Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.296.4.4
      1 /*	$NetBSD: kern_synch.c,v 1.296.4.4 2012/03/06 09:56:27 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.296.4.4 2012/03/06 09:56:27 mrg Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_dtrace.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #if defined(PERFCTRS)
     85 #include <sys/pmc.h>
     86 #endif
     87 #include <sys/cpu.h>
     88 #include <sys/pserialize.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/syscall_stats.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/lockdebug.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/lwpctl.h>
     97 #include <sys/atomic.h>
     98 #include <sys/simplelock.h>
     99 #include <sys/syslog.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #include <dev/lockstat.h>
    104 
    105 #include <sys/dtrace_bsd.h>
    106 int                             dtrace_vtime_active=0;
    107 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    108 
    109 static void	sched_unsleep(struct lwp *, bool);
    110 static void	sched_changepri(struct lwp *, pri_t);
    111 static void	sched_lendpri(struct lwp *, pri_t);
    112 static void	resched_cpu(struct lwp *);
    113 
    114 syncobj_t sleep_syncobj = {
    115 	SOBJ_SLEEPQ_SORTED,
    116 	sleepq_unsleep,
    117 	sleepq_changepri,
    118 	sleepq_lendpri,
    119 	syncobj_noowner,
    120 };
    121 
    122 syncobj_t sched_syncobj = {
    123 	SOBJ_SLEEPQ_SORTED,
    124 	sched_unsleep,
    125 	sched_changepri,
    126 	sched_lendpri,
    127 	syncobj_noowner,
    128 };
    129 
    130 /* "Lightning bolt": once a second sleep address. */
    131 kcondvar_t		lbolt			__cacheline_aligned;
    132 
    133 u_int			sched_pstats_ticks	__cacheline_aligned;
    134 
    135 /* Preemption event counters. */
    136 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    137 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    138 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    139 
    140 /*
    141  * During autoconfiguration or after a panic, a sleep will simply lower the
    142  * priority briefly to allow interrupts, then return.  The priority to be
    143  * used (safepri) is machine-dependent, thus this value is initialized and
    144  * maintained in the machine-dependent layers.  This priority will typically
    145  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    146  * it can be made higher to block network software interrupts after panics.
    147  */
    148 int	safepri;
    149 
    150 void
    151 synch_init(void)
    152 {
    153 
    154 	cv_init(&lbolt, "lbolt");
    155 
    156 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    157 	   "kpreempt", "defer: critical section");
    158 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    159 	   "kpreempt", "defer: kernel_lock");
    160 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    161 	   "kpreempt", "immediate");
    162 }
    163 
    164 /*
    165  * OBSOLETE INTERFACE
    166  *
    167  * General sleep call.  Suspends the current LWP until a wakeup is
    168  * performed on the specified identifier.  The LWP will then be made
    169  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    170  * means no timeout).  If pri includes PCATCH flag, signals are checked
    171  * before and after sleeping, else signals are not checked.  Returns 0 if
    172  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    173  * signal needs to be delivered, ERESTART is returned if the current system
    174  * call should be restarted if possible, and EINTR is returned if the system
    175  * call should be interrupted by the signal (return EINTR).
    176  */
    177 int
    178 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    179 {
    180 	struct lwp *l = curlwp;
    181 	sleepq_t *sq;
    182 	kmutex_t *mp;
    183 
    184 	KASSERT((l->l_pflag & LP_INTR) == 0);
    185 	KASSERT(ident != &lbolt);
    186 
    187 	if (sleepq_dontsleep(l)) {
    188 		(void)sleepq_abort(NULL, 0);
    189 		return 0;
    190 	}
    191 
    192 	l->l_kpriority = true;
    193 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    194 	sleepq_enter(sq, l, mp);
    195 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    196 	return sleepq_block(timo, priority & PCATCH);
    197 }
    198 
    199 int
    200 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    201 	kmutex_t *mtx)
    202 {
    203 	struct lwp *l = curlwp;
    204 	sleepq_t *sq;
    205 	kmutex_t *mp;
    206 	int error;
    207 
    208 	KASSERT((l->l_pflag & LP_INTR) == 0);
    209 	KASSERT(ident != &lbolt);
    210 
    211 	if (sleepq_dontsleep(l)) {
    212 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    213 		return 0;
    214 	}
    215 
    216 	l->l_kpriority = true;
    217 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    218 	sleepq_enter(sq, l, mp);
    219 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    220 	mutex_exit(mtx);
    221 	error = sleepq_block(timo, priority & PCATCH);
    222 
    223 	if ((priority & PNORELOCK) == 0)
    224 		mutex_enter(mtx);
    225 
    226 	return error;
    227 }
    228 
    229 /*
    230  * General sleep call for situations where a wake-up is not expected.
    231  */
    232 int
    233 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    234 {
    235 	struct lwp *l = curlwp;
    236 	kmutex_t *mp;
    237 	sleepq_t *sq;
    238 	int error;
    239 
    240 	KASSERT(!(timo == 0 && intr == false));
    241 
    242 	if (sleepq_dontsleep(l))
    243 		return sleepq_abort(NULL, 0);
    244 
    245 	if (mtx != NULL)
    246 		mutex_exit(mtx);
    247 	l->l_kpriority = true;
    248 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    249 	sleepq_enter(sq, l, mp);
    250 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    251 	error = sleepq_block(timo, intr);
    252 	if (mtx != NULL)
    253 		mutex_enter(mtx);
    254 
    255 	return error;
    256 }
    257 
    258 /*
    259  * OBSOLETE INTERFACE
    260  *
    261  * Make all LWPs sleeping on the specified identifier runnable.
    262  */
    263 void
    264 wakeup(wchan_t ident)
    265 {
    266 	sleepq_t *sq;
    267 	kmutex_t *mp;
    268 
    269 	if (__predict_false(cold))
    270 		return;
    271 
    272 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    273 	sleepq_wake(sq, ident, (u_int)-1, mp);
    274 }
    275 
    276 /*
    277  * General yield call.  Puts the current LWP back on its run queue and
    278  * performs a voluntary context switch.  Should only be called when the
    279  * current LWP explicitly requests it (eg sched_yield(2)).
    280  */
    281 void
    282 yield(void)
    283 {
    284 	struct lwp *l = curlwp;
    285 
    286 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    287 	lwp_lock(l);
    288 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    289 	KASSERT(l->l_stat == LSONPROC);
    290 	l->l_kpriority = false;
    291 	(void)mi_switch(l);
    292 	KERNEL_LOCK(l->l_biglocks, l);
    293 }
    294 
    295 /*
    296  * General preemption call.  Puts the current LWP back on its run queue
    297  * and performs an involuntary context switch.
    298  */
    299 void
    300 preempt(void)
    301 {
    302 	struct lwp *l = curlwp;
    303 
    304 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    305 	lwp_lock(l);
    306 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    307 	KASSERT(l->l_stat == LSONPROC);
    308 	l->l_kpriority = false;
    309 	l->l_nivcsw++;
    310 	(void)mi_switch(l);
    311 	KERNEL_LOCK(l->l_biglocks, l);
    312 }
    313 
    314 /*
    315  * Handle a request made by another agent to preempt the current LWP
    316  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    317  *
    318  * Character addresses for lockstat only.
    319  */
    320 static char	in_critical_section;
    321 static char	kernel_lock_held;
    322 static char	is_softint;
    323 static char	cpu_kpreempt_enter_fail;
    324 
    325 bool
    326 kpreempt(uintptr_t where)
    327 {
    328 	uintptr_t failed;
    329 	lwp_t *l;
    330 	int s, dop, lsflag;
    331 
    332 	l = curlwp;
    333 	failed = 0;
    334 	while ((dop = l->l_dopreempt) != 0) {
    335 		if (l->l_stat != LSONPROC) {
    336 			/*
    337 			 * About to block (or die), let it happen.
    338 			 * Doesn't really count as "preemption has
    339 			 * been blocked", since we're going to
    340 			 * context switch.
    341 			 */
    342 			l->l_dopreempt = 0;
    343 			return true;
    344 		}
    345 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    346 			/* Can't preempt idle loop, don't count as failure. */
    347 			l->l_dopreempt = 0;
    348 			return true;
    349 		}
    350 		if (__predict_false(l->l_nopreempt != 0)) {
    351 			/* LWP holds preemption disabled, explicitly. */
    352 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    353 				kpreempt_ev_crit.ev_count++;
    354 			}
    355 			failed = (uintptr_t)&in_critical_section;
    356 			break;
    357 		}
    358 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    359 			/* Can't preempt soft interrupts yet. */
    360 			l->l_dopreempt = 0;
    361 			failed = (uintptr_t)&is_softint;
    362 			break;
    363 		}
    364 		s = splsched();
    365 		if (__predict_false(l->l_blcnt != 0 ||
    366 		    curcpu()->ci_biglock_wanted != NULL)) {
    367 			/* Hold or want kernel_lock, code is not MT safe. */
    368 			splx(s);
    369 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    370 				kpreempt_ev_klock.ev_count++;
    371 			}
    372 			failed = (uintptr_t)&kernel_lock_held;
    373 			break;
    374 		}
    375 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    376 			/*
    377 			 * It may be that the IPL is too high.
    378 			 * kpreempt_enter() can schedule an
    379 			 * interrupt to retry later.
    380 			 */
    381 			splx(s);
    382 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    383 			break;
    384 		}
    385 		/* Do it! */
    386 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    387 			kpreempt_ev_immed.ev_count++;
    388 		}
    389 		lwp_lock(l);
    390 		mi_switch(l);
    391 		l->l_nopreempt++;
    392 		splx(s);
    393 
    394 		/* Take care of any MD cleanup. */
    395 		cpu_kpreempt_exit(where);
    396 		l->l_nopreempt--;
    397 	}
    398 
    399 	if (__predict_true(!failed)) {
    400 		return false;
    401 	}
    402 
    403 	/* Record preemption failure for reporting via lockstat. */
    404 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    405 	lsflag = 0;
    406 	LOCKSTAT_ENTER(lsflag);
    407 	if (__predict_false(lsflag)) {
    408 		if (where == 0) {
    409 			where = (uintptr_t)__builtin_return_address(0);
    410 		}
    411 		/* Preemption is on, might recurse, so make it atomic. */
    412 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    413 		    (void *)where) == NULL) {
    414 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    415 			l->l_pfaillock = failed;
    416 		}
    417 	}
    418 	LOCKSTAT_EXIT(lsflag);
    419 	return true;
    420 }
    421 
    422 /*
    423  * Return true if preemption is explicitly disabled.
    424  */
    425 bool
    426 kpreempt_disabled(void)
    427 {
    428 	const lwp_t *l = curlwp;
    429 
    430 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    431 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    432 }
    433 
    434 /*
    435  * Disable kernel preemption.
    436  */
    437 void
    438 kpreempt_disable(void)
    439 {
    440 
    441 	KPREEMPT_DISABLE(curlwp);
    442 }
    443 
    444 /*
    445  * Reenable kernel preemption.
    446  */
    447 void
    448 kpreempt_enable(void)
    449 {
    450 
    451 	KPREEMPT_ENABLE(curlwp);
    452 }
    453 
    454 /*
    455  * Compute the amount of time during which the current lwp was running.
    456  *
    457  * - update l_rtime unless it's an idle lwp.
    458  */
    459 
    460 void
    461 updatertime(lwp_t *l, const struct bintime *now)
    462 {
    463 
    464 	if (__predict_false(l->l_flag & LW_IDLE))
    465 		return;
    466 
    467 	/* rtime += now - stime */
    468 	bintime_add(&l->l_rtime, now);
    469 	bintime_sub(&l->l_rtime, &l->l_stime);
    470 }
    471 
    472 /*
    473  * Select next LWP from the current CPU to run..
    474  */
    475 static inline lwp_t *
    476 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    477 {
    478 	lwp_t *newl;
    479 
    480 	/*
    481 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    482 	 * If no LWP is runnable, select the idle LWP.
    483 	 *
    484 	 * Note that spc_lwplock might not necessary be held, and
    485 	 * new thread would be unlocked after setting the LWP-lock.
    486 	 */
    487 	newl = sched_nextlwp();
    488 	if (newl != NULL) {
    489 		sched_dequeue(newl);
    490 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    491 		KASSERT(newl->l_cpu == ci);
    492 		newl->l_stat = LSONPROC;
    493 		newl->l_pflag |= LP_RUNNING;
    494 		lwp_setlock(newl, spc->spc_lwplock);
    495 	} else {
    496 		newl = ci->ci_data.cpu_idlelwp;
    497 		newl->l_stat = LSONPROC;
    498 		newl->l_pflag |= LP_RUNNING;
    499 	}
    500 
    501 	/*
    502 	 * Only clear want_resched if there are no pending (slow)
    503 	 * software interrupts.
    504 	 */
    505 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    506 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    507 	spc->spc_curpriority = lwp_eprio(newl);
    508 
    509 	return newl;
    510 }
    511 
    512 /*
    513  * The machine independent parts of context switch.
    514  *
    515  * Returns 1 if another LWP was actually run.
    516  */
    517 int
    518 mi_switch(lwp_t *l)
    519 {
    520 	struct cpu_info *ci;
    521 	struct schedstate_percpu *spc;
    522 	struct lwp *newl;
    523 	int retval, oldspl;
    524 	struct bintime bt;
    525 	bool returning;
    526 
    527 	KASSERT(lwp_locked(l, NULL));
    528 	KASSERT(kpreempt_disabled());
    529 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    530 
    531 	kstack_check_magic(l);
    532 
    533 	binuptime(&bt);
    534 
    535 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    536 	KASSERT(l->l_cpu == curcpu());
    537 	ci = l->l_cpu;
    538 	spc = &ci->ci_schedstate;
    539 	returning = false;
    540 	newl = NULL;
    541 
    542 	/*
    543 	 * If we have been asked to switch to a specific LWP, then there
    544 	 * is no need to inspect the run queues.  If a soft interrupt is
    545 	 * blocking, then return to the interrupted thread without adjusting
    546 	 * VM context or its start time: neither have been changed in order
    547 	 * to take the interrupt.
    548 	 */
    549 	if (l->l_switchto != NULL) {
    550 		if ((l->l_pflag & LP_INTR) != 0) {
    551 			returning = true;
    552 			softint_block(l);
    553 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    554 				updatertime(l, &bt);
    555 		}
    556 		newl = l->l_switchto;
    557 		l->l_switchto = NULL;
    558 	}
    559 #ifndef __HAVE_FAST_SOFTINTS
    560 	else if (ci->ci_data.cpu_softints != 0) {
    561 		/* There are pending soft interrupts, so pick one. */
    562 		newl = softint_picklwp();
    563 		newl->l_stat = LSONPROC;
    564 		newl->l_pflag |= LP_RUNNING;
    565 	}
    566 #endif	/* !__HAVE_FAST_SOFTINTS */
    567 
    568 	/* Count time spent in current system call */
    569 	if (!returning) {
    570 		SYSCALL_TIME_SLEEP(l);
    571 
    572 		/*
    573 		 * XXXSMP If we are using h/w performance counters,
    574 		 * save context.
    575 		 */
    576 #if PERFCTRS
    577 		if (PMC_ENABLED(l->l_proc)) {
    578 			pmc_save_context(l->l_proc);
    579 		}
    580 #endif
    581 		updatertime(l, &bt);
    582 	}
    583 
    584 	/* Lock the runqueue */
    585 	KASSERT(l->l_stat != LSRUN);
    586 	mutex_spin_enter(spc->spc_mutex);
    587 
    588 	/*
    589 	 * If on the CPU and we have gotten this far, then we must yield.
    590 	 */
    591 	if (l->l_stat == LSONPROC && l != newl) {
    592 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    593 		if ((l->l_flag & LW_IDLE) == 0) {
    594 			l->l_stat = LSRUN;
    595 			lwp_setlock(l, spc->spc_mutex);
    596 			sched_enqueue(l, true);
    597 			/*
    598 			 * Handle migration.  Note that "migrating LWP" may
    599 			 * be reset here, if interrupt/preemption happens
    600 			 * early in idle LWP.
    601 			 */
    602 			if (l->l_target_cpu != NULL) {
    603 				KASSERT((l->l_pflag & LP_INTR) == 0);
    604 				spc->spc_migrating = l;
    605 			}
    606 		} else
    607 			l->l_stat = LSIDL;
    608 	}
    609 
    610 	/* Pick new LWP to run. */
    611 	if (newl == NULL) {
    612 		newl = nextlwp(ci, spc);
    613 	}
    614 
    615 	/* Items that must be updated with the CPU locked. */
    616 	if (!returning) {
    617 		/* Update the new LWP's start time. */
    618 		newl->l_stime = bt;
    619 
    620 		/*
    621 		 * ci_curlwp changes when a fast soft interrupt occurs.
    622 		 * We use cpu_onproc to keep track of which kernel or
    623 		 * user thread is running 'underneath' the software
    624 		 * interrupt.  This is important for time accounting,
    625 		 * itimers and forcing user threads to preempt (aston).
    626 		 */
    627 		ci->ci_data.cpu_onproc = newl;
    628 	}
    629 
    630 	/*
    631 	 * Preemption related tasks.  Must be done with the current
    632 	 * CPU locked.
    633 	 */
    634 	cpu_did_resched(l);
    635 	l->l_dopreempt = 0;
    636 	if (__predict_false(l->l_pfailaddr != 0)) {
    637 		LOCKSTAT_FLAG(lsflag);
    638 		LOCKSTAT_ENTER(lsflag);
    639 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    640 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    641 		    1, l->l_pfailtime, l->l_pfailaddr);
    642 		LOCKSTAT_EXIT(lsflag);
    643 		l->l_pfailtime = 0;
    644 		l->l_pfaillock = 0;
    645 		l->l_pfailaddr = 0;
    646 	}
    647 
    648 	if (l != newl) {
    649 		struct lwp *prevlwp;
    650 
    651 		/* Release all locks, but leave the current LWP locked */
    652 		if (l->l_mutex == spc->spc_mutex) {
    653 			/*
    654 			 * Drop spc_lwplock, if the current LWP has been moved
    655 			 * to the run queue (it is now locked by spc_mutex).
    656 			 */
    657 			mutex_spin_exit(spc->spc_lwplock);
    658 		} else {
    659 			/*
    660 			 * Otherwise, drop the spc_mutex, we are done with the
    661 			 * run queues.
    662 			 */
    663 			mutex_spin_exit(spc->spc_mutex);
    664 		}
    665 
    666 		/*
    667 		 * Mark that context switch is going to be performed
    668 		 * for this LWP, to protect it from being switched
    669 		 * to on another CPU.
    670 		 */
    671 		KASSERT(l->l_ctxswtch == 0);
    672 		l->l_ctxswtch = 1;
    673 		l->l_ncsw++;
    674 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    675 		l->l_pflag &= ~LP_RUNNING;
    676 
    677 		/*
    678 		 * Increase the count of spin-mutexes before the release
    679 		 * of the last lock - we must remain at IPL_SCHED during
    680 		 * the context switch.
    681 		 */
    682 		KASSERTMSG(ci->ci_mtx_count == -1,
    683 		    "%s: cpu%u: ci_mtx_count (%d) != -1",
    684 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    685 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    686 		ci->ci_mtx_count--;
    687 		lwp_unlock(l);
    688 
    689 		/* Count the context switch on this CPU. */
    690 		ci->ci_data.cpu_nswtch++;
    691 
    692 		/* Update status for lwpctl, if present. */
    693 		if (l->l_lwpctl != NULL)
    694 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    695 
    696 		/*
    697 		 * Save old VM context, unless a soft interrupt
    698 		 * handler is blocking.
    699 		 */
    700 		if (!returning)
    701 			pmap_deactivate(l);
    702 
    703 		/*
    704 		 * We may need to spin-wait if 'newl' is still
    705 		 * context switching on another CPU.
    706 		 */
    707 		if (__predict_false(newl->l_ctxswtch != 0)) {
    708 			u_int count;
    709 			count = SPINLOCK_BACKOFF_MIN;
    710 			while (newl->l_ctxswtch)
    711 				SPINLOCK_BACKOFF(count);
    712 		}
    713 
    714 		/*
    715 		 * If DTrace has set the active vtime enum to anything
    716 		 * other than INACTIVE (0), then it should have set the
    717 		 * function to call.
    718 		 */
    719 		if (__predict_false(dtrace_vtime_active)) {
    720 			(*dtrace_vtime_switch_func)(newl);
    721 		}
    722 
    723 		/* Switch to the new LWP.. */
    724 		prevlwp = cpu_switchto(l, newl, returning);
    725 		ci = curcpu();
    726 
    727 		/*
    728 		 * Switched away - we have new curlwp.
    729 		 * Restore VM context and IPL.
    730 		 */
    731 		pmap_activate(l);
    732 		uvm_emap_switch(l);
    733 		pcu_switchpoint(l);
    734 
    735 		if (prevlwp != NULL) {
    736 			/* Normalize the count of the spin-mutexes */
    737 			ci->ci_mtx_count++;
    738 			/* Unmark the state of context switch */
    739 			membar_exit();
    740 			prevlwp->l_ctxswtch = 0;
    741 		}
    742 
    743 		/* Update status for lwpctl, if present. */
    744 		if (l->l_lwpctl != NULL) {
    745 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    746 			l->l_lwpctl->lc_pctr++;
    747 		}
    748 
    749 		/* Note trip through cpu_switchto(). */
    750 		pserialize_switchpoint();
    751 
    752 		KASSERT(l->l_cpu == ci);
    753 		splx(oldspl);
    754 		retval = 1;
    755 	} else {
    756 		/* Nothing to do - just unlock and return. */
    757 		mutex_spin_exit(spc->spc_mutex);
    758 		lwp_unlock(l);
    759 		retval = 0;
    760 	}
    761 
    762 	KASSERT(l == curlwp);
    763 	KASSERT(l->l_stat == LSONPROC);
    764 
    765 	/*
    766 	 * XXXSMP If we are using h/w performance counters, restore context.
    767 	 * XXXSMP preemption problem.
    768 	 */
    769 #if PERFCTRS
    770 	if (PMC_ENABLED(l->l_proc)) {
    771 		pmc_restore_context(l->l_proc);
    772 	}
    773 #endif
    774 	SYSCALL_TIME_WAKEUP(l);
    775 	LOCKDEBUG_BARRIER(NULL, 1);
    776 
    777 	return retval;
    778 }
    779 
    780 /*
    781  * The machine independent parts of context switch to oblivion.
    782  * Does not return.  Call with the LWP unlocked.
    783  */
    784 void
    785 lwp_exit_switchaway(lwp_t *l)
    786 {
    787 	struct cpu_info *ci;
    788 	struct lwp *newl;
    789 	struct bintime bt;
    790 
    791 	ci = l->l_cpu;
    792 
    793 	KASSERT(kpreempt_disabled());
    794 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    795 	KASSERT(ci == curcpu());
    796 	LOCKDEBUG_BARRIER(NULL, 0);
    797 
    798 	kstack_check_magic(l);
    799 
    800 	/* Count time spent in current system call */
    801 	SYSCALL_TIME_SLEEP(l);
    802 	binuptime(&bt);
    803 	updatertime(l, &bt);
    804 
    805 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    806 	(void)splsched();
    807 
    808 	/*
    809 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    810 	 * If no LWP is runnable, select the idle LWP.
    811 	 *
    812 	 * Note that spc_lwplock might not necessary be held, and
    813 	 * new thread would be unlocked after setting the LWP-lock.
    814 	 */
    815 	spc_lock(ci);
    816 #ifndef __HAVE_FAST_SOFTINTS
    817 	if (ci->ci_data.cpu_softints != 0) {
    818 		/* There are pending soft interrupts, so pick one. */
    819 		newl = softint_picklwp();
    820 		newl->l_stat = LSONPROC;
    821 		newl->l_pflag |= LP_RUNNING;
    822 	} else
    823 #endif	/* !__HAVE_FAST_SOFTINTS */
    824 	{
    825 		newl = nextlwp(ci, &ci->ci_schedstate);
    826 	}
    827 
    828 	/* Update the new LWP's start time. */
    829 	newl->l_stime = bt;
    830 	l->l_pflag &= ~LP_RUNNING;
    831 
    832 	/*
    833 	 * ci_curlwp changes when a fast soft interrupt occurs.
    834 	 * We use cpu_onproc to keep track of which kernel or
    835 	 * user thread is running 'underneath' the software
    836 	 * interrupt.  This is important for time accounting,
    837 	 * itimers and forcing user threads to preempt (aston).
    838 	 */
    839 	ci->ci_data.cpu_onproc = newl;
    840 
    841 	/*
    842 	 * Preemption related tasks.  Must be done with the current
    843 	 * CPU locked.
    844 	 */
    845 	cpu_did_resched(l);
    846 
    847 	/* Unlock the run queue. */
    848 	spc_unlock(ci);
    849 
    850 	/* Count the context switch on this CPU. */
    851 	ci->ci_data.cpu_nswtch++;
    852 
    853 	/* Update status for lwpctl, if present. */
    854 	if (l->l_lwpctl != NULL)
    855 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    856 
    857 	/*
    858 	 * We may need to spin-wait if 'newl' is still
    859 	 * context switching on another CPU.
    860 	 */
    861 	if (__predict_false(newl->l_ctxswtch != 0)) {
    862 		u_int count;
    863 		count = SPINLOCK_BACKOFF_MIN;
    864 		while (newl->l_ctxswtch)
    865 			SPINLOCK_BACKOFF(count);
    866 	}
    867 
    868 	/*
    869 	 * If DTrace has set the active vtime enum to anything
    870 	 * other than INACTIVE (0), then it should have set the
    871 	 * function to call.
    872 	 */
    873 	if (__predict_false(dtrace_vtime_active)) {
    874 		(*dtrace_vtime_switch_func)(newl);
    875 	}
    876 
    877 	/* Switch to the new LWP.. */
    878 	(void)cpu_switchto(NULL, newl, false);
    879 
    880 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    881 	/* NOTREACHED */
    882 }
    883 
    884 /*
    885  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    886  *
    887  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    888  */
    889 void
    890 setrunnable(struct lwp *l)
    891 {
    892 	struct proc *p = l->l_proc;
    893 	struct cpu_info *ci;
    894 
    895 	KASSERT((l->l_flag & LW_IDLE) == 0);
    896 	KASSERT(mutex_owned(p->p_lock));
    897 	KASSERT(lwp_locked(l, NULL));
    898 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    899 
    900 	switch (l->l_stat) {
    901 	case LSSTOP:
    902 		/*
    903 		 * If we're being traced (possibly because someone attached us
    904 		 * while we were stopped), check for a signal from the debugger.
    905 		 */
    906 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    907 			signotify(l);
    908 		p->p_nrlwps++;
    909 		break;
    910 	case LSSUSPENDED:
    911 		l->l_flag &= ~LW_WSUSPEND;
    912 		p->p_nrlwps++;
    913 		cv_broadcast(&p->p_lwpcv);
    914 		break;
    915 	case LSSLEEP:
    916 		KASSERT(l->l_wchan != NULL);
    917 		break;
    918 	default:
    919 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    920 	}
    921 
    922 	/*
    923 	 * If the LWP was sleeping, start it again.
    924 	 */
    925 	if (l->l_wchan != NULL) {
    926 		l->l_stat = LSSLEEP;
    927 		/* lwp_unsleep() will release the lock. */
    928 		lwp_unsleep(l, true);
    929 		return;
    930 	}
    931 
    932 	/*
    933 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    934 	 * about to call mi_switch(), in which case it will yield.
    935 	 */
    936 	if ((l->l_pflag & LP_RUNNING) != 0) {
    937 		l->l_stat = LSONPROC;
    938 		l->l_slptime = 0;
    939 		lwp_unlock(l);
    940 		return;
    941 	}
    942 
    943 	/*
    944 	 * Look for a CPU to run.
    945 	 * Set the LWP runnable.
    946 	 */
    947 	ci = sched_takecpu(l);
    948 	l->l_cpu = ci;
    949 	spc_lock(ci);
    950 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    951 	sched_setrunnable(l);
    952 	l->l_stat = LSRUN;
    953 	l->l_slptime = 0;
    954 
    955 	sched_enqueue(l, false);
    956 	resched_cpu(l);
    957 	lwp_unlock(l);
    958 }
    959 
    960 /*
    961  * suspendsched:
    962  *
    963  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    964  */
    965 void
    966 suspendsched(void)
    967 {
    968 	CPU_INFO_ITERATOR cii;
    969 	struct cpu_info *ci;
    970 	struct lwp *l;
    971 	struct proc *p;
    972 
    973 	/*
    974 	 * We do this by process in order not to violate the locking rules.
    975 	 */
    976 	mutex_enter(proc_lock);
    977 	PROCLIST_FOREACH(p, &allproc) {
    978 		mutex_enter(p->p_lock);
    979 		if ((p->p_flag & PK_SYSTEM) != 0) {
    980 			mutex_exit(p->p_lock);
    981 			continue;
    982 		}
    983 
    984 		p->p_stat = SSTOP;
    985 
    986 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    987 			if (l == curlwp)
    988 				continue;
    989 
    990 			lwp_lock(l);
    991 
    992 			/*
    993 			 * Set L_WREBOOT so that the LWP will suspend itself
    994 			 * when it tries to return to user mode.  We want to
    995 			 * try and get to get as many LWPs as possible to
    996 			 * the user / kernel boundary, so that they will
    997 			 * release any locks that they hold.
    998 			 */
    999 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1000 
   1001 			if (l->l_stat == LSSLEEP &&
   1002 			    (l->l_flag & LW_SINTR) != 0) {
   1003 				/* setrunnable() will release the lock. */
   1004 				setrunnable(l);
   1005 				continue;
   1006 			}
   1007 
   1008 			lwp_unlock(l);
   1009 		}
   1010 
   1011 		mutex_exit(p->p_lock);
   1012 	}
   1013 	mutex_exit(proc_lock);
   1014 
   1015 	/*
   1016 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1017 	 * They'll trap into the kernel and suspend themselves in userret().
   1018 	 */
   1019 	for (CPU_INFO_FOREACH(cii, ci)) {
   1020 		spc_lock(ci);
   1021 		cpu_need_resched(ci, RESCHED_IMMED);
   1022 		spc_unlock(ci);
   1023 	}
   1024 }
   1025 
   1026 /*
   1027  * sched_unsleep:
   1028  *
   1029  *	The is called when the LWP has not been awoken normally but instead
   1030  *	interrupted: for example, if the sleep timed out.  Because of this,
   1031  *	it's not a valid action for running or idle LWPs.
   1032  */
   1033 static void
   1034 sched_unsleep(struct lwp *l, bool cleanup)
   1035 {
   1036 
   1037 	lwp_unlock(l);
   1038 	panic("sched_unsleep");
   1039 }
   1040 
   1041 static void
   1042 resched_cpu(struct lwp *l)
   1043 {
   1044 	struct cpu_info *ci = l->l_cpu;
   1045 
   1046 	KASSERT(lwp_locked(l, NULL));
   1047 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1048 		cpu_need_resched(ci, 0);
   1049 }
   1050 
   1051 static void
   1052 sched_changepri(struct lwp *l, pri_t pri)
   1053 {
   1054 
   1055 	KASSERT(lwp_locked(l, NULL));
   1056 
   1057 	if (l->l_stat == LSRUN) {
   1058 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1059 		sched_dequeue(l);
   1060 		l->l_priority = pri;
   1061 		sched_enqueue(l, false);
   1062 	} else {
   1063 		l->l_priority = pri;
   1064 	}
   1065 	resched_cpu(l);
   1066 }
   1067 
   1068 static void
   1069 sched_lendpri(struct lwp *l, pri_t pri)
   1070 {
   1071 
   1072 	KASSERT(lwp_locked(l, NULL));
   1073 
   1074 	if (l->l_stat == LSRUN) {
   1075 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1076 		sched_dequeue(l);
   1077 		l->l_inheritedprio = pri;
   1078 		sched_enqueue(l, false);
   1079 	} else {
   1080 		l->l_inheritedprio = pri;
   1081 	}
   1082 	resched_cpu(l);
   1083 }
   1084 
   1085 struct lwp *
   1086 syncobj_noowner(wchan_t wchan)
   1087 {
   1088 
   1089 	return NULL;
   1090 }
   1091 
   1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1094 
   1095 /*
   1096  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1097  * 5 second intervals.
   1098  */
   1099 static const fixpt_t cexp[ ] = {
   1100 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1101 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1102 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1103 };
   1104 
   1105 /*
   1106  * sched_pstats:
   1107  *
   1108  * => Update process statistics and check CPU resource allocation.
   1109  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1110  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1111  */
   1112 void
   1113 sched_pstats(void)
   1114 {
   1115 	extern struct loadavg averunnable;
   1116 	struct loadavg *avg = &averunnable;
   1117 	const int clkhz = (stathz != 0 ? stathz : hz);
   1118 	static bool backwards = false;
   1119 	static u_int lavg_count = 0;
   1120 	struct proc *p;
   1121 	int nrun;
   1122 
   1123 	sched_pstats_ticks++;
   1124 	if (++lavg_count >= 5) {
   1125 		lavg_count = 0;
   1126 		nrun = 0;
   1127 	}
   1128 	mutex_enter(proc_lock);
   1129 	PROCLIST_FOREACH(p, &allproc) {
   1130 		struct lwp *l;
   1131 		struct rlimit *rlim;
   1132 		time_t runtm;
   1133 		int sig;
   1134 
   1135 		/* Increment sleep time (if sleeping), ignore overflow. */
   1136 		mutex_enter(p->p_lock);
   1137 		runtm = p->p_rtime.sec;
   1138 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1139 			fixpt_t lpctcpu;
   1140 			u_int lcpticks;
   1141 
   1142 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1143 				continue;
   1144 			lwp_lock(l);
   1145 			runtm += l->l_rtime.sec;
   1146 			l->l_swtime++;
   1147 			sched_lwp_stats(l);
   1148 
   1149 			/* For load average calculation. */
   1150 			if (__predict_false(lavg_count == 0) &&
   1151 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1152 				switch (l->l_stat) {
   1153 				case LSSLEEP:
   1154 					if (l->l_slptime > 1) {
   1155 						break;
   1156 					}
   1157 				case LSRUN:
   1158 				case LSONPROC:
   1159 				case LSIDL:
   1160 					nrun++;
   1161 				}
   1162 			}
   1163 			lwp_unlock(l);
   1164 
   1165 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1166 			if (l->l_slptime != 0)
   1167 				continue;
   1168 
   1169 			lpctcpu = l->l_pctcpu;
   1170 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1171 			lpctcpu += ((FSCALE - ccpu) *
   1172 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1173 			l->l_pctcpu = lpctcpu;
   1174 		}
   1175 		/* Calculating p_pctcpu only for ps(1) */
   1176 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1177 
   1178 		/*
   1179 		 * Check if the process exceeds its CPU resource allocation.
   1180 		 * If over the hard limit, kill it with SIGKILL.
   1181 		 * If over the soft limit, send SIGXCPU and raise
   1182 		 * the soft limit a little.
   1183 		 */
   1184 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1185 		sig = 0;
   1186 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1187 			if (runtm >= rlim->rlim_max) {
   1188 				sig = SIGKILL;
   1189 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1190 					p->p_pid, "exceeded RLIMIT_CPU");
   1191 				uprintf("pid %d, command %s, is killed: %s\n",
   1192 					p->p_pid, p->p_comm,
   1193 					"exceeded RLIMIT_CPU");
   1194 			} else {
   1195 				sig = SIGXCPU;
   1196 				if (rlim->rlim_cur < rlim->rlim_max)
   1197 					rlim->rlim_cur += 5;
   1198 			}
   1199 		}
   1200 		mutex_exit(p->p_lock);
   1201 		if (__predict_false(runtm < 0)) {
   1202 			if (!backwards) {
   1203 				backwards = true;
   1204 				printf("WARNING: negative runtime; "
   1205 				    "monotonic clock has gone backwards\n");
   1206 			}
   1207 		} else if (__predict_false(sig)) {
   1208 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1209 			psignal(p, sig);
   1210 		}
   1211 	}
   1212 	mutex_exit(proc_lock);
   1213 
   1214 	/* Load average calculation. */
   1215 	if (__predict_false(lavg_count == 0)) {
   1216 		int i;
   1217 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1218 		for (i = 0; i < __arraycount(cexp); i++) {
   1219 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1220 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1221 		}
   1222 	}
   1223 
   1224 	/* Lightning bolt. */
   1225 	cv_broadcast(&lbolt);
   1226 }
   1227