Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.296
      1 /*	$NetBSD: kern_synch.c,v 1.296 2011/11/06 14:11:00 dholland Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.296 2011/11/06 14:11:00 dholland Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/pserialize.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/sched.h>
     92 #include <sys/sa.h>
     93 #include <sys/savar.h>
     94 #include <sys/syscall_stats.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/lockdebug.h>
     97 #include <sys/evcnt.h>
     98 #include <sys/intr.h>
     99 #include <sys/lwpctl.h>
    100 #include <sys/atomic.h>
    101 #include <sys/simplelock.h>
    102 #include <sys/syslog.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 
    106 #include <dev/lockstat.h>
    107 
    108 #include <sys/dtrace_bsd.h>
    109 int                             dtrace_vtime_active=0;
    110 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    111 
    112 static void	sched_unsleep(struct lwp *, bool);
    113 static void	sched_changepri(struct lwp *, pri_t);
    114 static void	sched_lendpri(struct lwp *, pri_t);
    115 static void	resched_cpu(struct lwp *);
    116 
    117 syncobj_t sleep_syncobj = {
    118 	SOBJ_SLEEPQ_SORTED,
    119 	sleepq_unsleep,
    120 	sleepq_changepri,
    121 	sleepq_lendpri,
    122 	syncobj_noowner,
    123 };
    124 
    125 syncobj_t sched_syncobj = {
    126 	SOBJ_SLEEPQ_SORTED,
    127 	sched_unsleep,
    128 	sched_changepri,
    129 	sched_lendpri,
    130 	syncobj_noowner,
    131 };
    132 
    133 /* "Lightning bolt": once a second sleep address. */
    134 kcondvar_t		lbolt			__cacheline_aligned;
    135 
    136 u_int			sched_pstats_ticks	__cacheline_aligned;
    137 
    138 /* Preemption event counters. */
    139 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    140 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    141 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    142 
    143 /*
    144  * During autoconfiguration or after a panic, a sleep will simply lower the
    145  * priority briefly to allow interrupts, then return.  The priority to be
    146  * used (safepri) is machine-dependent, thus this value is initialized and
    147  * maintained in the machine-dependent layers.  This priority will typically
    148  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    149  * it can be made higher to block network software interrupts after panics.
    150  */
    151 int	safepri;
    152 
    153 void
    154 synch_init(void)
    155 {
    156 
    157 	cv_init(&lbolt, "lbolt");
    158 
    159 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    160 	   "kpreempt", "defer: critical section");
    161 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    162 	   "kpreempt", "defer: kernel_lock");
    163 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    164 	   "kpreempt", "immediate");
    165 }
    166 
    167 /*
    168  * OBSOLETE INTERFACE
    169  *
    170  * General sleep call.  Suspends the current LWP until a wakeup is
    171  * performed on the specified identifier.  The LWP will then be made
    172  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    173  * means no timeout).  If pri includes PCATCH flag, signals are checked
    174  * before and after sleeping, else signals are not checked.  Returns 0 if
    175  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    176  * signal needs to be delivered, ERESTART is returned if the current system
    177  * call should be restarted if possible, and EINTR is returned if the system
    178  * call should be interrupted by the signal (return EINTR).
    179  *
    180  * The interlock is held until we are on a sleep queue. The interlock will
    181  * be locked before returning back to the caller unless the PNORELOCK flag
    182  * is specified, in which case the interlock will always be unlocked upon
    183  * return.
    184  */
    185 int
    186 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    187 	volatile struct simplelock *interlock)
    188 {
    189 	struct lwp *l = curlwp;
    190 	sleepq_t *sq;
    191 	kmutex_t *mp;
    192 	int error;
    193 
    194 	KASSERT((l->l_pflag & LP_INTR) == 0);
    195 	KASSERT(ident != &lbolt);
    196 
    197 	if (sleepq_dontsleep(l)) {
    198 		(void)sleepq_abort(NULL, 0);
    199 		if ((priority & PNORELOCK) != 0)
    200 			simple_unlock(interlock);
    201 		return 0;
    202 	}
    203 
    204 	l->l_kpriority = true;
    205 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    206 	sleepq_enter(sq, l, mp);
    207 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    208 
    209 	if (interlock != NULL) {
    210 		KASSERT(simple_lock_held(interlock));
    211 		simple_unlock(interlock);
    212 	}
    213 
    214 	error = sleepq_block(timo, priority & PCATCH);
    215 
    216 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    217 		simple_lock(interlock);
    218 
    219 	return error;
    220 }
    221 
    222 int
    223 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    224 	kmutex_t *mtx)
    225 {
    226 	struct lwp *l = curlwp;
    227 	sleepq_t *sq;
    228 	kmutex_t *mp;
    229 	int error;
    230 
    231 	KASSERT((l->l_pflag & LP_INTR) == 0);
    232 	KASSERT(ident != &lbolt);
    233 
    234 	if (sleepq_dontsleep(l)) {
    235 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    236 		return 0;
    237 	}
    238 
    239 	l->l_kpriority = true;
    240 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    241 	sleepq_enter(sq, l, mp);
    242 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    243 	mutex_exit(mtx);
    244 	error = sleepq_block(timo, priority & PCATCH);
    245 
    246 	if ((priority & PNORELOCK) == 0)
    247 		mutex_enter(mtx);
    248 
    249 	return error;
    250 }
    251 
    252 /*
    253  * General sleep call for situations where a wake-up is not expected.
    254  */
    255 int
    256 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    257 {
    258 	struct lwp *l = curlwp;
    259 	kmutex_t *mp;
    260 	sleepq_t *sq;
    261 	int error;
    262 
    263 	KASSERT(!(timo == 0 && intr == false));
    264 
    265 	if (sleepq_dontsleep(l))
    266 		return sleepq_abort(NULL, 0);
    267 
    268 	if (mtx != NULL)
    269 		mutex_exit(mtx);
    270 	l->l_kpriority = true;
    271 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    272 	sleepq_enter(sq, l, mp);
    273 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    274 	error = sleepq_block(timo, intr);
    275 	if (mtx != NULL)
    276 		mutex_enter(mtx);
    277 
    278 	return error;
    279 }
    280 
    281 #ifdef KERN_SA
    282 /*
    283  * sa_awaken:
    284  *
    285  *	We believe this lwp is an SA lwp. If it's yielding,
    286  * let it know it needs to wake up.
    287  *
    288  *	We are called and exit with the lwp locked. We are
    289  * called in the middle of wakeup operations, so we need
    290  * to not touch the locks at all.
    291  */
    292 void
    293 sa_awaken(struct lwp *l)
    294 {
    295 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    296 
    297 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    298 		l->l_flag &= ~LW_SA_IDLE;
    299 }
    300 #endif /* KERN_SA */
    301 
    302 /*
    303  * OBSOLETE INTERFACE
    304  *
    305  * Make all LWPs sleeping on the specified identifier runnable.
    306  */
    307 void
    308 wakeup(wchan_t ident)
    309 {
    310 	sleepq_t *sq;
    311 	kmutex_t *mp;
    312 
    313 	if (__predict_false(cold))
    314 		return;
    315 
    316 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    317 	sleepq_wake(sq, ident, (u_int)-1, mp);
    318 }
    319 
    320 /*
    321  * OBSOLETE INTERFACE
    322  *
    323  * Make the highest priority LWP first in line on the specified
    324  * identifier runnable.
    325  */
    326 void
    327 wakeup_one(wchan_t ident)
    328 {
    329 	sleepq_t *sq;
    330 	kmutex_t *mp;
    331 
    332 	if (__predict_false(cold))
    333 		return;
    334 
    335 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    336 	sleepq_wake(sq, ident, 1, mp);
    337 }
    338 
    339 
    340 /*
    341  * General yield call.  Puts the current LWP back on its run queue and
    342  * performs a voluntary context switch.  Should only be called when the
    343  * current LWP explicitly requests it (eg sched_yield(2)).
    344  */
    345 void
    346 yield(void)
    347 {
    348 	struct lwp *l = curlwp;
    349 
    350 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    351 	lwp_lock(l);
    352 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    353 	KASSERT(l->l_stat == LSONPROC);
    354 	l->l_kpriority = false;
    355 	(void)mi_switch(l);
    356 	KERNEL_LOCK(l->l_biglocks, l);
    357 }
    358 
    359 /*
    360  * General preemption call.  Puts the current LWP back on its run queue
    361  * and performs an involuntary context switch.
    362  */
    363 void
    364 preempt(void)
    365 {
    366 	struct lwp *l = curlwp;
    367 
    368 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    369 	lwp_lock(l);
    370 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    371 	KASSERT(l->l_stat == LSONPROC);
    372 	l->l_kpriority = false;
    373 	l->l_nivcsw++;
    374 	(void)mi_switch(l);
    375 	KERNEL_LOCK(l->l_biglocks, l);
    376 }
    377 
    378 /*
    379  * Handle a request made by another agent to preempt the current LWP
    380  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    381  *
    382  * Character addresses for lockstat only.
    383  */
    384 static char	in_critical_section;
    385 static char	kernel_lock_held;
    386 static char	is_softint;
    387 static char	cpu_kpreempt_enter_fail;
    388 
    389 bool
    390 kpreempt(uintptr_t where)
    391 {
    392 	uintptr_t failed;
    393 	lwp_t *l;
    394 	int s, dop, lsflag;
    395 
    396 	l = curlwp;
    397 	failed = 0;
    398 	while ((dop = l->l_dopreempt) != 0) {
    399 		if (l->l_stat != LSONPROC) {
    400 			/*
    401 			 * About to block (or die), let it happen.
    402 			 * Doesn't really count as "preemption has
    403 			 * been blocked", since we're going to
    404 			 * context switch.
    405 			 */
    406 			l->l_dopreempt = 0;
    407 			return true;
    408 		}
    409 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    410 			/* Can't preempt idle loop, don't count as failure. */
    411 			l->l_dopreempt = 0;
    412 			return true;
    413 		}
    414 		if (__predict_false(l->l_nopreempt != 0)) {
    415 			/* LWP holds preemption disabled, explicitly. */
    416 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    417 				kpreempt_ev_crit.ev_count++;
    418 			}
    419 			failed = (uintptr_t)&in_critical_section;
    420 			break;
    421 		}
    422 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    423 			/* Can't preempt soft interrupts yet. */
    424 			l->l_dopreempt = 0;
    425 			failed = (uintptr_t)&is_softint;
    426 			break;
    427 		}
    428 		s = splsched();
    429 		if (__predict_false(l->l_blcnt != 0 ||
    430 		    curcpu()->ci_biglock_wanted != NULL)) {
    431 			/* Hold or want kernel_lock, code is not MT safe. */
    432 			splx(s);
    433 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    434 				kpreempt_ev_klock.ev_count++;
    435 			}
    436 			failed = (uintptr_t)&kernel_lock_held;
    437 			break;
    438 		}
    439 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    440 			/*
    441 			 * It may be that the IPL is too high.
    442 			 * kpreempt_enter() can schedule an
    443 			 * interrupt to retry later.
    444 			 */
    445 			splx(s);
    446 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    447 			break;
    448 		}
    449 		/* Do it! */
    450 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    451 			kpreempt_ev_immed.ev_count++;
    452 		}
    453 		lwp_lock(l);
    454 		mi_switch(l);
    455 		l->l_nopreempt++;
    456 		splx(s);
    457 
    458 		/* Take care of any MD cleanup. */
    459 		cpu_kpreempt_exit(where);
    460 		l->l_nopreempt--;
    461 	}
    462 
    463 	if (__predict_true(!failed)) {
    464 		return false;
    465 	}
    466 
    467 	/* Record preemption failure for reporting via lockstat. */
    468 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    469 	lsflag = 0;
    470 	LOCKSTAT_ENTER(lsflag);
    471 	if (__predict_false(lsflag)) {
    472 		if (where == 0) {
    473 			where = (uintptr_t)__builtin_return_address(0);
    474 		}
    475 		/* Preemption is on, might recurse, so make it atomic. */
    476 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    477 		    (void *)where) == NULL) {
    478 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    479 			l->l_pfaillock = failed;
    480 		}
    481 	}
    482 	LOCKSTAT_EXIT(lsflag);
    483 	return true;
    484 }
    485 
    486 /*
    487  * Return true if preemption is explicitly disabled.
    488  */
    489 bool
    490 kpreempt_disabled(void)
    491 {
    492 	const lwp_t *l = curlwp;
    493 
    494 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    495 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    496 }
    497 
    498 /*
    499  * Disable kernel preemption.
    500  */
    501 void
    502 kpreempt_disable(void)
    503 {
    504 
    505 	KPREEMPT_DISABLE(curlwp);
    506 }
    507 
    508 /*
    509  * Reenable kernel preemption.
    510  */
    511 void
    512 kpreempt_enable(void)
    513 {
    514 
    515 	KPREEMPT_ENABLE(curlwp);
    516 }
    517 
    518 /*
    519  * Compute the amount of time during which the current lwp was running.
    520  *
    521  * - update l_rtime unless it's an idle lwp.
    522  */
    523 
    524 void
    525 updatertime(lwp_t *l, const struct bintime *now)
    526 {
    527 
    528 	if (__predict_false(l->l_flag & LW_IDLE))
    529 		return;
    530 
    531 	/* rtime += now - stime */
    532 	bintime_add(&l->l_rtime, now);
    533 	bintime_sub(&l->l_rtime, &l->l_stime);
    534 }
    535 
    536 /*
    537  * Select next LWP from the current CPU to run..
    538  */
    539 static inline lwp_t *
    540 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    541 {
    542 	lwp_t *newl;
    543 
    544 	/*
    545 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    546 	 * If no LWP is runnable, select the idle LWP.
    547 	 *
    548 	 * Note that spc_lwplock might not necessary be held, and
    549 	 * new thread would be unlocked after setting the LWP-lock.
    550 	 */
    551 	newl = sched_nextlwp();
    552 	if (newl != NULL) {
    553 		sched_dequeue(newl);
    554 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    555 		KASSERT(newl->l_cpu == ci);
    556 		newl->l_stat = LSONPROC;
    557 		newl->l_pflag |= LP_RUNNING;
    558 		lwp_setlock(newl, spc->spc_lwplock);
    559 	} else {
    560 		newl = ci->ci_data.cpu_idlelwp;
    561 		newl->l_stat = LSONPROC;
    562 		newl->l_pflag |= LP_RUNNING;
    563 	}
    564 
    565 	/*
    566 	 * Only clear want_resched if there are no pending (slow)
    567 	 * software interrupts.
    568 	 */
    569 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    570 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    571 	spc->spc_curpriority = lwp_eprio(newl);
    572 
    573 	return newl;
    574 }
    575 
    576 /*
    577  * The machine independent parts of context switch.
    578  *
    579  * Returns 1 if another LWP was actually run.
    580  */
    581 int
    582 mi_switch(lwp_t *l)
    583 {
    584 	struct cpu_info *ci;
    585 	struct schedstate_percpu *spc;
    586 	struct lwp *newl;
    587 	int retval, oldspl;
    588 	struct bintime bt;
    589 	bool returning;
    590 
    591 	KASSERT(lwp_locked(l, NULL));
    592 	KASSERT(kpreempt_disabled());
    593 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    594 
    595 	kstack_check_magic(l);
    596 
    597 	binuptime(&bt);
    598 
    599 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    600 	KASSERT(l->l_cpu == curcpu());
    601 	ci = l->l_cpu;
    602 	spc = &ci->ci_schedstate;
    603 	returning = false;
    604 	newl = NULL;
    605 
    606 	/*
    607 	 * If we have been asked to switch to a specific LWP, then there
    608 	 * is no need to inspect the run queues.  If a soft interrupt is
    609 	 * blocking, then return to the interrupted thread without adjusting
    610 	 * VM context or its start time: neither have been changed in order
    611 	 * to take the interrupt.
    612 	 */
    613 	if (l->l_switchto != NULL) {
    614 		if ((l->l_pflag & LP_INTR) != 0) {
    615 			returning = true;
    616 			softint_block(l);
    617 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    618 				updatertime(l, &bt);
    619 		}
    620 		newl = l->l_switchto;
    621 		l->l_switchto = NULL;
    622 	}
    623 #ifndef __HAVE_FAST_SOFTINTS
    624 	else if (ci->ci_data.cpu_softints != 0) {
    625 		/* There are pending soft interrupts, so pick one. */
    626 		newl = softint_picklwp();
    627 		newl->l_stat = LSONPROC;
    628 		newl->l_pflag |= LP_RUNNING;
    629 	}
    630 #endif	/* !__HAVE_FAST_SOFTINTS */
    631 
    632 	/* Count time spent in current system call */
    633 	if (!returning) {
    634 		SYSCALL_TIME_SLEEP(l);
    635 
    636 		/*
    637 		 * XXXSMP If we are using h/w performance counters,
    638 		 * save context.
    639 		 */
    640 #if PERFCTRS
    641 		if (PMC_ENABLED(l->l_proc)) {
    642 			pmc_save_context(l->l_proc);
    643 		}
    644 #endif
    645 		updatertime(l, &bt);
    646 	}
    647 
    648 	/* Lock the runqueue */
    649 	KASSERT(l->l_stat != LSRUN);
    650 	mutex_spin_enter(spc->spc_mutex);
    651 
    652 	/*
    653 	 * If on the CPU and we have gotten this far, then we must yield.
    654 	 */
    655 	if (l->l_stat == LSONPROC && l != newl) {
    656 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    657 		if ((l->l_flag & LW_IDLE) == 0) {
    658 			l->l_stat = LSRUN;
    659 			lwp_setlock(l, spc->spc_mutex);
    660 			sched_enqueue(l, true);
    661 			/*
    662 			 * Handle migration.  Note that "migrating LWP" may
    663 			 * be reset here, if interrupt/preemption happens
    664 			 * early in idle LWP.
    665 			 */
    666 			if (l->l_target_cpu != NULL) {
    667 				KASSERT((l->l_pflag & LP_INTR) == 0);
    668 				spc->spc_migrating = l;
    669 			}
    670 		} else
    671 			l->l_stat = LSIDL;
    672 	}
    673 
    674 	/* Pick new LWP to run. */
    675 	if (newl == NULL) {
    676 		newl = nextlwp(ci, spc);
    677 	}
    678 
    679 	/* Items that must be updated with the CPU locked. */
    680 	if (!returning) {
    681 		/* Update the new LWP's start time. */
    682 		newl->l_stime = bt;
    683 
    684 		/*
    685 		 * ci_curlwp changes when a fast soft interrupt occurs.
    686 		 * We use cpu_onproc to keep track of which kernel or
    687 		 * user thread is running 'underneath' the software
    688 		 * interrupt.  This is important for time accounting,
    689 		 * itimers and forcing user threads to preempt (aston).
    690 		 */
    691 		ci->ci_data.cpu_onproc = newl;
    692 	}
    693 
    694 	/*
    695 	 * Preemption related tasks.  Must be done with the current
    696 	 * CPU locked.
    697 	 */
    698 	cpu_did_resched(l);
    699 	l->l_dopreempt = 0;
    700 	if (__predict_false(l->l_pfailaddr != 0)) {
    701 		LOCKSTAT_FLAG(lsflag);
    702 		LOCKSTAT_ENTER(lsflag);
    703 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    704 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    705 		    1, l->l_pfailtime, l->l_pfailaddr);
    706 		LOCKSTAT_EXIT(lsflag);
    707 		l->l_pfailtime = 0;
    708 		l->l_pfaillock = 0;
    709 		l->l_pfailaddr = 0;
    710 	}
    711 
    712 	if (l != newl) {
    713 		struct lwp *prevlwp;
    714 
    715 		/* Release all locks, but leave the current LWP locked */
    716 		if (l->l_mutex == spc->spc_mutex) {
    717 			/*
    718 			 * Drop spc_lwplock, if the current LWP has been moved
    719 			 * to the run queue (it is now locked by spc_mutex).
    720 			 */
    721 			mutex_spin_exit(spc->spc_lwplock);
    722 		} else {
    723 			/*
    724 			 * Otherwise, drop the spc_mutex, we are done with the
    725 			 * run queues.
    726 			 */
    727 			mutex_spin_exit(spc->spc_mutex);
    728 		}
    729 
    730 		/*
    731 		 * Mark that context switch is going to be performed
    732 		 * for this LWP, to protect it from being switched
    733 		 * to on another CPU.
    734 		 */
    735 		KASSERT(l->l_ctxswtch == 0);
    736 		l->l_ctxswtch = 1;
    737 		l->l_ncsw++;
    738 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    739 		l->l_pflag &= ~LP_RUNNING;
    740 
    741 		/*
    742 		 * Increase the count of spin-mutexes before the release
    743 		 * of the last lock - we must remain at IPL_SCHED during
    744 		 * the context switch.
    745 		 */
    746 		KASSERTMSG(ci->ci_mtx_count == -1,
    747 		    "%s: cpu%u: ci_mtx_count (%d) != -1",
    748 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    749 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    750 		ci->ci_mtx_count--;
    751 		lwp_unlock(l);
    752 
    753 		/* Count the context switch on this CPU. */
    754 		ci->ci_data.cpu_nswtch++;
    755 
    756 		/* Update status for lwpctl, if present. */
    757 		if (l->l_lwpctl != NULL)
    758 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    759 
    760 		/*
    761 		 * Save old VM context, unless a soft interrupt
    762 		 * handler is blocking.
    763 		 */
    764 		if (!returning)
    765 			pmap_deactivate(l);
    766 
    767 		/*
    768 		 * We may need to spin-wait if 'newl' is still
    769 		 * context switching on another CPU.
    770 		 */
    771 		if (__predict_false(newl->l_ctxswtch != 0)) {
    772 			u_int count;
    773 			count = SPINLOCK_BACKOFF_MIN;
    774 			while (newl->l_ctxswtch)
    775 				SPINLOCK_BACKOFF(count);
    776 		}
    777 
    778 		/*
    779 		 * If DTrace has set the active vtime enum to anything
    780 		 * other than INACTIVE (0), then it should have set the
    781 		 * function to call.
    782 		 */
    783 		if (__predict_false(dtrace_vtime_active)) {
    784 			(*dtrace_vtime_switch_func)(newl);
    785 		}
    786 
    787 		/* Switch to the new LWP.. */
    788 		prevlwp = cpu_switchto(l, newl, returning);
    789 		ci = curcpu();
    790 
    791 		/*
    792 		 * Switched away - we have new curlwp.
    793 		 * Restore VM context and IPL.
    794 		 */
    795 		pmap_activate(l);
    796 		uvm_emap_switch(l);
    797 		pcu_switchpoint(l);
    798 
    799 		if (prevlwp != NULL) {
    800 			/* Normalize the count of the spin-mutexes */
    801 			ci->ci_mtx_count++;
    802 			/* Unmark the state of context switch */
    803 			membar_exit();
    804 			prevlwp->l_ctxswtch = 0;
    805 		}
    806 
    807 		/* Update status for lwpctl, if present. */
    808 		if (l->l_lwpctl != NULL) {
    809 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    810 			l->l_lwpctl->lc_pctr++;
    811 		}
    812 
    813 		/* Note trip through cpu_switchto(). */
    814 		pserialize_switchpoint();
    815 
    816 		KASSERT(l->l_cpu == ci);
    817 		splx(oldspl);
    818 		retval = 1;
    819 	} else {
    820 		/* Nothing to do - just unlock and return. */
    821 		mutex_spin_exit(spc->spc_mutex);
    822 		lwp_unlock(l);
    823 		retval = 0;
    824 	}
    825 
    826 	KASSERT(l == curlwp);
    827 	KASSERT(l->l_stat == LSONPROC);
    828 
    829 	/*
    830 	 * XXXSMP If we are using h/w performance counters, restore context.
    831 	 * XXXSMP preemption problem.
    832 	 */
    833 #if PERFCTRS
    834 	if (PMC_ENABLED(l->l_proc)) {
    835 		pmc_restore_context(l->l_proc);
    836 	}
    837 #endif
    838 	SYSCALL_TIME_WAKEUP(l);
    839 	LOCKDEBUG_BARRIER(NULL, 1);
    840 
    841 	return retval;
    842 }
    843 
    844 /*
    845  * The machine independent parts of context switch to oblivion.
    846  * Does not return.  Call with the LWP unlocked.
    847  */
    848 void
    849 lwp_exit_switchaway(lwp_t *l)
    850 {
    851 	struct cpu_info *ci;
    852 	struct lwp *newl;
    853 	struct bintime bt;
    854 
    855 	ci = l->l_cpu;
    856 
    857 	KASSERT(kpreempt_disabled());
    858 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    859 	KASSERT(ci == curcpu());
    860 	LOCKDEBUG_BARRIER(NULL, 0);
    861 
    862 	kstack_check_magic(l);
    863 
    864 	/* Count time spent in current system call */
    865 	SYSCALL_TIME_SLEEP(l);
    866 	binuptime(&bt);
    867 	updatertime(l, &bt);
    868 
    869 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    870 	(void)splsched();
    871 
    872 	/*
    873 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    874 	 * If no LWP is runnable, select the idle LWP.
    875 	 *
    876 	 * Note that spc_lwplock might not necessary be held, and
    877 	 * new thread would be unlocked after setting the LWP-lock.
    878 	 */
    879 	spc_lock(ci);
    880 #ifndef __HAVE_FAST_SOFTINTS
    881 	if (ci->ci_data.cpu_softints != 0) {
    882 		/* There are pending soft interrupts, so pick one. */
    883 		newl = softint_picklwp();
    884 		newl->l_stat = LSONPROC;
    885 		newl->l_pflag |= LP_RUNNING;
    886 	} else
    887 #endif	/* !__HAVE_FAST_SOFTINTS */
    888 	{
    889 		newl = nextlwp(ci, &ci->ci_schedstate);
    890 	}
    891 
    892 	/* Update the new LWP's start time. */
    893 	newl->l_stime = bt;
    894 	l->l_pflag &= ~LP_RUNNING;
    895 
    896 	/*
    897 	 * ci_curlwp changes when a fast soft interrupt occurs.
    898 	 * We use cpu_onproc to keep track of which kernel or
    899 	 * user thread is running 'underneath' the software
    900 	 * interrupt.  This is important for time accounting,
    901 	 * itimers and forcing user threads to preempt (aston).
    902 	 */
    903 	ci->ci_data.cpu_onproc = newl;
    904 
    905 	/*
    906 	 * Preemption related tasks.  Must be done with the current
    907 	 * CPU locked.
    908 	 */
    909 	cpu_did_resched(l);
    910 
    911 	/* Unlock the run queue. */
    912 	spc_unlock(ci);
    913 
    914 	/* Count the context switch on this CPU. */
    915 	ci->ci_data.cpu_nswtch++;
    916 
    917 	/* Update status for lwpctl, if present. */
    918 	if (l->l_lwpctl != NULL)
    919 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    920 
    921 	/*
    922 	 * We may need to spin-wait if 'newl' is still
    923 	 * context switching on another CPU.
    924 	 */
    925 	if (__predict_false(newl->l_ctxswtch != 0)) {
    926 		u_int count;
    927 		count = SPINLOCK_BACKOFF_MIN;
    928 		while (newl->l_ctxswtch)
    929 			SPINLOCK_BACKOFF(count);
    930 	}
    931 
    932 	/*
    933 	 * If DTrace has set the active vtime enum to anything
    934 	 * other than INACTIVE (0), then it should have set the
    935 	 * function to call.
    936 	 */
    937 	if (__predict_false(dtrace_vtime_active)) {
    938 		(*dtrace_vtime_switch_func)(newl);
    939 	}
    940 
    941 	/* Switch to the new LWP.. */
    942 	(void)cpu_switchto(NULL, newl, false);
    943 
    944 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    945 	/* NOTREACHED */
    946 }
    947 
    948 /*
    949  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    950  *
    951  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    952  */
    953 void
    954 setrunnable(struct lwp *l)
    955 {
    956 	struct proc *p = l->l_proc;
    957 	struct cpu_info *ci;
    958 
    959 	KASSERT((l->l_flag & LW_IDLE) == 0);
    960 	KASSERT(mutex_owned(p->p_lock));
    961 	KASSERT(lwp_locked(l, NULL));
    962 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    963 
    964 	switch (l->l_stat) {
    965 	case LSSTOP:
    966 		/*
    967 		 * If we're being traced (possibly because someone attached us
    968 		 * while we were stopped), check for a signal from the debugger.
    969 		 */
    970 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    971 			signotify(l);
    972 		p->p_nrlwps++;
    973 		break;
    974 	case LSSUSPENDED:
    975 		l->l_flag &= ~LW_WSUSPEND;
    976 		p->p_nrlwps++;
    977 		cv_broadcast(&p->p_lwpcv);
    978 		break;
    979 	case LSSLEEP:
    980 		KASSERT(l->l_wchan != NULL);
    981 		break;
    982 	default:
    983 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    984 	}
    985 
    986 #ifdef KERN_SA
    987 	if (l->l_proc->p_sa)
    988 		sa_awaken(l);
    989 #endif /* KERN_SA */
    990 
    991 	/*
    992 	 * If the LWP was sleeping, start it again.
    993 	 */
    994 	if (l->l_wchan != NULL) {
    995 		l->l_stat = LSSLEEP;
    996 		/* lwp_unsleep() will release the lock. */
    997 		lwp_unsleep(l, true);
    998 		return;
    999 	}
   1000 
   1001 	/*
   1002 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
   1003 	 * about to call mi_switch(), in which case it will yield.
   1004 	 */
   1005 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1006 		l->l_stat = LSONPROC;
   1007 		l->l_slptime = 0;
   1008 		lwp_unlock(l);
   1009 		return;
   1010 	}
   1011 
   1012 	/*
   1013 	 * Look for a CPU to run.
   1014 	 * Set the LWP runnable.
   1015 	 */
   1016 	ci = sched_takecpu(l);
   1017 	l->l_cpu = ci;
   1018 	spc_lock(ci);
   1019 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1020 	sched_setrunnable(l);
   1021 	l->l_stat = LSRUN;
   1022 	l->l_slptime = 0;
   1023 
   1024 	sched_enqueue(l, false);
   1025 	resched_cpu(l);
   1026 	lwp_unlock(l);
   1027 }
   1028 
   1029 /*
   1030  * suspendsched:
   1031  *
   1032  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1033  */
   1034 void
   1035 suspendsched(void)
   1036 {
   1037 	CPU_INFO_ITERATOR cii;
   1038 	struct cpu_info *ci;
   1039 	struct lwp *l;
   1040 	struct proc *p;
   1041 
   1042 	/*
   1043 	 * We do this by process in order not to violate the locking rules.
   1044 	 */
   1045 	mutex_enter(proc_lock);
   1046 	PROCLIST_FOREACH(p, &allproc) {
   1047 		mutex_enter(p->p_lock);
   1048 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1049 			mutex_exit(p->p_lock);
   1050 			continue;
   1051 		}
   1052 
   1053 		p->p_stat = SSTOP;
   1054 
   1055 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1056 			if (l == curlwp)
   1057 				continue;
   1058 
   1059 			lwp_lock(l);
   1060 
   1061 			/*
   1062 			 * Set L_WREBOOT so that the LWP will suspend itself
   1063 			 * when it tries to return to user mode.  We want to
   1064 			 * try and get to get as many LWPs as possible to
   1065 			 * the user / kernel boundary, so that they will
   1066 			 * release any locks that they hold.
   1067 			 */
   1068 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1069 
   1070 			if (l->l_stat == LSSLEEP &&
   1071 			    (l->l_flag & LW_SINTR) != 0) {
   1072 				/* setrunnable() will release the lock. */
   1073 				setrunnable(l);
   1074 				continue;
   1075 			}
   1076 
   1077 			lwp_unlock(l);
   1078 		}
   1079 
   1080 		mutex_exit(p->p_lock);
   1081 	}
   1082 	mutex_exit(proc_lock);
   1083 
   1084 	/*
   1085 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1086 	 * They'll trap into the kernel and suspend themselves in userret().
   1087 	 */
   1088 	for (CPU_INFO_FOREACH(cii, ci)) {
   1089 		spc_lock(ci);
   1090 		cpu_need_resched(ci, RESCHED_IMMED);
   1091 		spc_unlock(ci);
   1092 	}
   1093 }
   1094 
   1095 /*
   1096  * sched_unsleep:
   1097  *
   1098  *	The is called when the LWP has not been awoken normally but instead
   1099  *	interrupted: for example, if the sleep timed out.  Because of this,
   1100  *	it's not a valid action for running or idle LWPs.
   1101  */
   1102 static void
   1103 sched_unsleep(struct lwp *l, bool cleanup)
   1104 {
   1105 
   1106 	lwp_unlock(l);
   1107 	panic("sched_unsleep");
   1108 }
   1109 
   1110 static void
   1111 resched_cpu(struct lwp *l)
   1112 {
   1113 	struct cpu_info *ci = l->l_cpu;
   1114 
   1115 	KASSERT(lwp_locked(l, NULL));
   1116 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1117 		cpu_need_resched(ci, 0);
   1118 }
   1119 
   1120 static void
   1121 sched_changepri(struct lwp *l, pri_t pri)
   1122 {
   1123 
   1124 	KASSERT(lwp_locked(l, NULL));
   1125 
   1126 	if (l->l_stat == LSRUN) {
   1127 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1128 		sched_dequeue(l);
   1129 		l->l_priority = pri;
   1130 		sched_enqueue(l, false);
   1131 	} else {
   1132 		l->l_priority = pri;
   1133 	}
   1134 	resched_cpu(l);
   1135 }
   1136 
   1137 static void
   1138 sched_lendpri(struct lwp *l, pri_t pri)
   1139 {
   1140 
   1141 	KASSERT(lwp_locked(l, NULL));
   1142 
   1143 	if (l->l_stat == LSRUN) {
   1144 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1145 		sched_dequeue(l);
   1146 		l->l_inheritedprio = pri;
   1147 		sched_enqueue(l, false);
   1148 	} else {
   1149 		l->l_inheritedprio = pri;
   1150 	}
   1151 	resched_cpu(l);
   1152 }
   1153 
   1154 struct lwp *
   1155 syncobj_noowner(wchan_t wchan)
   1156 {
   1157 
   1158 	return NULL;
   1159 }
   1160 
   1161 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1162 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1163 
   1164 /*
   1165  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1166  * 5 second intervals.
   1167  */
   1168 static const fixpt_t cexp[ ] = {
   1169 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1170 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1171 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1172 };
   1173 
   1174 /*
   1175  * sched_pstats:
   1176  *
   1177  * => Update process statistics and check CPU resource allocation.
   1178  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1179  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1180  */
   1181 void
   1182 sched_pstats(void)
   1183 {
   1184 	extern struct loadavg averunnable;
   1185 	struct loadavg *avg = &averunnable;
   1186 	const int clkhz = (stathz != 0 ? stathz : hz);
   1187 	static bool backwards = false;
   1188 	static u_int lavg_count = 0;
   1189 	struct proc *p;
   1190 	int nrun;
   1191 
   1192 	sched_pstats_ticks++;
   1193 	if (++lavg_count >= 5) {
   1194 		lavg_count = 0;
   1195 		nrun = 0;
   1196 	}
   1197 	mutex_enter(proc_lock);
   1198 	PROCLIST_FOREACH(p, &allproc) {
   1199 		struct lwp *l;
   1200 		struct rlimit *rlim;
   1201 		time_t runtm;
   1202 		int sig;
   1203 
   1204 		/* Increment sleep time (if sleeping), ignore overflow. */
   1205 		mutex_enter(p->p_lock);
   1206 		runtm = p->p_rtime.sec;
   1207 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1208 			fixpt_t lpctcpu;
   1209 			u_int lcpticks;
   1210 
   1211 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1212 				continue;
   1213 			lwp_lock(l);
   1214 			runtm += l->l_rtime.sec;
   1215 			l->l_swtime++;
   1216 			sched_lwp_stats(l);
   1217 
   1218 			/* For load average calculation. */
   1219 			if (__predict_false(lavg_count == 0) &&
   1220 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1221 				switch (l->l_stat) {
   1222 				case LSSLEEP:
   1223 					if (l->l_slptime > 1) {
   1224 						break;
   1225 					}
   1226 				case LSRUN:
   1227 				case LSONPROC:
   1228 				case LSIDL:
   1229 					nrun++;
   1230 				}
   1231 			}
   1232 			lwp_unlock(l);
   1233 
   1234 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1235 			if (l->l_slptime != 0)
   1236 				continue;
   1237 
   1238 			lpctcpu = l->l_pctcpu;
   1239 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1240 			lpctcpu += ((FSCALE - ccpu) *
   1241 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1242 			l->l_pctcpu = lpctcpu;
   1243 		}
   1244 		/* Calculating p_pctcpu only for ps(1) */
   1245 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1246 
   1247 		/*
   1248 		 * Check if the process exceeds its CPU resource allocation.
   1249 		 * If over the hard limit, kill it with SIGKILL.
   1250 		 * If over the soft limit, send SIGXCPU and raise
   1251 		 * the soft limit a little.
   1252 		 */
   1253 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1254 		sig = 0;
   1255 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1256 			if (runtm >= rlim->rlim_max) {
   1257 				sig = SIGKILL;
   1258 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1259 					p->p_pid, "exceeded RLIMIT_CPU");
   1260 				uprintf("pid %d, command %s, is killed: %s\n",
   1261 					p->p_pid, p->p_comm,
   1262 					"exceeded RLIMIT_CPU");
   1263 			} else {
   1264 				sig = SIGXCPU;
   1265 				if (rlim->rlim_cur < rlim->rlim_max)
   1266 					rlim->rlim_cur += 5;
   1267 			}
   1268 		}
   1269 		mutex_exit(p->p_lock);
   1270 		if (__predict_false(runtm < 0)) {
   1271 			if (!backwards) {
   1272 				backwards = true;
   1273 				printf("WARNING: negative runtime; "
   1274 				    "monotonic clock has gone backwards\n");
   1275 			}
   1276 		} else if (__predict_false(sig)) {
   1277 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1278 			psignal(p, sig);
   1279 		}
   1280 	}
   1281 	mutex_exit(proc_lock);
   1282 
   1283 	/* Load average calculation. */
   1284 	if (__predict_false(lavg_count == 0)) {
   1285 		int i;
   1286 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1287 		for (i = 0; i < __arraycount(cexp); i++) {
   1288 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1289 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1290 		}
   1291 	}
   1292 
   1293 	/* Lightning bolt. */
   1294 	cv_broadcast(&lbolt);
   1295 }
   1296