextlwp(ci, &ci->ci_schedstate);
890 }
891
892 /* Update the new LWP's start time. */
893 newl->l_stime = bt;
894 l->l_pflag &= ~LP_RUNNING;
895
896 /*
897 * ci_curlwp changes when a fast soft interrupt occurs.
898 * We use cpu_onproc to keep track of which kernel or
899 * user thread is running 'underneath' the software
900 * interrupt. This is important for time accounting,
901 * itimers and forcing user threads to preempt (aston).
902 */
903 ci->ci_data.cpu_onproc = newl;
904
905 /*
906 * Preemption related tasks. Must be done with the current
907 * CPU locked.
908 */
909 cpu_did_resched(l);
910
911 /* Unlock the run queue. */
912 spc_unlock(ci);
913
914 /* Count the context switch on this CPU. */
915 ci->ci_data.cpu_nswtch++;
916
917 /* Update status for lwpctl, if present. */
918 if (l->l_lwpctl != NULL)
919 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
920
921 /*
922 * We may need to spin-wait if 'newl' is still
923 * context switching on another CPU.
924 */
925 if (__predict_false(newl->l_ctxswtch != 0)) {
926 u_int count;
927 count = SPINLOCK_BACKOFF_MIN;
928 while (newl->l_ctxswtch)
929 SPINLOCK_BACKOFF(count);
930 }
931
932 /*
933 * If DTrace has set the active vtime enum to anything
934 * other than INACTIVE (0), then it should have set the
935 * function to call.
936 */
937 if (__predict_false(dtrace_vtime_active)) {
938 (*dtrace_vtime_switch_func)(newl);
939 }
940
941 /* Switch to the new LWP.. */
942 (void)cpu_switchto(NULL, newl, false);
943
944 for (;;) continue; /* XXX: convince gcc about "noreturn" */
945 /* NOTREACHED */
946 }
947
948 /*
949 * setrunnable: change LWP state to be runnable, placing it on the run queue.
950 *
951 * Call with the process and LWP locked. Will return with the LWP unlocked.
952 */
953 void
954 setrunnable(struct lwp *l)
955 {
956 struct proc *p = l->l_proc;
957 struct cpu_info *ci;
958
959 KASSERT((l->l_flag & LW_IDLE) == 0);
960 KASSERT(mutex_owned(p->p_lock));
961 KASSERT(lwp_locked(l, NULL));
962 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
963
964 switch (l->l_stat) {
965 case LSSTOP:
966 /*
967 * If we're being traced (possibly because someone attached us
968 * while we were stopped), check for a signal from the debugger.
969 */
970 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
971 signotify(l);
972 p->p_nrlwps++;
973 break;
974 case LSSUSPENDED:
975 l->l_flag &= ~LW_WSUSPEND;
976 p->p_nrlwps++;
977 cv_broadcast(&p->p_lwpcv);
978 break;
979 case LSSLEEP:
980 KASSERT(l->l_wchan != NULL);
981 break;
982 default:
983 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
984 }
985
986 #ifdef KERN_SA
987 if (l->l_proc->p_sa)
988 sa_awaken(l);
989 #endif /* KERN_SA */
990
991 /*
992 * If the LWP was sleeping, start it again.
993 */
994 if (l->l_wchan != NULL) {
995 l->l_stat = LSSLEEP;
996 /* lwp_unsleep() will release the lock. */
997 lwp_unsleep(l, true);
998 return;
999 }
1000
1001 /*
1002 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
1003 * about to call mi_switch(), in which case it will yield.
1004 */
1005 if ((l->l_pflag & LP_RUNNING) != 0) {
1006 l->l_stat = LSONPROC;
1007 l->l_slptime = 0;
1008 lwp_unlock(l);
1009 return;
1010 }
1011
1012 /*
1013 * Look for a CPU to run.
1014 * Set the LWP runnable.
1015 */
1016 ci = sched_takecpu(l);
1017 l->l_cpu = ci;
1018 spc_lock(ci);
1019 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1020 sched_setrunnable(l);
1021 l->l_stat = LSRUN;
1022 l->l_slptime = 0;
1023
1024 sched_enqueue(l, false);
1025 resched_cpu(l);
1026 lwp_unlock(l);
1027 }
1028
1029 /*
1030 * suspendsched:
1031 *
1032 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1033 */
1034 void
1035 suspendsched(void)
1036 {
1037 CPU_INFO_ITERATOR cii;
1038 struct cpu_info *ci;
1039 struct lwp *l;
1040 struct proc *p;
1041
1042 /*
1043 * We do this by process in order not to violate the locking rules.
1044 */
1045 mutex_enter(proc_lock);
1046 PROCLIST_FOREACH(p, &allproc) {
1047 mutex_enter(p->p_lock);
1048 if ((p->p_flag & PK_SYSTEM) != 0) {
1049 mutex_exit(p->p_lock);
1050 continue;
1051 }
1052
1053 p->p_stat = SSTOP;
1054
1055 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1056 if (l == curlwp)
1057 continue;
1058
1059 lwp_lock(l);
1060
1061 /*
1062 * Set L_WREBOOT so that the LWP will suspend itself
1063 * when it tries to return to user mode. We want to
1064 * try and get to get as many LWPs as possible to
1065 * the user / kernel boundary, so that they will
1066 * release any locks that they hold.
1067 */
1068 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1069
1070 if (l->l_stat == LSSLEEP &&
1071 (l->l_flag & LW_SINTR) != 0) {
1072 /* setrunnable() will release the lock. */
1073 setrunnable(l);
1074 continue;
1075 }
1076
1077 lwp_unlock(l);
1078 }
1079
1080 mutex_exit(p->p_lock);
1081 }
1082 mutex_exit(proc_lock);
1083
1084 /*
1085 * Kick all CPUs to make them preempt any LWPs running in user mode.
1086 * They'll trap into the kernel and suspend themselves in userret().
1087 */
1088 for (CPU_INFO_FOREACH(cii, ci)) {
1089 spc_lock(ci);
1090 cpu_need_resched(ci, RESCHED_IMMED);
1091 spc_unlock(ci);
1092 }
1093 }
1094
1095 /*
1096 * sched_unsleep:
1097 *
1098 * The is called when the LWP has not been awoken normally but instead
1099 * interrupted: for example, if the sleep timed out. Because of this,
1100 * it's not a valid action for running or idle LWPs.
1101 */
1102 static void
1103 sched_unsleep(struct lwp *l, bool cleanup)
1104 {
1105
1106 lwp_unlock(l);
1107 panic("sched_unsleep");
1108 }
1109
1110 static void
1111 resched_cpu(struct lwp *l)
1112 {
1113 struct cpu_info *ci = l->l_cpu;
1114
1115 KASSERT(lwp_locked(l, NULL));
1116 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1117 cpu_need_resched(ci, 0);
1118 }
1119
1120 static void
1121 sched_changepri(struct lwp *l, pri_t pri)
1122 {
1123
1124 KASSERT(lwp_locked(l, NULL));
1125
1126 if (l->l_stat == LSRUN) {
1127 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1128 sched_dequeue(l);
1129 l->l_priority = pri;
1130 sched_enqueue(l, false);
1131 } else {
1132 l->l_priority = pri;
1133 }
1134 resched_cpu(l);
1135 }
1136
1137 static void
1138 sched_lendpri(struct lwp *l, pri_t pri)
1139 {
1140
1141 KASSERT(lwp_locked(l, NULL));
1142
1143 if (l->l_stat == LSRUN) {
1144 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1145 sched_dequeue(l);
1146 l->l_inheritedprio = pri;
1147 sched_enqueue(l, false);
1148 } else {
1149 l->l_inheritedprio = pri;
1150 }
1151 resched_cpu(l);
1152 }
1153
1154 struct lwp *
1155 syncobj_noowner(wchan_t wchan)
1156 {
1157
1158 return NULL;
1159 }
1160
1161 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1162 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1163
1164 /*
1165 * Constants for averages over 1, 5 and 15 minutes when sampling at
1166 * 5 second intervals.
1167 */
1168 static const fixpt_t cexp[ ] = {
1169 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1170 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1171 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1172 };
1173
1174 /*
1175 * sched_pstats:
1176 *
1177 * => Update process statistics and check CPU resource allocation.
1178 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1179 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1180 */
1181 void
1182 sched_pstats(void)
1183 {
1184 extern struct loadavg averunnable;
1185 struct loadavg *avg = &averunnable;
1186 const int clkhz = (stathz != 0 ? stathz : hz);
1187 static bool backwards = false;
1188 static u_int lavg_count = 0;
1189 struct proc *p;
1190 int nrun;
1191
1192 sched_pstats_ticks++;
1193 if (++lavg_count >= 5) {
1194 lavg_count = 0;
1195 nrun = 0;
1196 }
1197 mutex_enter(proc_lock);
1198 PROCLIST_FOREACH(p, &allproc) {
1199 struct lwp *l;
1200 struct rlimit *rlim;
1201 time_t runtm;
1202 int sig;
1203
1204 /* Increment sleep time (if sleeping), ignore overflow. */
1205 mutex_enter(p->p_lock);
1206 runtm = p->p_rtime.sec;
1207 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1208 fixpt_t lpctcpu;
1209 u_int lcpticks;
1210
1211 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1212 continue;
1213 lwp_lock(l);
1214 runtm += l->l_rtime.sec;
1215 l->l_swtime++;
1216 sched_lwp_stats(l);
1217
1218 /* For load average calculation. */
1219 if (__predict_false(lavg_count == 0) &&
1220 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1221 switch (l->l_stat) {
1222 case LSSLEEP:
1223 if (l->l_slptime > 1) {
1224 break;
1225 }
1226 case LSRUN:
1227 case LSONPROC:
1228 case LSIDL:
1229 nrun++;
1230 }
1231 }
1232 lwp_unlock(l);
1233
1234 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1235 if (l->l_slptime != 0)
1236 continue;
1237
1238 lpctcpu = l->l_pctcpu;
1239 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1240 lpctcpu += ((FSCALE - ccpu) *
1241 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1242 l->l_pctcpu = lpctcpu;
1243 }
1244 /* Calculating p_pctcpu only for ps(1) */
1245 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1246
1247 /*
1248 * Check if the process exceeds its CPU resource allocation.
1249 * If over the hard limit, kill it with SIGKILL.
1250 * If over the soft limit, send SIGXCPU and raise
1251 * the soft limit a little.
1252 */
1253 rlim = &p->p_rlimit[RLIMIT_CPU];
1254 sig = 0;
1255 if (__predict_false(runtm >= rlim->rlim_cur)) {
1256 if (runtm >= rlim->rlim_max) {
1257 sig = SIGKILL;
1258 log(LOG_NOTICE, "pid %d is killed: %s\n",
1259 p->p_pid, "exceeded RLIMIT_CPU");
1260 uprintf("pid %d, command %s, is killed: %s\n",
1261 p->p_pid, p->p_comm,
1262 "exceeded RLIMIT_CPU");
1263 } else {
1264 sig = SIGXCPU;
1265 if (rlim->rlim_cur < rlim->rlim_max)
1266 rlim->rlim_cur += 5;
1267 }
1268 }
1269 mutex_exit(p->p_lock);
1270 if (__predict_false(runtm < 0)) {
1271 if (!backwards) {
1272 backwards = true;
1273 printf("WARNING: negative runtime; "
1274 "monotonic clock has gone backwards\n");
1275 }
1276 } else if (__predict_false(sig)) {
1277 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1278 psignal(p, sig);
1279 }
1280 }
1281 mutex_exit(proc_lock);
1282
1283 /* Load average calculation. */
1284 if (__predict_false(lavg_count == 0)) {
1285 int i;
1286 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1287 for (i = 0; i < __arraycount(cexp); i++) {
1288 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1289 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1290 }
1291 }
1292
1293 /* Lightning bolt. */
1294 cv_broadcast(&lbolt);
1295 }
1296