Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.30
      1 /*	$NetBSD: kern_synch.c,v 1.30 1994/10/30 21:47:43 cgd Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/buf.h>
     48 #include <sys/signalvar.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/vmmeter.h>
     51 #ifdef KTRACE
     52 #include <sys/ktrace.h>
     53 #endif
     54 
     55 #include <machine/cpu.h>
     56 
     57 u_char	curpriority;		/* usrpri of curproc */
     58 int	lbolt;			/* once a second sleep address */
     59 
     60 /*
     61  * Force switch among equal priority processes every 100ms.
     62  */
     63 /* ARGSUSED */
     64 void
     65 roundrobin(arg)
     66 	void *arg;
     67 {
     68 
     69 	need_resched();
     70 	timeout(roundrobin, NULL, hz / 10);
     71 }
     72 
     73 /*
     74  * Constants for digital decay and forget:
     75  *	90% of (p_estcpu) usage in 5 * loadav time
     76  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     77  *          Note that, as ps(1) mentions, this can let percentages
     78  *          total over 100% (I've seen 137.9% for 3 processes).
     79  *
     80  * Note that hardclock updates p_estcpu and p_cpticks independently.
     81  *
     82  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     83  * That is, the system wants to compute a value of decay such
     84  * that the following for loop:
     85  * 	for (i = 0; i < (5 * loadavg); i++)
     86  * 		p_estcpu *= decay;
     87  * will compute
     88  * 	p_estcpu *= 0.1;
     89  * for all values of loadavg:
     90  *
     91  * Mathematically this loop can be expressed by saying:
     92  * 	decay ** (5 * loadavg) ~= .1
     93  *
     94  * The system computes decay as:
     95  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
     96  *
     97  * We wish to prove that the system's computation of decay
     98  * will always fulfill the equation:
     99  * 	decay ** (5 * loadavg) ~= .1
    100  *
    101  * If we compute b as:
    102  * 	b = 2 * loadavg
    103  * then
    104  * 	decay = b / (b + 1)
    105  *
    106  * We now need to prove two things:
    107  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    108  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    109  *
    110  * Facts:
    111  *         For x close to zero, exp(x) =~ 1 + x, since
    112  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    113  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    114  *         For x close to zero, ln(1+x) =~ x, since
    115  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    116  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    117  *         ln(.1) =~ -2.30
    118  *
    119  * Proof of (1):
    120  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    121  *	solving for factor,
    122  *      ln(factor) =~ (-2.30/5*loadav), or
    123  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    124  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    125  *
    126  * Proof of (2):
    127  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    128  *	solving for power,
    129  *      power*ln(b/(b+1)) =~ -2.30, or
    130  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    131  *
    132  * Actual power values for the implemented algorithm are as follows:
    133  *      loadav: 1       2       3       4
    134  *      power:  5.68    10.32   14.94   19.55
    135  */
    136 
    137 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    138 #define	loadfactor(loadav)	(2 * (loadav))
    139 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    140 
    141 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    142 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    143 
    144 /*
    145  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    146  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    147  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    148  *
    149  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    150  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    151  *
    152  * If you dont want to bother with the faster/more-accurate formula, you
    153  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    154  * (more general) method of calculating the %age of CPU used by a process.
    155  */
    156 #define	CCPU_SHIFT	11
    157 
    158 /*
    159  * Recompute process priorities, every hz ticks.
    160  */
    161 /* ARGSUSED */
    162 void
    163 schedcpu(arg)
    164 	void *arg;
    165 {
    166 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    167 	register struct proc *p;
    168 	register int s;
    169 	register unsigned int newcpu;
    170 
    171 	wakeup((caddr_t)&lbolt);
    172 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    173 		/*
    174 		 * Increment time in/out of memory and sleep time
    175 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    176 		 * (remember them?) overflow takes 45 days.
    177 		 */
    178 		p->p_swtime++;
    179 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    180 			p->p_slptime++;
    181 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    182 		/*
    183 		 * If the process has slept the entire second,
    184 		 * stop recalculating its priority until it wakes up.
    185 		 */
    186 		if (p->p_slptime > 1)
    187 			continue;
    188 		s = splstatclock();	/* prevent state changes */
    189 		/*
    190 		 * p_pctcpu is only for ps.
    191 		 */
    192 #if	(FSHIFT >= CCPU_SHIFT)
    193 		p->p_pctcpu += (hz == 100)?
    194 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    195                 	100 * (((fixpt_t) p->p_cpticks)
    196 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    197 #else
    198 		p->p_pctcpu += ((FSCALE - ccpu) *
    199 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    200 #endif
    201 		p->p_cpticks = 0;
    202 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
    203 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    204 		resetpriority(p);
    205 		if (p->p_priority >= PUSER) {
    206 #define	PPQ	(128 / NQS)		/* priorities per queue */
    207 			if ((p != curproc) &&
    208 			    p->p_stat == SRUN &&
    209 			    (p->p_flag & P_INMEM) &&
    210 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    211 				remrq(p);
    212 				p->p_priority = p->p_usrpri;
    213 				setrunqueue(p);
    214 			} else
    215 				p->p_priority = p->p_usrpri;
    216 		}
    217 		splx(s);
    218 	}
    219 	vmmeter();
    220 	if (bclnlist != NULL)
    221 		wakeup((caddr_t)pageproc);
    222 	timeout(schedcpu, (void *)0, hz);
    223 }
    224 
    225 /*
    226  * Recalculate the priority of a process after it has slept for a while.
    227  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    228  * least six times the loadfactor will decay p_estcpu to zero.
    229  */
    230 void
    231 updatepri(p)
    232 	register struct proc *p;
    233 {
    234 	register unsigned int newcpu = p->p_estcpu;
    235 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    236 
    237 	if (p->p_slptime > 5 * loadfac)
    238 		p->p_estcpu = 0;
    239 	else {
    240 		p->p_slptime--;	/* the first time was done in schedcpu */
    241 		while (newcpu && --p->p_slptime)
    242 			newcpu = (int) decay_cpu(loadfac, newcpu);
    243 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    244 	}
    245 	resetpriority(p);
    246 }
    247 
    248 /*
    249  * We're only looking at 7 bits of the address; everything is
    250  * aligned to 4, lots of things are aligned to greater powers
    251  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    252  */
    253 #define TABLESIZE	128
    254 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    255 struct slpque {
    256 	struct proc *sq_head;
    257 	struct proc **sq_tailp;
    258 } slpque[TABLESIZE];
    259 
    260 /*
    261  * During autoconfiguration or after a panic, a sleep will simply
    262  * lower the priority briefly to allow interrupts, then return.
    263  * The priority to be used (safepri) is machine-dependent, thus this
    264  * value is initialized and maintained in the machine-dependent layers.
    265  * This priority will typically be 0, or the lowest priority
    266  * that is safe for use on the interrupt stack; it can be made
    267  * higher to block network software interrupts after panics.
    268  */
    269 int safepri;
    270 
    271 /*
    272  * General sleep call.  Suspends the current process until a wakeup is
    273  * performed on the specified identifier.  The process will then be made
    274  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    275  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    276  * before and after sleeping, else signals are not checked.  Returns 0 if
    277  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    278  * signal needs to be delivered, ERESTART is returned if the current system
    279  * call should be restarted if possible, and EINTR is returned if the system
    280  * call should be interrupted by the signal (return EINTR).
    281  */
    282 int
    283 tsleep(ident, priority, wmesg, timo)
    284 	void *ident;
    285 	int priority, timo;
    286 	char *wmesg;
    287 {
    288 	register struct proc *p = curproc;
    289 	register struct slpque *qp;
    290 	register s;
    291 	int sig, catch = priority & PCATCH;
    292 	extern int cold;
    293 	void endtsleep __P((void *));
    294 
    295 #ifdef KTRACE
    296 	if (KTRPOINT(p, KTR_CSW))
    297 		ktrcsw(p->p_tracep, 1, 0);
    298 #endif
    299 	s = splhigh();
    300 	if (cold || panicstr) {
    301 		/*
    302 		 * After a panic, or during autoconfiguration,
    303 		 * just give interrupts a chance, then just return;
    304 		 * don't run any other procs or panic below,
    305 		 * in case this is the idle process and already asleep.
    306 		 */
    307 		splx(safepri);
    308 		splx(s);
    309 		return (0);
    310 	}
    311 #ifdef DIAGNOSTIC
    312 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    313 		panic("tsleep");
    314 #endif
    315 	p->p_wchan = ident;
    316 	p->p_wmesg = wmesg;
    317 	p->p_slptime = 0;
    318 	p->p_priority = priority & PRIMASK;
    319 	qp = &slpque[LOOKUP(ident)];
    320 	if (qp->sq_head == 0)
    321 		qp->sq_head = p;
    322 	else
    323 		*qp->sq_tailp = p;
    324 	*(qp->sq_tailp = &p->p_forw) = 0;
    325 	if (timo)
    326 		timeout(endtsleep, (void *)p, timo);
    327 	/*
    328 	 * We put ourselves on the sleep queue and start our timeout
    329 	 * before calling CURSIG, as we could stop there, and a wakeup
    330 	 * or a SIGCONT (or both) could occur while we were stopped.
    331 	 * A SIGCONT would cause us to be marked as SSLEEP
    332 	 * without resuming us, thus we must be ready for sleep
    333 	 * when CURSIG is called.  If the wakeup happens while we're
    334 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    335 	 */
    336 	if (catch) {
    337 		p->p_flag |= P_SINTR;
    338 		if (sig = CURSIG(p)) {
    339 			if (p->p_wchan)
    340 				unsleep(p);
    341 			p->p_stat = SRUN;
    342 			goto resume;
    343 		}
    344 		if (p->p_wchan == 0) {
    345 			catch = 0;
    346 			goto resume;
    347 		}
    348 	} else
    349 		sig = 0;
    350 	p->p_stat = SSLEEP;
    351 	p->p_stats->p_ru.ru_nvcsw++;
    352 	mi_switch();
    353 #ifdef	DDB
    354 	/* handy breakpoint location after process "wakes" */
    355 	asm(".globl bpendtsleep ; bpendtsleep:");
    356 #endif
    357 resume:
    358 	curpriority = p->p_usrpri;
    359 	splx(s);
    360 	p->p_flag &= ~P_SINTR;
    361 	if (p->p_flag & P_TIMEOUT) {
    362 		p->p_flag &= ~P_TIMEOUT;
    363 		if (sig == 0) {
    364 #ifdef KTRACE
    365 			if (KTRPOINT(p, KTR_CSW))
    366 				ktrcsw(p->p_tracep, 0, 0);
    367 #endif
    368 			return (EWOULDBLOCK);
    369 		}
    370 	} else if (timo)
    371 		untimeout(endtsleep, (void *)p);
    372 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
    373 #ifdef KTRACE
    374 		if (KTRPOINT(p, KTR_CSW))
    375 			ktrcsw(p->p_tracep, 0, 0);
    376 #endif
    377 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    378 			return (EINTR);
    379 		return (ERESTART);
    380 	}
    381 #ifdef KTRACE
    382 	if (KTRPOINT(p, KTR_CSW))
    383 		ktrcsw(p->p_tracep, 0, 0);
    384 #endif
    385 	return (0);
    386 }
    387 
    388 /*
    389  * Implement timeout for tsleep.
    390  * If process hasn't been awakened (wchan non-zero),
    391  * set timeout flag and undo the sleep.  If proc
    392  * is stopped, just unsleep so it will remain stopped.
    393  */
    394 void
    395 endtsleep(arg)
    396 	void *arg;
    397 {
    398 	register struct proc *p;
    399 	int s;
    400 
    401 	p = (struct proc *)arg;
    402 	s = splhigh();
    403 	if (p->p_wchan) {
    404 		if (p->p_stat == SSLEEP)
    405 			setrunnable(p);
    406 		else
    407 			unsleep(p);
    408 		p->p_flag |= P_TIMEOUT;
    409 	}
    410 	splx(s);
    411 }
    412 
    413 /*
    414  * Short-term, non-interruptable sleep.
    415  */
    416 void
    417 sleep(ident, priority)
    418 	void *ident;
    419 	int priority;
    420 {
    421 	register struct proc *p = curproc;
    422 	register struct slpque *qp;
    423 	register s;
    424 	extern int cold;
    425 
    426 #ifdef DIAGNOSTIC
    427 	if (priority > PZERO) {
    428 		printf("sleep called with priority %d > PZERO, wchan: %x\n",
    429 		    priority, ident);
    430 		panic("old sleep");
    431 	}
    432 #endif
    433 	s = splhigh();
    434 	if (cold || panicstr) {
    435 		/*
    436 		 * After a panic, or during autoconfiguration,
    437 		 * just give interrupts a chance, then just return;
    438 		 * don't run any other procs or panic below,
    439 		 * in case this is the idle process and already asleep.
    440 		 */
    441 		splx(safepri);
    442 		splx(s);
    443 		return;
    444 	}
    445 #ifdef DIAGNOSTIC
    446 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    447 		panic("sleep");
    448 #endif
    449 	p->p_wchan = ident;
    450 	p->p_wmesg = NULL;
    451 	p->p_slptime = 0;
    452 	p->p_priority = priority;
    453 	qp = &slpque[LOOKUP(ident)];
    454 	if (qp->sq_head == 0)
    455 		qp->sq_head = p;
    456 	else
    457 		*qp->sq_tailp = p;
    458 	*(qp->sq_tailp = &p->p_forw) = 0;
    459 	p->p_stat = SSLEEP;
    460 	p->p_stats->p_ru.ru_nvcsw++;
    461 #ifdef KTRACE
    462 	if (KTRPOINT(p, KTR_CSW))
    463 		ktrcsw(p->p_tracep, 1, 0);
    464 #endif
    465 	mi_switch();
    466 #ifdef	DDB
    467 	/* handy breakpoint location after process "wakes" */
    468 	asm(".globl bpendsleep ; bpendsleep:");
    469 #endif
    470 #ifdef KTRACE
    471 	if (KTRPOINT(p, KTR_CSW))
    472 		ktrcsw(p->p_tracep, 0, 0);
    473 #endif
    474 	curpriority = p->p_usrpri;
    475 	splx(s);
    476 }
    477 
    478 /*
    479  * Remove a process from its wait queue
    480  */
    481 void
    482 unsleep(p)
    483 	register struct proc *p;
    484 {
    485 	register struct slpque *qp;
    486 	register struct proc **hp;
    487 	int s;
    488 
    489 	s = splhigh();
    490 	if (p->p_wchan) {
    491 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    492 		while (*hp != p)
    493 			hp = &(*hp)->p_forw;
    494 		*hp = p->p_forw;
    495 		if (qp->sq_tailp == &p->p_forw)
    496 			qp->sq_tailp = hp;
    497 		p->p_wchan = 0;
    498 	}
    499 	splx(s);
    500 }
    501 
    502 /*
    503  * Make all processes sleeping on the specified identifier runnable.
    504  */
    505 void
    506 wakeup(ident)
    507 	register void *ident;
    508 {
    509 	register struct slpque *qp;
    510 	register struct proc *p, **q;
    511 	int s;
    512 
    513 	s = splhigh();
    514 	qp = &slpque[LOOKUP(ident)];
    515 restart:
    516 	for (q = &qp->sq_head; p = *q; ) {
    517 #ifdef DIAGNOSTIC
    518 		if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP)
    519 			panic("wakeup");
    520 #endif
    521 		if (p->p_wchan == ident) {
    522 			p->p_wchan = 0;
    523 			*q = p->p_forw;
    524 			if (qp->sq_tailp == &p->p_forw)
    525 				qp->sq_tailp = q;
    526 			if (p->p_stat == SSLEEP) {
    527 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    528 				if (p->p_slptime > 1)
    529 					updatepri(p);
    530 				p->p_slptime = 0;
    531 				p->p_stat = SRUN;
    532 				if (p->p_flag & P_INMEM)
    533 					setrunqueue(p);
    534 				/*
    535 				 * Since curpriority is a user priority,
    536 				 * p->p_priority is always better than
    537 				 * curpriority.
    538 				 */
    539 				if ((p->p_flag & P_INMEM) == 0)
    540 					wakeup((caddr_t)&proc0);
    541 				else
    542 					need_resched();
    543 				/* END INLINE EXPANSION */
    544 				goto restart;
    545 			}
    546 		} else
    547 			q = &p->p_forw;
    548 	}
    549 	splx(s);
    550 }
    551 
    552 /*
    553  * The machine independent parts of mi_switch().
    554  * Must be called at splstatclock() or higher.
    555  */
    556 void
    557 mi_switch()
    558 {
    559 	register struct proc *p = curproc;	/* XXX */
    560 	register struct rlimit *rlim;
    561 	register long s, u;
    562 	struct timeval tv;
    563 
    564 	/*
    565 	 * Compute the amount of time during which the current
    566 	 * process was running, and add that to its total so far.
    567 	 */
    568 	microtime(&tv);
    569 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    570 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    571 	if (u < 0) {
    572 		u += 1000000;
    573 		s--;
    574 	} else if (u >= 1000000) {
    575 		u -= 1000000;
    576 		s++;
    577 	}
    578 	p->p_rtime.tv_usec = u;
    579 	p->p_rtime.tv_sec = s;
    580 
    581 	/*
    582 	 * Check if the process exceeds its cpu resource allocation.
    583 	 * If over max, kill it.  In any case, if it has run for more
    584 	 * than 10 minutes, reduce priority to give others a chance.
    585 	 */
    586 	rlim = &p->p_rlimit[RLIMIT_CPU];
    587 	if (s >= rlim->rlim_cur) {
    588 		if (s >= rlim->rlim_max)
    589 			psignal(p, SIGKILL);
    590 		else {
    591 			psignal(p, SIGXCPU);
    592 			if (rlim->rlim_cur < rlim->rlim_max)
    593 				rlim->rlim_cur += 5;
    594 		}
    595 	}
    596 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    597 		p->p_nice = NZERO + 4;
    598 		resetpriority(p);
    599 	}
    600 
    601 	/*
    602 	 * Pick a new current process and record its start time.
    603 	 */
    604 	cnt.v_swtch++;
    605 	cpu_switch(p);
    606 	microtime(&runtime);
    607 }
    608 
    609 /*
    610  * Initialize the (doubly-linked) run queues
    611  * to be empty.
    612  */
    613 void
    614 rqinit()
    615 {
    616 	register int i;
    617 
    618 	for (i = 0; i < NQS; i++)
    619 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    620 }
    621 
    622 /*
    623  * Change process state to be runnable,
    624  * placing it on the run queue if it is in memory,
    625  * and awakening the swapper if it isn't in memory.
    626  */
    627 void
    628 setrunnable(p)
    629 	register struct proc *p;
    630 {
    631 	register int s;
    632 
    633 	s = splhigh();
    634 	switch (p->p_stat) {
    635 	case 0:
    636 	case SRUN:
    637 	case SZOMB:
    638 	default:
    639 		panic("setrunnable");
    640 	case SSTOP:
    641 	case SSLEEP:
    642 		unsleep(p);		/* e.g. when sending signals */
    643 		break;
    644 
    645 	case SIDL:
    646 		break;
    647 	}
    648 	p->p_stat = SRUN;
    649 	if (p->p_flag & P_INMEM)
    650 		setrunqueue(p);
    651 	splx(s);
    652 	if (p->p_slptime > 1)
    653 		updatepri(p);
    654 	p->p_slptime = 0;
    655 	if ((p->p_flag & P_INMEM) == 0)
    656 		wakeup((caddr_t)&proc0);
    657 	else if (p->p_priority < curpriority)
    658 		need_resched();
    659 }
    660 
    661 /*
    662  * Compute the priority of a process when running in user mode.
    663  * Arrange to reschedule if the resulting priority is better
    664  * than that of the current process.
    665  */
    666 void
    667 resetpriority(p)
    668 	register struct proc *p;
    669 {
    670 	register unsigned int newpriority;
    671 
    672 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
    673 	newpriority = min(newpriority, MAXPRI);
    674 	p->p_usrpri = newpriority;
    675 	if (newpriority < curpriority)
    676 		need_resched();
    677 }
    678 
    679 #ifdef DDB
    680 void
    681 db_show_all_procs(addr, haddr, count, modif)
    682 	long addr;
    683 	int haddr;
    684 	int count;
    685 	char *modif;
    686 {
    687 	int map = modif[0] == 'm';
    688 	int doingzomb = 0;
    689 	struct proc *p, *pp;
    690 
    691 	p = allproc.lh_first;
    692 	db_printf("  pid proc     addr     %s comm         wchan\n",
    693 	    map ? "map     " : "uid  ppid  pgrp  flag stat em ");
    694 	while (p != 0) {
    695 		pp = p->p_pptr;
    696 		if (p->p_stat) {
    697 			db_printf("%5d %06x %06x ",
    698 			    p->p_pid, p, p->p_addr);
    699 			if (map)
    700 				db_printf("%06x %s   ",
    701 				    p->p_vmspace, p->p_comm);
    702 			else
    703 				db_printf("%3d %5d %5d  %06x  %d  %d  %s   ",
    704 				    p->p_cred->p_ruid, pp ? pp->p_pid : -1,
    705 				    p->p_pgrp->pg_id, p->p_flag, p->p_stat,
    706 				    p->p_emul, p->p_comm);
    707 			if (p->p_wchan) {
    708 				if (p->p_wmesg)
    709 					db_printf("%s ", p->p_wmesg);
    710 				db_printf("%x", p->p_wchan);
    711 			}
    712 			db_printf("\n");
    713 		}
    714 		p = p->p_list.le_next;
    715 		if (p == 0 && doingzomb == 0) {
    716 			doingzomb = 1;
    717 			p = zombproc.lh_first;
    718 		}
    719 	}
    720 }
    721 #endif
    722