Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.296.4.1
      1 /*	$NetBSD: kern_synch.c,v 1.296.4.1 2012/02/18 07:35:31 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.296.4.1 2012/02/18 07:35:31 mrg Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/pserialize.h>
     90 #include <sys/resourcevar.h>
     91 #include <sys/sched.h>
     92 #include <sys/sa.h>
     93 #include <sys/savar.h>
     94 #include <sys/syscall_stats.h>
     95 #include <sys/sleepq.h>
     96 #include <sys/lockdebug.h>
     97 #include <sys/evcnt.h>
     98 #include <sys/intr.h>
     99 #include <sys/lwpctl.h>
    100 #include <sys/atomic.h>
    101 #include <sys/simplelock.h>
    102 #include <sys/syslog.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 
    106 #include <dev/lockstat.h>
    107 
    108 #include <sys/dtrace_bsd.h>
    109 int                             dtrace_vtime_active=0;
    110 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    111 
    112 static void	sched_unsleep(struct lwp *, bool);
    113 static void	sched_changepri(struct lwp *, pri_t);
    114 static void	sched_lendpri(struct lwp *, pri_t);
    115 static void	resched_cpu(struct lwp *);
    116 
    117 syncobj_t sleep_syncobj = {
    118 	SOBJ_SLEEPQ_SORTED,
    119 	sleepq_unsleep,
    120 	sleepq_changepri,
    121 	sleepq_lendpri,
    122 	syncobj_noowner,
    123 };
    124 
    125 syncobj_t sched_syncobj = {
    126 	SOBJ_SLEEPQ_SORTED,
    127 	sched_unsleep,
    128 	sched_changepri,
    129 	sched_lendpri,
    130 	syncobj_noowner,
    131 };
    132 
    133 /* "Lightning bolt": once a second sleep address. */
    134 kcondvar_t		lbolt			__cacheline_aligned;
    135 
    136 u_int			sched_pstats_ticks	__cacheline_aligned;
    137 
    138 /* Preemption event counters. */
    139 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    140 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    141 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    142 
    143 /*
    144  * During autoconfiguration or after a panic, a sleep will simply lower the
    145  * priority briefly to allow interrupts, then return.  The priority to be
    146  * used (safepri) is machine-dependent, thus this value is initialized and
    147  * maintained in the machine-dependent layers.  This priority will typically
    148  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    149  * it can be made higher to block network software interrupts after panics.
    150  */
    151 int	safepri;
    152 
    153 void
    154 synch_init(void)
    155 {
    156 
    157 	cv_init(&lbolt, "lbolt");
    158 
    159 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    160 	   "kpreempt", "defer: critical section");
    161 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    162 	   "kpreempt", "defer: kernel_lock");
    163 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    164 	   "kpreempt", "immediate");
    165 }
    166 
    167 /*
    168  * OBSOLETE INTERFACE
    169  *
    170  * General sleep call.  Suspends the current LWP until a wakeup is
    171  * performed on the specified identifier.  The LWP will then be made
    172  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    173  * means no timeout).  If pri includes PCATCH flag, signals are checked
    174  * before and after sleeping, else signals are not checked.  Returns 0 if
    175  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    176  * signal needs to be delivered, ERESTART is returned if the current system
    177  * call should be restarted if possible, and EINTR is returned if the system
    178  * call should be interrupted by the signal (return EINTR).
    179  */
    180 int
    181 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    182 {
    183 	struct lwp *l = curlwp;
    184 	sleepq_t *sq;
    185 	kmutex_t *mp;
    186 
    187 	KASSERT((l->l_pflag & LP_INTR) == 0);
    188 	KASSERT(ident != &lbolt);
    189 
    190 	if (sleepq_dontsleep(l)) {
    191 		(void)sleepq_abort(NULL, 0);
    192 		return 0;
    193 	}
    194 
    195 	l->l_kpriority = true;
    196 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    197 	sleepq_enter(sq, l, mp);
    198 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    199 	return sleepq_block(timo, priority & PCATCH);
    200 }
    201 
    202 int
    203 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    204 	kmutex_t *mtx)
    205 {
    206 	struct lwp *l = curlwp;
    207 	sleepq_t *sq;
    208 	kmutex_t *mp;
    209 	int error;
    210 
    211 	KASSERT((l->l_pflag & LP_INTR) == 0);
    212 	KASSERT(ident != &lbolt);
    213 
    214 	if (sleepq_dontsleep(l)) {
    215 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    216 		return 0;
    217 	}
    218 
    219 	l->l_kpriority = true;
    220 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    221 	sleepq_enter(sq, l, mp);
    222 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    223 	mutex_exit(mtx);
    224 	error = sleepq_block(timo, priority & PCATCH);
    225 
    226 	if ((priority & PNORELOCK) == 0)
    227 		mutex_enter(mtx);
    228 
    229 	return error;
    230 }
    231 
    232 /*
    233  * General sleep call for situations where a wake-up is not expected.
    234  */
    235 int
    236 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    237 {
    238 	struct lwp *l = curlwp;
    239 	kmutex_t *mp;
    240 	sleepq_t *sq;
    241 	int error;
    242 
    243 	KASSERT(!(timo == 0 && intr == false));
    244 
    245 	if (sleepq_dontsleep(l))
    246 		return sleepq_abort(NULL, 0);
    247 
    248 	if (mtx != NULL)
    249 		mutex_exit(mtx);
    250 	l->l_kpriority = true;
    251 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    252 	sleepq_enter(sq, l, mp);
    253 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    254 	error = sleepq_block(timo, intr);
    255 	if (mtx != NULL)
    256 		mutex_enter(mtx);
    257 
    258 	return error;
    259 }
    260 
    261 #ifdef KERN_SA
    262 /*
    263  * sa_awaken:
    264  *
    265  *	We believe this lwp is an SA lwp. If it's yielding,
    266  * let it know it needs to wake up.
    267  *
    268  *	We are called and exit with the lwp locked. We are
    269  * called in the middle of wakeup operations, so we need
    270  * to not touch the locks at all.
    271  */
    272 void
    273 sa_awaken(struct lwp *l)
    274 {
    275 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    276 
    277 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    278 		l->l_flag &= ~LW_SA_IDLE;
    279 }
    280 #endif /* KERN_SA */
    281 
    282 /*
    283  * OBSOLETE INTERFACE
    284  *
    285  * Make all LWPs sleeping on the specified identifier runnable.
    286  */
    287 void
    288 wakeup(wchan_t ident)
    289 {
    290 	sleepq_t *sq;
    291 	kmutex_t *mp;
    292 
    293 	if (__predict_false(cold))
    294 		return;
    295 
    296 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    297 	sleepq_wake(sq, ident, (u_int)-1, mp);
    298 }
    299 
    300 /*
    301  * General yield call.  Puts the current LWP back on its run queue and
    302  * performs a voluntary context switch.  Should only be called when the
    303  * current LWP explicitly requests it (eg sched_yield(2)).
    304  */
    305 void
    306 yield(void)
    307 {
    308 	struct lwp *l = curlwp;
    309 
    310 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    311 	lwp_lock(l);
    312 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    313 	KASSERT(l->l_stat == LSONPROC);
    314 	l->l_kpriority = false;
    315 	(void)mi_switch(l);
    316 	KERNEL_LOCK(l->l_biglocks, l);
    317 }
    318 
    319 /*
    320  * General preemption call.  Puts the current LWP back on its run queue
    321  * and performs an involuntary context switch.
    322  */
    323 void
    324 preempt(void)
    325 {
    326 	struct lwp *l = curlwp;
    327 
    328 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    329 	lwp_lock(l);
    330 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    331 	KASSERT(l->l_stat == LSONPROC);
    332 	l->l_kpriority = false;
    333 	l->l_nivcsw++;
    334 	(void)mi_switch(l);
    335 	KERNEL_LOCK(l->l_biglocks, l);
    336 }
    337 
    338 /*
    339  * Handle a request made by another agent to preempt the current LWP
    340  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    341  *
    342  * Character addresses for lockstat only.
    343  */
    344 static char	in_critical_section;
    345 static char	kernel_lock_held;
    346 static char	is_softint;
    347 static char	cpu_kpreempt_enter_fail;
    348 
    349 bool
    350 kpreempt(uintptr_t where)
    351 {
    352 	uintptr_t failed;
    353 	lwp_t *l;
    354 	int s, dop, lsflag;
    355 
    356 	l = curlwp;
    357 	failed = 0;
    358 	while ((dop = l->l_dopreempt) != 0) {
    359 		if (l->l_stat != LSONPROC) {
    360 			/*
    361 			 * About to block (or die), let it happen.
    362 			 * Doesn't really count as "preemption has
    363 			 * been blocked", since we're going to
    364 			 * context switch.
    365 			 */
    366 			l->l_dopreempt = 0;
    367 			return true;
    368 		}
    369 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    370 			/* Can't preempt idle loop, don't count as failure. */
    371 			l->l_dopreempt = 0;
    372 			return true;
    373 		}
    374 		if (__predict_false(l->l_nopreempt != 0)) {
    375 			/* LWP holds preemption disabled, explicitly. */
    376 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    377 				kpreempt_ev_crit.ev_count++;
    378 			}
    379 			failed = (uintptr_t)&in_critical_section;
    380 			break;
    381 		}
    382 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    383 			/* Can't preempt soft interrupts yet. */
    384 			l->l_dopreempt = 0;
    385 			failed = (uintptr_t)&is_softint;
    386 			break;
    387 		}
    388 		s = splsched();
    389 		if (__predict_false(l->l_blcnt != 0 ||
    390 		    curcpu()->ci_biglock_wanted != NULL)) {
    391 			/* Hold or want kernel_lock, code is not MT safe. */
    392 			splx(s);
    393 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    394 				kpreempt_ev_klock.ev_count++;
    395 			}
    396 			failed = (uintptr_t)&kernel_lock_held;
    397 			break;
    398 		}
    399 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    400 			/*
    401 			 * It may be that the IPL is too high.
    402 			 * kpreempt_enter() can schedule an
    403 			 * interrupt to retry later.
    404 			 */
    405 			splx(s);
    406 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    407 			break;
    408 		}
    409 		/* Do it! */
    410 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    411 			kpreempt_ev_immed.ev_count++;
    412 		}
    413 		lwp_lock(l);
    414 		mi_switch(l);
    415 		l->l_nopreempt++;
    416 		splx(s);
    417 
    418 		/* Take care of any MD cleanup. */
    419 		cpu_kpreempt_exit(where);
    420 		l->l_nopreempt--;
    421 	}
    422 
    423 	if (__predict_true(!failed)) {
    424 		return false;
    425 	}
    426 
    427 	/* Record preemption failure for reporting via lockstat. */
    428 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    429 	lsflag = 0;
    430 	LOCKSTAT_ENTER(lsflag);
    431 	if (__predict_false(lsflag)) {
    432 		if (where == 0) {
    433 			where = (uintptr_t)__builtin_return_address(0);
    434 		}
    435 		/* Preemption is on, might recurse, so make it atomic. */
    436 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    437 		    (void *)where) == NULL) {
    438 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    439 			l->l_pfaillock = failed;
    440 		}
    441 	}
    442 	LOCKSTAT_EXIT(lsflag);
    443 	return true;
    444 }
    445 
    446 /*
    447  * Return true if preemption is explicitly disabled.
    448  */
    449 bool
    450 kpreempt_disabled(void)
    451 {
    452 	const lwp_t *l = curlwp;
    453 
    454 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    455 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    456 }
    457 
    458 /*
    459  * Disable kernel preemption.
    460  */
    461 void
    462 kpreempt_disable(void)
    463 {
    464 
    465 	KPREEMPT_DISABLE(curlwp);
    466 }
    467 
    468 /*
    469  * Reenable kernel preemption.
    470  */
    471 void
    472 kpreempt_enable(void)
    473 {
    474 
    475 	KPREEMPT_ENABLE(curlwp);
    476 }
    477 
    478 /*
    479  * Compute the amount of time during which the current lwp was running.
    480  *
    481  * - update l_rtime unless it's an idle lwp.
    482  */
    483 
    484 void
    485 updatertime(lwp_t *l, const struct bintime *now)
    486 {
    487 
    488 	if (__predict_false(l->l_flag & LW_IDLE))
    489 		return;
    490 
    491 	/* rtime += now - stime */
    492 	bintime_add(&l->l_rtime, now);
    493 	bintime_sub(&l->l_rtime, &l->l_stime);
    494 }
    495 
    496 /*
    497  * Select next LWP from the current CPU to run..
    498  */
    499 static inline lwp_t *
    500 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    501 {
    502 	lwp_t *newl;
    503 
    504 	/*
    505 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    506 	 * If no LWP is runnable, select the idle LWP.
    507 	 *
    508 	 * Note that spc_lwplock might not necessary be held, and
    509 	 * new thread would be unlocked after setting the LWP-lock.
    510 	 */
    511 	newl = sched_nextlwp();
    512 	if (newl != NULL) {
    513 		sched_dequeue(newl);
    514 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    515 		KASSERT(newl->l_cpu == ci);
    516 		newl->l_stat = LSONPROC;
    517 		newl->l_pflag |= LP_RUNNING;
    518 		lwp_setlock(newl, spc->spc_lwplock);
    519 	} else {
    520 		newl = ci->ci_data.cpu_idlelwp;
    521 		newl->l_stat = LSONPROC;
    522 		newl->l_pflag |= LP_RUNNING;
    523 	}
    524 
    525 	/*
    526 	 * Only clear want_resched if there are no pending (slow)
    527 	 * software interrupts.
    528 	 */
    529 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    530 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    531 	spc->spc_curpriority = lwp_eprio(newl);
    532 
    533 	return newl;
    534 }
    535 
    536 /*
    537  * The machine independent parts of context switch.
    538  *
    539  * Returns 1 if another LWP was actually run.
    540  */
    541 int
    542 mi_switch(lwp_t *l)
    543 {
    544 	struct cpu_info *ci;
    545 	struct schedstate_percpu *spc;
    546 	struct lwp *newl;
    547 	int retval, oldspl;
    548 	struct bintime bt;
    549 	bool returning;
    550 
    551 	KASSERT(lwp_locked(l, NULL));
    552 	KASSERT(kpreempt_disabled());
    553 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    554 
    555 	kstack_check_magic(l);
    556 
    557 	binuptime(&bt);
    558 
    559 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    560 	KASSERT(l->l_cpu == curcpu());
    561 	ci = l->l_cpu;
    562 	spc = &ci->ci_schedstate;
    563 	returning = false;
    564 	newl = NULL;
    565 
    566 	/*
    567 	 * If we have been asked to switch to a specific LWP, then there
    568 	 * is no need to inspect the run queues.  If a soft interrupt is
    569 	 * blocking, then return to the interrupted thread without adjusting
    570 	 * VM context or its start time: neither have been changed in order
    571 	 * to take the interrupt.
    572 	 */
    573 	if (l->l_switchto != NULL) {
    574 		if ((l->l_pflag & LP_INTR) != 0) {
    575 			returning = true;
    576 			softint_block(l);
    577 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    578 				updatertime(l, &bt);
    579 		}
    580 		newl = l->l_switchto;
    581 		l->l_switchto = NULL;
    582 	}
    583 #ifndef __HAVE_FAST_SOFTINTS
    584 	else if (ci->ci_data.cpu_softints != 0) {
    585 		/* There are pending soft interrupts, so pick one. */
    586 		newl = softint_picklwp();
    587 		newl->l_stat = LSONPROC;
    588 		newl->l_pflag |= LP_RUNNING;
    589 	}
    590 #endif	/* !__HAVE_FAST_SOFTINTS */
    591 
    592 	/* Count time spent in current system call */
    593 	if (!returning) {
    594 		SYSCALL_TIME_SLEEP(l);
    595 
    596 		/*
    597 		 * XXXSMP If we are using h/w performance counters,
    598 		 * save context.
    599 		 */
    600 #if PERFCTRS
    601 		if (PMC_ENABLED(l->l_proc)) {
    602 			pmc_save_context(l->l_proc);
    603 		}
    604 #endif
    605 		updatertime(l, &bt);
    606 	}
    607 
    608 	/* Lock the runqueue */
    609 	KASSERT(l->l_stat != LSRUN);
    610 	mutex_spin_enter(spc->spc_mutex);
    611 
    612 	/*
    613 	 * If on the CPU and we have gotten this far, then we must yield.
    614 	 */
    615 	if (l->l_stat == LSONPROC && l != newl) {
    616 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    617 		if ((l->l_flag & LW_IDLE) == 0) {
    618 			l->l_stat = LSRUN;
    619 			lwp_setlock(l, spc->spc_mutex);
    620 			sched_enqueue(l, true);
    621 			/*
    622 			 * Handle migration.  Note that "migrating LWP" may
    623 			 * be reset here, if interrupt/preemption happens
    624 			 * early in idle LWP.
    625 			 */
    626 			if (l->l_target_cpu != NULL) {
    627 				KASSERT((l->l_pflag & LP_INTR) == 0);
    628 				spc->spc_migrating = l;
    629 			}
    630 		} else
    631 			l->l_stat = LSIDL;
    632 	}
    633 
    634 	/* Pick new LWP to run. */
    635 	if (newl == NULL) {
    636 		newl = nextlwp(ci, spc);
    637 	}
    638 
    639 	/* Items that must be updated with the CPU locked. */
    640 	if (!returning) {
    641 		/* Update the new LWP's start time. */
    642 		newl->l_stime = bt;
    643 
    644 		/*
    645 		 * ci_curlwp changes when a fast soft interrupt occurs.
    646 		 * We use cpu_onproc to keep track of which kernel or
    647 		 * user thread is running 'underneath' the software
    648 		 * interrupt.  This is important for time accounting,
    649 		 * itimers and forcing user threads to preempt (aston).
    650 		 */
    651 		ci->ci_data.cpu_onproc = newl;
    652 	}
    653 
    654 	/*
    655 	 * Preemption related tasks.  Must be done with the current
    656 	 * CPU locked.
    657 	 */
    658 	cpu_did_resched(l);
    659 	l->l_dopreempt = 0;
    660 	if (__predict_false(l->l_pfailaddr != 0)) {
    661 		LOCKSTAT_FLAG(lsflag);
    662 		LOCKSTAT_ENTER(lsflag);
    663 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    664 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    665 		    1, l->l_pfailtime, l->l_pfailaddr);
    666 		LOCKSTAT_EXIT(lsflag);
    667 		l->l_pfailtime = 0;
    668 		l->l_pfaillock = 0;
    669 		l->l_pfailaddr = 0;
    670 	}
    671 
    672 	if (l != newl) {
    673 		struct lwp *prevlwp;
    674 
    675 		/* Release all locks, but leave the current LWP locked */
    676 		if (l->l_mutex == spc->spc_mutex) {
    677 			/*
    678 			 * Drop spc_lwplock, if the current LWP has been moved
    679 			 * to the run queue (it is now locked by spc_mutex).
    680 			 */
    681 			mutex_spin_exit(spc->spc_lwplock);
    682 		} else {
    683 			/*
    684 			 * Otherwise, drop the spc_mutex, we are done with the
    685 			 * run queues.
    686 			 */
    687 			mutex_spin_exit(spc->spc_mutex);
    688 		}
    689 
    690 		/*
    691 		 * Mark that context switch is going to be performed
    692 		 * for this LWP, to protect it from being switched
    693 		 * to on another CPU.
    694 		 */
    695 		KASSERT(l->l_ctxswtch == 0);
    696 		l->l_ctxswtch = 1;
    697 		l->l_ncsw++;
    698 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    699 		l->l_pflag &= ~LP_RUNNING;
    700 
    701 		/*
    702 		 * Increase the count of spin-mutexes before the release
    703 		 * of the last lock - we must remain at IPL_SCHED during
    704 		 * the context switch.
    705 		 */
    706 		KASSERTMSG(ci->ci_mtx_count == -1,
    707 		    "%s: cpu%u: ci_mtx_count (%d) != -1",
    708 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    709 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    710 		ci->ci_mtx_count--;
    711 		lwp_unlock(l);
    712 
    713 		/* Count the context switch on this CPU. */
    714 		ci->ci_data.cpu_nswtch++;
    715 
    716 		/* Update status for lwpctl, if present. */
    717 		if (l->l_lwpctl != NULL)
    718 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    719 
    720 		/*
    721 		 * Save old VM context, unless a soft interrupt
    722 		 * handler is blocking.
    723 		 */
    724 		if (!returning)
    725 			pmap_deactivate(l);
    726 
    727 		/*
    728 		 * We may need to spin-wait if 'newl' is still
    729 		 * context switching on another CPU.
    730 		 */
    731 		if (__predict_false(newl->l_ctxswtch != 0)) {
    732 			u_int count;
    733 			count = SPINLOCK_BACKOFF_MIN;
    734 			while (newl->l_ctxswtch)
    735 				SPINLOCK_BACKOFF(count);
    736 		}
    737 
    738 		/*
    739 		 * If DTrace has set the active vtime enum to anything
    740 		 * other than INACTIVE (0), then it should have set the
    741 		 * function to call.
    742 		 */
    743 		if (__predict_false(dtrace_vtime_active)) {
    744 			(*dtrace_vtime_switch_func)(newl);
    745 		}
    746 
    747 		/* Switch to the new LWP.. */
    748 		prevlwp = cpu_switchto(l, newl, returning);
    749 		ci = curcpu();
    750 
    751 		/*
    752 		 * Switched away - we have new curlwp.
    753 		 * Restore VM context and IPL.
    754 		 */
    755 		pmap_activate(l);
    756 		uvm_emap_switch(l);
    757 		pcu_switchpoint(l);
    758 
    759 		if (prevlwp != NULL) {
    760 			/* Normalize the count of the spin-mutexes */
    761 			ci->ci_mtx_count++;
    762 			/* Unmark the state of context switch */
    763 			membar_exit();
    764 			prevlwp->l_ctxswtch = 0;
    765 		}
    766 
    767 		/* Update status for lwpctl, if present. */
    768 		if (l->l_lwpctl != NULL) {
    769 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    770 			l->l_lwpctl->lc_pctr++;
    771 		}
    772 
    773 		/* Note trip through cpu_switchto(). */
    774 		pserialize_switchpoint();
    775 
    776 		KASSERT(l->l_cpu == ci);
    777 		splx(oldspl);
    778 		retval = 1;
    779 	} else {
    780 		/* Nothing to do - just unlock and return. */
    781 		mutex_spin_exit(spc->spc_mutex);
    782 		lwp_unlock(l);
    783 		retval = 0;
    784 	}
    785 
    786 	KASSERT(l == curlwp);
    787 	KASSERT(l->l_stat == LSONPROC);
    788 
    789 	/*
    790 	 * XXXSMP If we are using h/w performance counters, restore context.
    791 	 * XXXSMP preemption problem.
    792 	 */
    793 #if PERFCTRS
    794 	if (PMC_ENABLED(l->l_proc)) {
    795 		pmc_restore_context(l->l_proc);
    796 	}
    797 #endif
    798 	SYSCALL_TIME_WAKEUP(l);
    799 	LOCKDEBUG_BARRIER(NULL, 1);
    800 
    801 	return retval;
    802 }
    803 
    804 /*
    805  * The machine independent parts of context switch to oblivion.
    806  * Does not return.  Call with the LWP unlocked.
    807  */
    808 void
    809 lwp_exit_switchaway(lwp_t *l)
    810 {
    811 	struct cpu_info *ci;
    812 	struct lwp *newl;
    813 	struct bintime bt;
    814 
    815 	ci = l->l_cpu;
    816 
    817 	KASSERT(kpreempt_disabled());
    818 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    819 	KASSERT(ci == curcpu());
    820 	LOCKDEBUG_BARRIER(NULL, 0);
    821 
    822 	kstack_check_magic(l);
    823 
    824 	/* Count time spent in current system call */
    825 	SYSCALL_TIME_SLEEP(l);
    826 	binuptime(&bt);
    827 	updatertime(l, &bt);
    828 
    829 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    830 	(void)splsched();
    831 
    832 	/*
    833 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    834 	 * If no LWP is runnable, select the idle LWP.
    835 	 *
    836 	 * Note that spc_lwplock might not necessary be held, and
    837 	 * new thread would be unlocked after setting the LWP-lock.
    838 	 */
    839 	spc_lock(ci);
    840 #ifndef __HAVE_FAST_SOFTINTS
    841 	if (ci->ci_data.cpu_softints != 0) {
    842 		/* There are pending soft interrupts, so pick one. */
    843 		newl = softint_picklwp();
    844 		newl->l_stat = LSONPROC;
    845 		newl->l_pflag |= LP_RUNNING;
    846 	} else
    847 #endif	/* !__HAVE_FAST_SOFTINTS */
    848 	{
    849 		newl = nextlwp(ci, &ci->ci_schedstate);
    850 	}
    851 
    852 	/* Update the new LWP's start time. */
    853 	newl->l_stime = bt;
    854 	l->l_pflag &= ~LP_RUNNING;
    855 
    856 	/*
    857 	 * ci_curlwp changes when a fast soft interrupt occurs.
    858 	 * We use cpu_onproc to keep track of which kernel or
    859 	 * user thread is running 'underneath' the software
    860 	 * interrupt.  This is important for time accounting,
    861 	 * itimers and forcing user threads to preempt (aston).
    862 	 */
    863 	ci->ci_data.cpu_onproc = newl;
    864 
    865 	/*
    866 	 * Preemption related tasks.  Must be done with the current
    867 	 * CPU locked.
    868 	 */
    869 	cpu_did_resched(l);
    870 
    871 	/* Unlock the run queue. */
    872 	spc_unlock(ci);
    873 
    874 	/* Count the context switch on this CPU. */
    875 	ci->ci_data.cpu_nswtch++;
    876 
    877 	/* Update status for lwpctl, if present. */
    878 	if (l->l_lwpctl != NULL)
    879 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    880 
    881 	/*
    882 	 * We may need to spin-wait if 'newl' is still
    883 	 * context switching on another CPU.
    884 	 */
    885 	if (__predict_false(newl->l_ctxswtch != 0)) {
    886 		u_int count;
    887 		count = SPINLOCK_BACKOFF_MIN;
    888 		while (newl->l_ctxswtch)
    889 			SPINLOCK_BACKOFF(count);
    890 	}
    891 
    892 	/*
    893 	 * If DTrace has set the active vtime enum to anything
    894 	 * other than INACTIVE (0), then it should have set the
    895 	 * function to call.
    896 	 */
    897 	if (__predict_false(dtrace_vtime_active)) {
    898 		(*dtrace_vtime_switch_func)(newl);
    899 	}
    900 
    901 	/* Switch to the new LWP.. */
    902 	(void)cpu_switchto(NULL, newl, false);
    903 
    904 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    905 	/* NOTREACHED */
    906 }
    907 
    908 /*
    909  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    910  *
    911  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    912  */
    913 void
    914 setrunnable(struct lwp *l)
    915 {
    916 	struct proc *p = l->l_proc;
    917 	struct cpu_info *ci;
    918 
    919 	KASSERT((l->l_flag & LW_IDLE) == 0);
    920 	KASSERT(mutex_owned(p->p_lock));
    921 	KASSERT(lwp_locked(l, NULL));
    922 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    923 
    924 	switch (l->l_stat) {
    925 	case LSSTOP:
    926 		/*
    927 		 * If we're being traced (possibly because someone attached us
    928 		 * while we were stopped), check for a signal from the debugger.
    929 		 */
    930 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    931 			signotify(l);
    932 		p->p_nrlwps++;
    933 		break;
    934 	case LSSUSPENDED:
    935 		l->l_flag &= ~LW_WSUSPEND;
    936 		p->p_nrlwps++;
    937 		cv_broadcast(&p->p_lwpcv);
    938 		break;
    939 	case LSSLEEP:
    940 		KASSERT(l->l_wchan != NULL);
    941 		break;
    942 	default:
    943 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    944 	}
    945 
    946 #ifdef KERN_SA
    947 	if (l->l_proc->p_sa)
    948 		sa_awaken(l);
    949 #endif /* KERN_SA */
    950 
    951 	/*
    952 	 * If the LWP was sleeping, start it again.
    953 	 */
    954 	if (l->l_wchan != NULL) {
    955 		l->l_stat = LSSLEEP;
    956 		/* lwp_unsleep() will release the lock. */
    957 		lwp_unsleep(l, true);
    958 		return;
    959 	}
    960 
    961 	/*
    962 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    963 	 * about to call mi_switch(), in which case it will yield.
    964 	 */
    965 	if ((l->l_pflag & LP_RUNNING) != 0) {
    966 		l->l_stat = LSONPROC;
    967 		l->l_slptime = 0;
    968 		lwp_unlock(l);
    969 		return;
    970 	}
    971 
    972 	/*
    973 	 * Look for a CPU to run.
    974 	 * Set the LWP runnable.
    975 	 */
    976 	ci = sched_takecpu(l);
    977 	l->l_cpu = ci;
    978 	spc_lock(ci);
    979 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    980 	sched_setrunnable(l);
    981 	l->l_stat = LSRUN;
    982 	l->l_slptime = 0;
    983 
    984 	sched_enqueue(l, false);
    985 	resched_cpu(l);
    986 	lwp_unlock(l);
    987 }
    988 
    989 /*
    990  * suspendsched:
    991  *
    992  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    993  */
    994 void
    995 suspendsched(void)
    996 {
    997 	CPU_INFO_ITERATOR cii;
    998 	struct cpu_info *ci;
    999 	struct lwp *l;
   1000 	struct proc *p;
   1001 
   1002 	/*
   1003 	 * We do this by process in order not to violate the locking rules.
   1004 	 */
   1005 	mutex_enter(proc_lock);
   1006 	PROCLIST_FOREACH(p, &allproc) {
   1007 		mutex_enter(p->p_lock);
   1008 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1009 			mutex_exit(p->p_lock);
   1010 			continue;
   1011 		}
   1012 
   1013 		p->p_stat = SSTOP;
   1014 
   1015 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1016 			if (l == curlwp)
   1017 				continue;
   1018 
   1019 			lwp_lock(l);
   1020 
   1021 			/*
   1022 			 * Set L_WREBOOT so that the LWP will suspend itself
   1023 			 * when it tries to return to user mode.  We want to
   1024 			 * try and get to get as many LWPs as possible to
   1025 			 * the user / kernel boundary, so that they will
   1026 			 * release any locks that they hold.
   1027 			 */
   1028 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1029 
   1030 			if (l->l_stat == LSSLEEP &&
   1031 			    (l->l_flag & LW_SINTR) != 0) {
   1032 				/* setrunnable() will release the lock. */
   1033 				setrunnable(l);
   1034 				continue;
   1035 			}
   1036 
   1037 			lwp_unlock(l);
   1038 		}
   1039 
   1040 		mutex_exit(p->p_lock);
   1041 	}
   1042 	mutex_exit(proc_lock);
   1043 
   1044 	/*
   1045 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1046 	 * They'll trap into the kernel and suspend themselves in userret().
   1047 	 */
   1048 	for (CPU_INFO_FOREACH(cii, ci)) {
   1049 		spc_lock(ci);
   1050 		cpu_need_resched(ci, RESCHED_IMMED);
   1051 		spc_unlock(ci);
   1052 	}
   1053 }
   1054 
   1055 /*
   1056  * sched_unsleep:
   1057  *
   1058  *	The is called when the LWP has not been awoken normally but instead
   1059  *	interrupted: for example, if the sleep timed out.  Because of this,
   1060  *	it's not a valid action for running or idle LWPs.
   1061  */
   1062 static void
   1063 sched_unsleep(struct lwp *l, bool cleanup)
   1064 {
   1065 
   1066 	lwp_unlock(l);
   1067 	panic("sched_unsleep");
   1068 }
   1069 
   1070 static void
   1071 resched_cpu(struct lwp *l)
   1072 {
   1073 	struct cpu_info *ci = l->l_cpu;
   1074 
   1075 	KASSERT(lwp_locked(l, NULL));
   1076 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1077 		cpu_need_resched(ci, 0);
   1078 }
   1079 
   1080 static void
   1081 sched_changepri(struct lwp *l, pri_t pri)
   1082 {
   1083 
   1084 	KASSERT(lwp_locked(l, NULL));
   1085 
   1086 	if (l->l_stat == LSRUN) {
   1087 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1088 		sched_dequeue(l);
   1089 		l->l_priority = pri;
   1090 		sched_enqueue(l, false);
   1091 	} else {
   1092 		l->l_priority = pri;
   1093 	}
   1094 	resched_cpu(l);
   1095 }
   1096 
   1097 static void
   1098 sched_lendpri(struct lwp *l, pri_t pri)
   1099 {
   1100 
   1101 	KASSERT(lwp_locked(l, NULL));
   1102 
   1103 	if (l->l_stat == LSRUN) {
   1104 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1105 		sched_dequeue(l);
   1106 		l->l_inheritedprio = pri;
   1107 		sched_enqueue(l, false);
   1108 	} else {
   1109 		l->l_inheritedprio = pri;
   1110 	}
   1111 	resched_cpu(l);
   1112 }
   1113 
   1114 struct lwp *
   1115 syncobj_noowner(wchan_t wchan)
   1116 {
   1117 
   1118 	return NULL;
   1119 }
   1120 
   1121 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1122 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1123 
   1124 /*
   1125  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1126  * 5 second intervals.
   1127  */
   1128 static const fixpt_t cexp[ ] = {
   1129 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1130 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1131 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1132 };
   1133 
   1134 /*
   1135  * sched_pstats:
   1136  *
   1137  * => Update process statistics and check CPU resource allocation.
   1138  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1139  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1140  */
   1141 void
   1142 sched_pstats(void)
   1143 {
   1144 	extern struct loadavg averunnable;
   1145 	struct loadavg *avg = &averunnable;
   1146 	const int clkhz = (stathz != 0 ? stathz : hz);
   1147 	static bool backwards = false;
   1148 	static u_int lavg_count = 0;
   1149 	struct proc *p;
   1150 	int nrun;
   1151 
   1152 	sched_pstats_ticks++;
   1153 	if (++lavg_count >= 5) {
   1154 		lavg_count = 0;
   1155 		nrun = 0;
   1156 	}
   1157 	mutex_enter(proc_lock);
   1158 	PROCLIST_FOREACH(p, &allproc) {
   1159 		struct lwp *l;
   1160 		struct rlimit *rlim;
   1161 		time_t runtm;
   1162 		int sig;
   1163 
   1164 		/* Increment sleep time (if sleeping), ignore overflow. */
   1165 		mutex_enter(p->p_lock);
   1166 		runtm = p->p_rtime.sec;
   1167 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1168 			fixpt_t lpctcpu;
   1169 			u_int lcpticks;
   1170 
   1171 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1172 				continue;
   1173 			lwp_lock(l);
   1174 			runtm += l->l_rtime.sec;
   1175 			l->l_swtime++;
   1176 			sched_lwp_stats(l);
   1177 
   1178 			/* For load average calculation. */
   1179 			if (__predict_false(lavg_count == 0) &&
   1180 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1181 				switch (l->l_stat) {
   1182 				case LSSLEEP:
   1183 					if (l->l_slptime > 1) {
   1184 						break;
   1185 					}
   1186 				case LSRUN:
   1187 				case LSONPROC:
   1188 				case LSIDL:
   1189 					nrun++;
   1190 				}
   1191 			}
   1192 			lwp_unlock(l);
   1193 
   1194 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1195 			if (l->l_slptime != 0)
   1196 				continue;
   1197 
   1198 			lpctcpu = l->l_pctcpu;
   1199 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1200 			lpctcpu += ((FSCALE - ccpu) *
   1201 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1202 			l->l_pctcpu = lpctcpu;
   1203 		}
   1204 		/* Calculating p_pctcpu only for ps(1) */
   1205 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1206 
   1207 		/*
   1208 		 * Check if the process exceeds its CPU resource allocation.
   1209 		 * If over the hard limit, kill it with SIGKILL.
   1210 		 * If over the soft limit, send SIGXCPU and raise
   1211 		 * the soft limit a little.
   1212 		 */
   1213 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1214 		sig = 0;
   1215 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1216 			if (runtm >= rlim->rlim_max) {
   1217 				sig = SIGKILL;
   1218 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1219 					p->p_pid, "exceeded RLIMIT_CPU");
   1220 				uprintf("pid %d, command %s, is killed: %s\n",
   1221 					p->p_pid, p->p_comm,
   1222 					"exceeded RLIMIT_CPU");
   1223 			} else {
   1224 				sig = SIGXCPU;
   1225 				if (rlim->rlim_cur < rlim->rlim_max)
   1226 					rlim->rlim_cur += 5;
   1227 			}
   1228 		}
   1229 		mutex_exit(p->p_lock);
   1230 		if (__predict_false(runtm < 0)) {
   1231 			if (!backwards) {
   1232 				backwards = true;
   1233 				printf("WARNING: negative runtime; "
   1234 				    "monotonic clock has gone backwards\n");
   1235 			}
   1236 		} else if (__predict_false(sig)) {
   1237 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1238 			psignal(p, sig);
   1239 		}
   1240 	}
   1241 	mutex_exit(proc_lock);
   1242 
   1243 	/* Load average calculation. */
   1244 	if (__predict_false(lavg_count == 0)) {
   1245 		int i;
   1246 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1247 		for (i = 0; i < __arraycount(cexp); i++) {
   1248 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1249 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1250 		}
   1251 	}
   1252 
   1253 	/* Lightning bolt. */
   1254 	cv_broadcast(&lbolt);
   1255 }
   1256