kern_synch.c revision 1.296.4.4 1 /* $NetBSD: kern_synch.c,v 1.296.4.4 2012/03/06 09:56:27 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.296.4.4 2012/03/06 09:56:27 mrg Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_dtrace.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/pserialize.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/syscall_stats.h>
92 #include <sys/sleepq.h>
93 #include <sys/lockdebug.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/lwpctl.h>
97 #include <sys/atomic.h>
98 #include <sys/simplelock.h>
99 #include <sys/syslog.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <dev/lockstat.h>
104
105 #include <sys/dtrace_bsd.h>
106 int dtrace_vtime_active=0;
107 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
108
109 static void sched_unsleep(struct lwp *, bool);
110 static void sched_changepri(struct lwp *, pri_t);
111 static void sched_lendpri(struct lwp *, pri_t);
112 static void resched_cpu(struct lwp *);
113
114 syncobj_t sleep_syncobj = {
115 SOBJ_SLEEPQ_SORTED,
116 sleepq_unsleep,
117 sleepq_changepri,
118 sleepq_lendpri,
119 syncobj_noowner,
120 };
121
122 syncobj_t sched_syncobj = {
123 SOBJ_SLEEPQ_SORTED,
124 sched_unsleep,
125 sched_changepri,
126 sched_lendpri,
127 syncobj_noowner,
128 };
129
130 /* "Lightning bolt": once a second sleep address. */
131 kcondvar_t lbolt __cacheline_aligned;
132
133 u_int sched_pstats_ticks __cacheline_aligned;
134
135 /* Preemption event counters. */
136 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
137 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
138 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
139
140 /*
141 * During autoconfiguration or after a panic, a sleep will simply lower the
142 * priority briefly to allow interrupts, then return. The priority to be
143 * used (safepri) is machine-dependent, thus this value is initialized and
144 * maintained in the machine-dependent layers. This priority will typically
145 * be 0, or the lowest priority that is safe for use on the interrupt stack;
146 * it can be made higher to block network software interrupts after panics.
147 */
148 int safepri;
149
150 void
151 synch_init(void)
152 {
153
154 cv_init(&lbolt, "lbolt");
155
156 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
157 "kpreempt", "defer: critical section");
158 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
159 "kpreempt", "defer: kernel_lock");
160 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
161 "kpreempt", "immediate");
162 }
163
164 /*
165 * OBSOLETE INTERFACE
166 *
167 * General sleep call. Suspends the current LWP until a wakeup is
168 * performed on the specified identifier. The LWP will then be made
169 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
170 * means no timeout). If pri includes PCATCH flag, signals are checked
171 * before and after sleeping, else signals are not checked. Returns 0 if
172 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
173 * signal needs to be delivered, ERESTART is returned if the current system
174 * call should be restarted if possible, and EINTR is returned if the system
175 * call should be interrupted by the signal (return EINTR).
176 */
177 int
178 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
179 {
180 struct lwp *l = curlwp;
181 sleepq_t *sq;
182 kmutex_t *mp;
183
184 KASSERT((l->l_pflag & LP_INTR) == 0);
185 KASSERT(ident != &lbolt);
186
187 if (sleepq_dontsleep(l)) {
188 (void)sleepq_abort(NULL, 0);
189 return 0;
190 }
191
192 l->l_kpriority = true;
193 sq = sleeptab_lookup(&sleeptab, ident, &mp);
194 sleepq_enter(sq, l, mp);
195 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
196 return sleepq_block(timo, priority & PCATCH);
197 }
198
199 int
200 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
201 kmutex_t *mtx)
202 {
203 struct lwp *l = curlwp;
204 sleepq_t *sq;
205 kmutex_t *mp;
206 int error;
207
208 KASSERT((l->l_pflag & LP_INTR) == 0);
209 KASSERT(ident != &lbolt);
210
211 if (sleepq_dontsleep(l)) {
212 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
213 return 0;
214 }
215
216 l->l_kpriority = true;
217 sq = sleeptab_lookup(&sleeptab, ident, &mp);
218 sleepq_enter(sq, l, mp);
219 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
220 mutex_exit(mtx);
221 error = sleepq_block(timo, priority & PCATCH);
222
223 if ((priority & PNORELOCK) == 0)
224 mutex_enter(mtx);
225
226 return error;
227 }
228
229 /*
230 * General sleep call for situations where a wake-up is not expected.
231 */
232 int
233 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
234 {
235 struct lwp *l = curlwp;
236 kmutex_t *mp;
237 sleepq_t *sq;
238 int error;
239
240 KASSERT(!(timo == 0 && intr == false));
241
242 if (sleepq_dontsleep(l))
243 return sleepq_abort(NULL, 0);
244
245 if (mtx != NULL)
246 mutex_exit(mtx);
247 l->l_kpriority = true;
248 sq = sleeptab_lookup(&sleeptab, l, &mp);
249 sleepq_enter(sq, l, mp);
250 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
251 error = sleepq_block(timo, intr);
252 if (mtx != NULL)
253 mutex_enter(mtx);
254
255 return error;
256 }
257
258 /*
259 * OBSOLETE INTERFACE
260 *
261 * Make all LWPs sleeping on the specified identifier runnable.
262 */
263 void
264 wakeup(wchan_t ident)
265 {
266 sleepq_t *sq;
267 kmutex_t *mp;
268
269 if (__predict_false(cold))
270 return;
271
272 sq = sleeptab_lookup(&sleeptab, ident, &mp);
273 sleepq_wake(sq, ident, (u_int)-1, mp);
274 }
275
276 /*
277 * General yield call. Puts the current LWP back on its run queue and
278 * performs a voluntary context switch. Should only be called when the
279 * current LWP explicitly requests it (eg sched_yield(2)).
280 */
281 void
282 yield(void)
283 {
284 struct lwp *l = curlwp;
285
286 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
287 lwp_lock(l);
288 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
289 KASSERT(l->l_stat == LSONPROC);
290 l->l_kpriority = false;
291 (void)mi_switch(l);
292 KERNEL_LOCK(l->l_biglocks, l);
293 }
294
295 /*
296 * General preemption call. Puts the current LWP back on its run queue
297 * and performs an involuntary context switch.
298 */
299 void
300 preempt(void)
301 {
302 struct lwp *l = curlwp;
303
304 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
305 lwp_lock(l);
306 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
307 KASSERT(l->l_stat == LSONPROC);
308 l->l_kpriority = false;
309 l->l_nivcsw++;
310 (void)mi_switch(l);
311 KERNEL_LOCK(l->l_biglocks, l);
312 }
313
314 /*
315 * Handle a request made by another agent to preempt the current LWP
316 * in-kernel. Usually called when l_dopreempt may be non-zero.
317 *
318 * Character addresses for lockstat only.
319 */
320 static char in_critical_section;
321 static char kernel_lock_held;
322 static char is_softint;
323 static char cpu_kpreempt_enter_fail;
324
325 bool
326 kpreempt(uintptr_t where)
327 {
328 uintptr_t failed;
329 lwp_t *l;
330 int s, dop, lsflag;
331
332 l = curlwp;
333 failed = 0;
334 while ((dop = l->l_dopreempt) != 0) {
335 if (l->l_stat != LSONPROC) {
336 /*
337 * About to block (or die), let it happen.
338 * Doesn't really count as "preemption has
339 * been blocked", since we're going to
340 * context switch.
341 */
342 l->l_dopreempt = 0;
343 return true;
344 }
345 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
346 /* Can't preempt idle loop, don't count as failure. */
347 l->l_dopreempt = 0;
348 return true;
349 }
350 if (__predict_false(l->l_nopreempt != 0)) {
351 /* LWP holds preemption disabled, explicitly. */
352 if ((dop & DOPREEMPT_COUNTED) == 0) {
353 kpreempt_ev_crit.ev_count++;
354 }
355 failed = (uintptr_t)&in_critical_section;
356 break;
357 }
358 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
359 /* Can't preempt soft interrupts yet. */
360 l->l_dopreempt = 0;
361 failed = (uintptr_t)&is_softint;
362 break;
363 }
364 s = splsched();
365 if (__predict_false(l->l_blcnt != 0 ||
366 curcpu()->ci_biglock_wanted != NULL)) {
367 /* Hold or want kernel_lock, code is not MT safe. */
368 splx(s);
369 if ((dop & DOPREEMPT_COUNTED) == 0) {
370 kpreempt_ev_klock.ev_count++;
371 }
372 failed = (uintptr_t)&kernel_lock_held;
373 break;
374 }
375 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
376 /*
377 * It may be that the IPL is too high.
378 * kpreempt_enter() can schedule an
379 * interrupt to retry later.
380 */
381 splx(s);
382 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
383 break;
384 }
385 /* Do it! */
386 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
387 kpreempt_ev_immed.ev_count++;
388 }
389 lwp_lock(l);
390 mi_switch(l);
391 l->l_nopreempt++;
392 splx(s);
393
394 /* Take care of any MD cleanup. */
395 cpu_kpreempt_exit(where);
396 l->l_nopreempt--;
397 }
398
399 if (__predict_true(!failed)) {
400 return false;
401 }
402
403 /* Record preemption failure for reporting via lockstat. */
404 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
405 lsflag = 0;
406 LOCKSTAT_ENTER(lsflag);
407 if (__predict_false(lsflag)) {
408 if (where == 0) {
409 where = (uintptr_t)__builtin_return_address(0);
410 }
411 /* Preemption is on, might recurse, so make it atomic. */
412 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
413 (void *)where) == NULL) {
414 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
415 l->l_pfaillock = failed;
416 }
417 }
418 LOCKSTAT_EXIT(lsflag);
419 return true;
420 }
421
422 /*
423 * Return true if preemption is explicitly disabled.
424 */
425 bool
426 kpreempt_disabled(void)
427 {
428 const lwp_t *l = curlwp;
429
430 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
431 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
432 }
433
434 /*
435 * Disable kernel preemption.
436 */
437 void
438 kpreempt_disable(void)
439 {
440
441 KPREEMPT_DISABLE(curlwp);
442 }
443
444 /*
445 * Reenable kernel preemption.
446 */
447 void
448 kpreempt_enable(void)
449 {
450
451 KPREEMPT_ENABLE(curlwp);
452 }
453
454 /*
455 * Compute the amount of time during which the current lwp was running.
456 *
457 * - update l_rtime unless it's an idle lwp.
458 */
459
460 void
461 updatertime(lwp_t *l, const struct bintime *now)
462 {
463
464 if (__predict_false(l->l_flag & LW_IDLE))
465 return;
466
467 /* rtime += now - stime */
468 bintime_add(&l->l_rtime, now);
469 bintime_sub(&l->l_rtime, &l->l_stime);
470 }
471
472 /*
473 * Select next LWP from the current CPU to run..
474 */
475 static inline lwp_t *
476 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
477 {
478 lwp_t *newl;
479
480 /*
481 * Let sched_nextlwp() select the LWP to run the CPU next.
482 * If no LWP is runnable, select the idle LWP.
483 *
484 * Note that spc_lwplock might not necessary be held, and
485 * new thread would be unlocked after setting the LWP-lock.
486 */
487 newl = sched_nextlwp();
488 if (newl != NULL) {
489 sched_dequeue(newl);
490 KASSERT(lwp_locked(newl, spc->spc_mutex));
491 KASSERT(newl->l_cpu == ci);
492 newl->l_stat = LSONPROC;
493 newl->l_pflag |= LP_RUNNING;
494 lwp_setlock(newl, spc->spc_lwplock);
495 } else {
496 newl = ci->ci_data.cpu_idlelwp;
497 newl->l_stat = LSONPROC;
498 newl->l_pflag |= LP_RUNNING;
499 }
500
501 /*
502 * Only clear want_resched if there are no pending (slow)
503 * software interrupts.
504 */
505 ci->ci_want_resched = ci->ci_data.cpu_softints;
506 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
507 spc->spc_curpriority = lwp_eprio(newl);
508
509 return newl;
510 }
511
512 /*
513 * The machine independent parts of context switch.
514 *
515 * Returns 1 if another LWP was actually run.
516 */
517 int
518 mi_switch(lwp_t *l)
519 {
520 struct cpu_info *ci;
521 struct schedstate_percpu *spc;
522 struct lwp *newl;
523 int retval, oldspl;
524 struct bintime bt;
525 bool returning;
526
527 KASSERT(lwp_locked(l, NULL));
528 KASSERT(kpreempt_disabled());
529 LOCKDEBUG_BARRIER(l->l_mutex, 1);
530
531 kstack_check_magic(l);
532
533 binuptime(&bt);
534
535 KASSERT((l->l_pflag & LP_RUNNING) != 0);
536 KASSERT(l->l_cpu == curcpu());
537 ci = l->l_cpu;
538 spc = &ci->ci_schedstate;
539 returning = false;
540 newl = NULL;
541
542 /*
543 * If we have been asked to switch to a specific LWP, then there
544 * is no need to inspect the run queues. If a soft interrupt is
545 * blocking, then return to the interrupted thread without adjusting
546 * VM context or its start time: neither have been changed in order
547 * to take the interrupt.
548 */
549 if (l->l_switchto != NULL) {
550 if ((l->l_pflag & LP_INTR) != 0) {
551 returning = true;
552 softint_block(l);
553 if ((l->l_pflag & LP_TIMEINTR) != 0)
554 updatertime(l, &bt);
555 }
556 newl = l->l_switchto;
557 l->l_switchto = NULL;
558 }
559 #ifndef __HAVE_FAST_SOFTINTS
560 else if (ci->ci_data.cpu_softints != 0) {
561 /* There are pending soft interrupts, so pick one. */
562 newl = softint_picklwp();
563 newl->l_stat = LSONPROC;
564 newl->l_pflag |= LP_RUNNING;
565 }
566 #endif /* !__HAVE_FAST_SOFTINTS */
567
568 /* Count time spent in current system call */
569 if (!returning) {
570 SYSCALL_TIME_SLEEP(l);
571
572 /*
573 * XXXSMP If we are using h/w performance counters,
574 * save context.
575 */
576 #if PERFCTRS
577 if (PMC_ENABLED(l->l_proc)) {
578 pmc_save_context(l->l_proc);
579 }
580 #endif
581 updatertime(l, &bt);
582 }
583
584 /* Lock the runqueue */
585 KASSERT(l->l_stat != LSRUN);
586 mutex_spin_enter(spc->spc_mutex);
587
588 /*
589 * If on the CPU and we have gotten this far, then we must yield.
590 */
591 if (l->l_stat == LSONPROC && l != newl) {
592 KASSERT(lwp_locked(l, spc->spc_lwplock));
593 if ((l->l_flag & LW_IDLE) == 0) {
594 l->l_stat = LSRUN;
595 lwp_setlock(l, spc->spc_mutex);
596 sched_enqueue(l, true);
597 /*
598 * Handle migration. Note that "migrating LWP" may
599 * be reset here, if interrupt/preemption happens
600 * early in idle LWP.
601 */
602 if (l->l_target_cpu != NULL) {
603 KASSERT((l->l_pflag & LP_INTR) == 0);
604 spc->spc_migrating = l;
605 }
606 } else
607 l->l_stat = LSIDL;
608 }
609
610 /* Pick new LWP to run. */
611 if (newl == NULL) {
612 newl = nextlwp(ci, spc);
613 }
614
615 /* Items that must be updated with the CPU locked. */
616 if (!returning) {
617 /* Update the new LWP's start time. */
618 newl->l_stime = bt;
619
620 /*
621 * ci_curlwp changes when a fast soft interrupt occurs.
622 * We use cpu_onproc to keep track of which kernel or
623 * user thread is running 'underneath' the software
624 * interrupt. This is important for time accounting,
625 * itimers and forcing user threads to preempt (aston).
626 */
627 ci->ci_data.cpu_onproc = newl;
628 }
629
630 /*
631 * Preemption related tasks. Must be done with the current
632 * CPU locked.
633 */
634 cpu_did_resched(l);
635 l->l_dopreempt = 0;
636 if (__predict_false(l->l_pfailaddr != 0)) {
637 LOCKSTAT_FLAG(lsflag);
638 LOCKSTAT_ENTER(lsflag);
639 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
640 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
641 1, l->l_pfailtime, l->l_pfailaddr);
642 LOCKSTAT_EXIT(lsflag);
643 l->l_pfailtime = 0;
644 l->l_pfaillock = 0;
645 l->l_pfailaddr = 0;
646 }
647
648 if (l != newl) {
649 struct lwp *prevlwp;
650
651 /* Release all locks, but leave the current LWP locked */
652 if (l->l_mutex == spc->spc_mutex) {
653 /*
654 * Drop spc_lwplock, if the current LWP has been moved
655 * to the run queue (it is now locked by spc_mutex).
656 */
657 mutex_spin_exit(spc->spc_lwplock);
658 } else {
659 /*
660 * Otherwise, drop the spc_mutex, we are done with the
661 * run queues.
662 */
663 mutex_spin_exit(spc->spc_mutex);
664 }
665
666 /*
667 * Mark that context switch is going to be performed
668 * for this LWP, to protect it from being switched
669 * to on another CPU.
670 */
671 KASSERT(l->l_ctxswtch == 0);
672 l->l_ctxswtch = 1;
673 l->l_ncsw++;
674 KASSERT((l->l_pflag & LP_RUNNING) != 0);
675 l->l_pflag &= ~LP_RUNNING;
676
677 /*
678 * Increase the count of spin-mutexes before the release
679 * of the last lock - we must remain at IPL_SCHED during
680 * the context switch.
681 */
682 KASSERTMSG(ci->ci_mtx_count == -1,
683 "%s: cpu%u: ci_mtx_count (%d) != -1",
684 __func__, cpu_index(ci), ci->ci_mtx_count);
685 oldspl = MUTEX_SPIN_OLDSPL(ci);
686 ci->ci_mtx_count--;
687 lwp_unlock(l);
688
689 /* Count the context switch on this CPU. */
690 ci->ci_data.cpu_nswtch++;
691
692 /* Update status for lwpctl, if present. */
693 if (l->l_lwpctl != NULL)
694 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
695
696 /*
697 * Save old VM context, unless a soft interrupt
698 * handler is blocking.
699 */
700 if (!returning)
701 pmap_deactivate(l);
702
703 /*
704 * We may need to spin-wait if 'newl' is still
705 * context switching on another CPU.
706 */
707 if (__predict_false(newl->l_ctxswtch != 0)) {
708 u_int count;
709 count = SPINLOCK_BACKOFF_MIN;
710 while (newl->l_ctxswtch)
711 SPINLOCK_BACKOFF(count);
712 }
713
714 /*
715 * If DTrace has set the active vtime enum to anything
716 * other than INACTIVE (0), then it should have set the
717 * function to call.
718 */
719 if (__predict_false(dtrace_vtime_active)) {
720 (*dtrace_vtime_switch_func)(newl);
721 }
722
723 /* Switch to the new LWP.. */
724 prevlwp = cpu_switchto(l, newl, returning);
725 ci = curcpu();
726
727 /*
728 * Switched away - we have new curlwp.
729 * Restore VM context and IPL.
730 */
731 pmap_activate(l);
732 uvm_emap_switch(l);
733 pcu_switchpoint(l);
734
735 if (prevlwp != NULL) {
736 /* Normalize the count of the spin-mutexes */
737 ci->ci_mtx_count++;
738 /* Unmark the state of context switch */
739 membar_exit();
740 prevlwp->l_ctxswtch = 0;
741 }
742
743 /* Update status for lwpctl, if present. */
744 if (l->l_lwpctl != NULL) {
745 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
746 l->l_lwpctl->lc_pctr++;
747 }
748
749 /* Note trip through cpu_switchto(). */
750 pserialize_switchpoint();
751
752 KASSERT(l->l_cpu == ci);
753 splx(oldspl);
754 retval = 1;
755 } else {
756 /* Nothing to do - just unlock and return. */
757 mutex_spin_exit(spc->spc_mutex);
758 lwp_unlock(l);
759 retval = 0;
760 }
761
762 KASSERT(l == curlwp);
763 KASSERT(l->l_stat == LSONPROC);
764
765 /*
766 * XXXSMP If we are using h/w performance counters, restore context.
767 * XXXSMP preemption problem.
768 */
769 #if PERFCTRS
770 if (PMC_ENABLED(l->l_proc)) {
771 pmc_restore_context(l->l_proc);
772 }
773 #endif
774 SYSCALL_TIME_WAKEUP(l);
775 LOCKDEBUG_BARRIER(NULL, 1);
776
777 return retval;
778 }
779
780 /*
781 * The machine independent parts of context switch to oblivion.
782 * Does not return. Call with the LWP unlocked.
783 */
784 void
785 lwp_exit_switchaway(lwp_t *l)
786 {
787 struct cpu_info *ci;
788 struct lwp *newl;
789 struct bintime bt;
790
791 ci = l->l_cpu;
792
793 KASSERT(kpreempt_disabled());
794 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
795 KASSERT(ci == curcpu());
796 LOCKDEBUG_BARRIER(NULL, 0);
797
798 kstack_check_magic(l);
799
800 /* Count time spent in current system call */
801 SYSCALL_TIME_SLEEP(l);
802 binuptime(&bt);
803 updatertime(l, &bt);
804
805 /* Must stay at IPL_SCHED even after releasing run queue lock. */
806 (void)splsched();
807
808 /*
809 * Let sched_nextlwp() select the LWP to run the CPU next.
810 * If no LWP is runnable, select the idle LWP.
811 *
812 * Note that spc_lwplock might not necessary be held, and
813 * new thread would be unlocked after setting the LWP-lock.
814 */
815 spc_lock(ci);
816 #ifndef __HAVE_FAST_SOFTINTS
817 if (ci->ci_data.cpu_softints != 0) {
818 /* There are pending soft interrupts, so pick one. */
819 newl = softint_picklwp();
820 newl->l_stat = LSONPROC;
821 newl->l_pflag |= LP_RUNNING;
822 } else
823 #endif /* !__HAVE_FAST_SOFTINTS */
824 {
825 newl = nextlwp(ci, &ci->ci_schedstate);
826 }
827
828 /* Update the new LWP's start time. */
829 newl->l_stime = bt;
830 l->l_pflag &= ~LP_RUNNING;
831
832 /*
833 * ci_curlwp changes when a fast soft interrupt occurs.
834 * We use cpu_onproc to keep track of which kernel or
835 * user thread is running 'underneath' the software
836 * interrupt. This is important for time accounting,
837 * itimers and forcing user threads to preempt (aston).
838 */
839 ci->ci_data.cpu_onproc = newl;
840
841 /*
842 * Preemption related tasks. Must be done with the current
843 * CPU locked.
844 */
845 cpu_did_resched(l);
846
847 /* Unlock the run queue. */
848 spc_unlock(ci);
849
850 /* Count the context switch on this CPU. */
851 ci->ci_data.cpu_nswtch++;
852
853 /* Update status for lwpctl, if present. */
854 if (l->l_lwpctl != NULL)
855 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
856
857 /*
858 * We may need to spin-wait if 'newl' is still
859 * context switching on another CPU.
860 */
861 if (__predict_false(newl->l_ctxswtch != 0)) {
862 u_int count;
863 count = SPINLOCK_BACKOFF_MIN;
864 while (newl->l_ctxswtch)
865 SPINLOCK_BACKOFF(count);
866 }
867
868 /*
869 * If DTrace has set the active vtime enum to anything
870 * other than INACTIVE (0), then it should have set the
871 * function to call.
872 */
873 if (__predict_false(dtrace_vtime_active)) {
874 (*dtrace_vtime_switch_func)(newl);
875 }
876
877 /* Switch to the new LWP.. */
878 (void)cpu_switchto(NULL, newl, false);
879
880 for (;;) continue; /* XXX: convince gcc about "noreturn" */
881 /* NOTREACHED */
882 }
883
884 /*
885 * setrunnable: change LWP state to be runnable, placing it on the run queue.
886 *
887 * Call with the process and LWP locked. Will return with the LWP unlocked.
888 */
889 void
890 setrunnable(struct lwp *l)
891 {
892 struct proc *p = l->l_proc;
893 struct cpu_info *ci;
894
895 KASSERT((l->l_flag & LW_IDLE) == 0);
896 KASSERT(mutex_owned(p->p_lock));
897 KASSERT(lwp_locked(l, NULL));
898 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
899
900 switch (l->l_stat) {
901 case LSSTOP:
902 /*
903 * If we're being traced (possibly because someone attached us
904 * while we were stopped), check for a signal from the debugger.
905 */
906 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
907 signotify(l);
908 p->p_nrlwps++;
909 break;
910 case LSSUSPENDED:
911 l->l_flag &= ~LW_WSUSPEND;
912 p->p_nrlwps++;
913 cv_broadcast(&p->p_lwpcv);
914 break;
915 case LSSLEEP:
916 KASSERT(l->l_wchan != NULL);
917 break;
918 default:
919 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
920 }
921
922 /*
923 * If the LWP was sleeping, start it again.
924 */
925 if (l->l_wchan != NULL) {
926 l->l_stat = LSSLEEP;
927 /* lwp_unsleep() will release the lock. */
928 lwp_unsleep(l, true);
929 return;
930 }
931
932 /*
933 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
934 * about to call mi_switch(), in which case it will yield.
935 */
936 if ((l->l_pflag & LP_RUNNING) != 0) {
937 l->l_stat = LSONPROC;
938 l->l_slptime = 0;
939 lwp_unlock(l);
940 return;
941 }
942
943 /*
944 * Look for a CPU to run.
945 * Set the LWP runnable.
946 */
947 ci = sched_takecpu(l);
948 l->l_cpu = ci;
949 spc_lock(ci);
950 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
951 sched_setrunnable(l);
952 l->l_stat = LSRUN;
953 l->l_slptime = 0;
954
955 sched_enqueue(l, false);
956 resched_cpu(l);
957 lwp_unlock(l);
958 }
959
960 /*
961 * suspendsched:
962 *
963 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
964 */
965 void
966 suspendsched(void)
967 {
968 CPU_INFO_ITERATOR cii;
969 struct cpu_info *ci;
970 struct lwp *l;
971 struct proc *p;
972
973 /*
974 * We do this by process in order not to violate the locking rules.
975 */
976 mutex_enter(proc_lock);
977 PROCLIST_FOREACH(p, &allproc) {
978 mutex_enter(p->p_lock);
979 if ((p->p_flag & PK_SYSTEM) != 0) {
980 mutex_exit(p->p_lock);
981 continue;
982 }
983
984 p->p_stat = SSTOP;
985
986 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
987 if (l == curlwp)
988 continue;
989
990 lwp_lock(l);
991
992 /*
993 * Set L_WREBOOT so that the LWP will suspend itself
994 * when it tries to return to user mode. We want to
995 * try and get to get as many LWPs as possible to
996 * the user / kernel boundary, so that they will
997 * release any locks that they hold.
998 */
999 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1000
1001 if (l->l_stat == LSSLEEP &&
1002 (l->l_flag & LW_SINTR) != 0) {
1003 /* setrunnable() will release the lock. */
1004 setrunnable(l);
1005 continue;
1006 }
1007
1008 lwp_unlock(l);
1009 }
1010
1011 mutex_exit(p->p_lock);
1012 }
1013 mutex_exit(proc_lock);
1014
1015 /*
1016 * Kick all CPUs to make them preempt any LWPs running in user mode.
1017 * They'll trap into the kernel and suspend themselves in userret().
1018 */
1019 for (CPU_INFO_FOREACH(cii, ci)) {
1020 spc_lock(ci);
1021 cpu_need_resched(ci, RESCHED_IMMED);
1022 spc_unlock(ci);
1023 }
1024 }
1025
1026 /*
1027 * sched_unsleep:
1028 *
1029 * The is called when the LWP has not been awoken normally but instead
1030 * interrupted: for example, if the sleep timed out. Because of this,
1031 * it's not a valid action for running or idle LWPs.
1032 */
1033 static void
1034 sched_unsleep(struct lwp *l, bool cleanup)
1035 {
1036
1037 lwp_unlock(l);
1038 panic("sched_unsleep");
1039 }
1040
1041 static void
1042 resched_cpu(struct lwp *l)
1043 {
1044 struct cpu_info *ci = l->l_cpu;
1045
1046 KASSERT(lwp_locked(l, NULL));
1047 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1048 cpu_need_resched(ci, 0);
1049 }
1050
1051 static void
1052 sched_changepri(struct lwp *l, pri_t pri)
1053 {
1054
1055 KASSERT(lwp_locked(l, NULL));
1056
1057 if (l->l_stat == LSRUN) {
1058 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1059 sched_dequeue(l);
1060 l->l_priority = pri;
1061 sched_enqueue(l, false);
1062 } else {
1063 l->l_priority = pri;
1064 }
1065 resched_cpu(l);
1066 }
1067
1068 static void
1069 sched_lendpri(struct lwp *l, pri_t pri)
1070 {
1071
1072 KASSERT(lwp_locked(l, NULL));
1073
1074 if (l->l_stat == LSRUN) {
1075 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1076 sched_dequeue(l);
1077 l->l_inheritedprio = pri;
1078 sched_enqueue(l, false);
1079 } else {
1080 l->l_inheritedprio = pri;
1081 }
1082 resched_cpu(l);
1083 }
1084
1085 struct lwp *
1086 syncobj_noowner(wchan_t wchan)
1087 {
1088
1089 return NULL;
1090 }
1091
1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1094
1095 /*
1096 * Constants for averages over 1, 5 and 15 minutes when sampling at
1097 * 5 second intervals.
1098 */
1099 static const fixpt_t cexp[ ] = {
1100 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1101 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1102 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1103 };
1104
1105 /*
1106 * sched_pstats:
1107 *
1108 * => Update process statistics and check CPU resource allocation.
1109 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1110 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1111 */
1112 void
1113 sched_pstats(void)
1114 {
1115 extern struct loadavg averunnable;
1116 struct loadavg *avg = &averunnable;
1117 const int clkhz = (stathz != 0 ? stathz : hz);
1118 static bool backwards = false;
1119 static u_int lavg_count = 0;
1120 struct proc *p;
1121 int nrun;
1122
1123 sched_pstats_ticks++;
1124 if (++lavg_count >= 5) {
1125 lavg_count = 0;
1126 nrun = 0;
1127 }
1128 mutex_enter(proc_lock);
1129 PROCLIST_FOREACH(p, &allproc) {
1130 struct lwp *l;
1131 struct rlimit *rlim;
1132 time_t runtm;
1133 int sig;
1134
1135 /* Increment sleep time (if sleeping), ignore overflow. */
1136 mutex_enter(p->p_lock);
1137 runtm = p->p_rtime.sec;
1138 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1139 fixpt_t lpctcpu;
1140 u_int lcpticks;
1141
1142 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1143 continue;
1144 lwp_lock(l);
1145 runtm += l->l_rtime.sec;
1146 l->l_swtime++;
1147 sched_lwp_stats(l);
1148
1149 /* For load average calculation. */
1150 if (__predict_false(lavg_count == 0) &&
1151 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1152 switch (l->l_stat) {
1153 case LSSLEEP:
1154 if (l->l_slptime > 1) {
1155 break;
1156 }
1157 case LSRUN:
1158 case LSONPROC:
1159 case LSIDL:
1160 nrun++;
1161 }
1162 }
1163 lwp_unlock(l);
1164
1165 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1166 if (l->l_slptime != 0)
1167 continue;
1168
1169 lpctcpu = l->l_pctcpu;
1170 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1171 lpctcpu += ((FSCALE - ccpu) *
1172 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1173 l->l_pctcpu = lpctcpu;
1174 }
1175 /* Calculating p_pctcpu only for ps(1) */
1176 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1177
1178 /*
1179 * Check if the process exceeds its CPU resource allocation.
1180 * If over the hard limit, kill it with SIGKILL.
1181 * If over the soft limit, send SIGXCPU and raise
1182 * the soft limit a little.
1183 */
1184 rlim = &p->p_rlimit[RLIMIT_CPU];
1185 sig = 0;
1186 if (__predict_false(runtm >= rlim->rlim_cur)) {
1187 if (runtm >= rlim->rlim_max) {
1188 sig = SIGKILL;
1189 log(LOG_NOTICE, "pid %d is killed: %s\n",
1190 p->p_pid, "exceeded RLIMIT_CPU");
1191 uprintf("pid %d, command %s, is killed: %s\n",
1192 p->p_pid, p->p_comm,
1193 "exceeded RLIMIT_CPU");
1194 } else {
1195 sig = SIGXCPU;
1196 if (rlim->rlim_cur < rlim->rlim_max)
1197 rlim->rlim_cur += 5;
1198 }
1199 }
1200 mutex_exit(p->p_lock);
1201 if (__predict_false(runtm < 0)) {
1202 if (!backwards) {
1203 backwards = true;
1204 printf("WARNING: negative runtime; "
1205 "monotonic clock has gone backwards\n");
1206 }
1207 } else if (__predict_false(sig)) {
1208 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1209 psignal(p, sig);
1210 }
1211 }
1212 mutex_exit(proc_lock);
1213
1214 /* Load average calculation. */
1215 if (__predict_false(lavg_count == 0)) {
1216 int i;
1217 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1218 for (i = 0; i < __arraycount(cexp); i++) {
1219 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1220 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1221 }
1222 }
1223
1224 /* Lightning bolt. */
1225 cv_broadcast(&lbolt);
1226 }
1227