Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.300
      1 /*	$NetBSD: kern_synch.c,v 1.300 2012/04/18 13:44:19 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.300 2012/04/18 13:44:19 yamt Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_dtrace.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #if defined(PERFCTRS)
     85 #include <sys/pmc.h>
     86 #endif
     87 #include <sys/cpu.h>
     88 #include <sys/pserialize.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/syscall_stats.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/lockdebug.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/lwpctl.h>
     97 #include <sys/atomic.h>
     98 #include <sys/simplelock.h>
     99 #include <sys/syslog.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #include <dev/lockstat.h>
    104 
    105 #include <sys/dtrace_bsd.h>
    106 int                             dtrace_vtime_active=0;
    107 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    108 
    109 static void	sched_unsleep(struct lwp *, bool);
    110 static void	sched_changepri(struct lwp *, pri_t);
    111 static void	sched_lendpri(struct lwp *, pri_t);
    112 static void	resched_cpu(struct lwp *);
    113 
    114 syncobj_t sleep_syncobj = {
    115 	SOBJ_SLEEPQ_SORTED,
    116 	sleepq_unsleep,
    117 	sleepq_changepri,
    118 	sleepq_lendpri,
    119 	syncobj_noowner,
    120 };
    121 
    122 syncobj_t sched_syncobj = {
    123 	SOBJ_SLEEPQ_SORTED,
    124 	sched_unsleep,
    125 	sched_changepri,
    126 	sched_lendpri,
    127 	syncobj_noowner,
    128 };
    129 
    130 /* "Lightning bolt": once a second sleep address. */
    131 kcondvar_t		lbolt			__cacheline_aligned;
    132 
    133 u_int			sched_pstats_ticks	__cacheline_aligned;
    134 
    135 /* Preemption event counters. */
    136 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    137 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    138 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    139 
    140 /*
    141  * During autoconfiguration or after a panic, a sleep will simply lower the
    142  * priority briefly to allow interrupts, then return.  The priority to be
    143  * used (safepri) is machine-dependent, thus this value is initialized and
    144  * maintained in the machine-dependent layers.  This priority will typically
    145  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    146  * it can be made higher to block network software interrupts after panics.
    147  */
    148 #ifdef IPL_SAFEPRI
    149 int	safepri = IPL_SAFEPRI;
    150 #else
    151 int	safepri;
    152 #endif
    153 
    154 void
    155 synch_init(void)
    156 {
    157 
    158 	cv_init(&lbolt, "lbolt");
    159 
    160 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    161 	   "kpreempt", "defer: critical section");
    162 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    163 	   "kpreempt", "defer: kernel_lock");
    164 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    165 	   "kpreempt", "immediate");
    166 }
    167 
    168 /*
    169  * OBSOLETE INTERFACE
    170  *
    171  * General sleep call.  Suspends the current LWP until a wakeup is
    172  * performed on the specified identifier.  The LWP will then be made
    173  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    174  * means no timeout).  If pri includes PCATCH flag, signals are checked
    175  * before and after sleeping, else signals are not checked.  Returns 0 if
    176  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    177  * signal needs to be delivered, ERESTART is returned if the current system
    178  * call should be restarted if possible, and EINTR is returned if the system
    179  * call should be interrupted by the signal (return EINTR).
    180  */
    181 int
    182 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    183 {
    184 	struct lwp *l = curlwp;
    185 	sleepq_t *sq;
    186 	kmutex_t *mp;
    187 
    188 	KASSERT((l->l_pflag & LP_INTR) == 0);
    189 	KASSERT(ident != &lbolt);
    190 
    191 	if (sleepq_dontsleep(l)) {
    192 		(void)sleepq_abort(NULL, 0);
    193 		return 0;
    194 	}
    195 
    196 	l->l_kpriority = true;
    197 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    198 	sleepq_enter(sq, l, mp);
    199 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    200 	return sleepq_block(timo, priority & PCATCH);
    201 }
    202 
    203 int
    204 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    205 	kmutex_t *mtx)
    206 {
    207 	struct lwp *l = curlwp;
    208 	sleepq_t *sq;
    209 	kmutex_t *mp;
    210 	int error;
    211 
    212 	KASSERT((l->l_pflag & LP_INTR) == 0);
    213 	KASSERT(ident != &lbolt);
    214 
    215 	if (sleepq_dontsleep(l)) {
    216 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    217 		return 0;
    218 	}
    219 
    220 	l->l_kpriority = true;
    221 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    222 	sleepq_enter(sq, l, mp);
    223 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    224 	mutex_exit(mtx);
    225 	error = sleepq_block(timo, priority & PCATCH);
    226 
    227 	if ((priority & PNORELOCK) == 0)
    228 		mutex_enter(mtx);
    229 
    230 	return error;
    231 }
    232 
    233 /*
    234  * General sleep call for situations where a wake-up is not expected.
    235  */
    236 int
    237 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    238 {
    239 	struct lwp *l = curlwp;
    240 	kmutex_t *mp;
    241 	sleepq_t *sq;
    242 	int error;
    243 
    244 	KASSERT(!(timo == 0 && intr == false));
    245 
    246 	if (sleepq_dontsleep(l))
    247 		return sleepq_abort(NULL, 0);
    248 
    249 	if (mtx != NULL)
    250 		mutex_exit(mtx);
    251 	l->l_kpriority = true;
    252 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    253 	sleepq_enter(sq, l, mp);
    254 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    255 	error = sleepq_block(timo, intr);
    256 	if (mtx != NULL)
    257 		mutex_enter(mtx);
    258 
    259 	return error;
    260 }
    261 
    262 /*
    263  * OBSOLETE INTERFACE
    264  *
    265  * Make all LWPs sleeping on the specified identifier runnable.
    266  */
    267 void
    268 wakeup(wchan_t ident)
    269 {
    270 	sleepq_t *sq;
    271 	kmutex_t *mp;
    272 
    273 	if (__predict_false(cold))
    274 		return;
    275 
    276 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    277 	sleepq_wake(sq, ident, (u_int)-1, mp);
    278 }
    279 
    280 /*
    281  * General yield call.  Puts the current LWP back on its run queue and
    282  * performs a voluntary context switch.  Should only be called when the
    283  * current LWP explicitly requests it (eg sched_yield(2)).
    284  */
    285 void
    286 yield(void)
    287 {
    288 	struct lwp *l = curlwp;
    289 
    290 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    291 	lwp_lock(l);
    292 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    293 	KASSERT(l->l_stat == LSONPROC);
    294 	l->l_kpriority = false;
    295 	(void)mi_switch(l);
    296 	KERNEL_LOCK(l->l_biglocks, l);
    297 }
    298 
    299 /*
    300  * General preemption call.  Puts the current LWP back on its run queue
    301  * and performs an involuntary context switch.
    302  */
    303 void
    304 preempt(void)
    305 {
    306 	struct lwp *l = curlwp;
    307 
    308 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    309 	lwp_lock(l);
    310 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    311 	KASSERT(l->l_stat == LSONPROC);
    312 	l->l_kpriority = false;
    313 	l->l_nivcsw++;
    314 	(void)mi_switch(l);
    315 	KERNEL_LOCK(l->l_biglocks, l);
    316 }
    317 
    318 /*
    319  * Handle a request made by another agent to preempt the current LWP
    320  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    321  *
    322  * Character addresses for lockstat only.
    323  */
    324 static char	in_critical_section;
    325 static char	kernel_lock_held;
    326 static char	is_softint;
    327 static char	cpu_kpreempt_enter_fail;
    328 
    329 bool
    330 kpreempt(uintptr_t where)
    331 {
    332 	uintptr_t failed;
    333 	lwp_t *l;
    334 	int s, dop, lsflag;
    335 
    336 	l = curlwp;
    337 	failed = 0;
    338 	while ((dop = l->l_dopreempt) != 0) {
    339 		if (l->l_stat != LSONPROC) {
    340 			/*
    341 			 * About to block (or die), let it happen.
    342 			 * Doesn't really count as "preemption has
    343 			 * been blocked", since we're going to
    344 			 * context switch.
    345 			 */
    346 			l->l_dopreempt = 0;
    347 			return true;
    348 		}
    349 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    350 			/* Can't preempt idle loop, don't count as failure. */
    351 			l->l_dopreempt = 0;
    352 			return true;
    353 		}
    354 		if (__predict_false(l->l_nopreempt != 0)) {
    355 			/* LWP holds preemption disabled, explicitly. */
    356 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    357 				kpreempt_ev_crit.ev_count++;
    358 			}
    359 			failed = (uintptr_t)&in_critical_section;
    360 			break;
    361 		}
    362 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    363 			/* Can't preempt soft interrupts yet. */
    364 			l->l_dopreempt = 0;
    365 			failed = (uintptr_t)&is_softint;
    366 			break;
    367 		}
    368 		s = splsched();
    369 		if (__predict_false(l->l_blcnt != 0 ||
    370 		    curcpu()->ci_biglock_wanted != NULL)) {
    371 			/* Hold or want kernel_lock, code is not MT safe. */
    372 			splx(s);
    373 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    374 				kpreempt_ev_klock.ev_count++;
    375 			}
    376 			failed = (uintptr_t)&kernel_lock_held;
    377 			break;
    378 		}
    379 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    380 			/*
    381 			 * It may be that the IPL is too high.
    382 			 * kpreempt_enter() can schedule an
    383 			 * interrupt to retry later.
    384 			 */
    385 			splx(s);
    386 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    387 			break;
    388 		}
    389 		/* Do it! */
    390 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    391 			kpreempt_ev_immed.ev_count++;
    392 		}
    393 		lwp_lock(l);
    394 		mi_switch(l);
    395 		l->l_nopreempt++;
    396 		splx(s);
    397 
    398 		/* Take care of any MD cleanup. */
    399 		cpu_kpreempt_exit(where);
    400 		l->l_nopreempt--;
    401 	}
    402 
    403 	if (__predict_true(!failed)) {
    404 		return false;
    405 	}
    406 
    407 	/* Record preemption failure for reporting via lockstat. */
    408 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    409 	lsflag = 0;
    410 	LOCKSTAT_ENTER(lsflag);
    411 	if (__predict_false(lsflag)) {
    412 		if (where == 0) {
    413 			where = (uintptr_t)__builtin_return_address(0);
    414 		}
    415 		/* Preemption is on, might recurse, so make it atomic. */
    416 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    417 		    (void *)where) == NULL) {
    418 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    419 			l->l_pfaillock = failed;
    420 		}
    421 	}
    422 	LOCKSTAT_EXIT(lsflag);
    423 	return true;
    424 }
    425 
    426 /*
    427  * Return true if preemption is explicitly disabled.
    428  */
    429 bool
    430 kpreempt_disabled(void)
    431 {
    432 	const lwp_t *l = curlwp;
    433 
    434 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    435 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    436 }
    437 
    438 /*
    439  * Disable kernel preemption.
    440  */
    441 void
    442 kpreempt_disable(void)
    443 {
    444 
    445 	KPREEMPT_DISABLE(curlwp);
    446 }
    447 
    448 /*
    449  * Reenable kernel preemption.
    450  */
    451 void
    452 kpreempt_enable(void)
    453 {
    454 
    455 	KPREEMPT_ENABLE(curlwp);
    456 }
    457 
    458 /*
    459  * Compute the amount of time during which the current lwp was running.
    460  *
    461  * - update l_rtime unless it's an idle lwp.
    462  */
    463 
    464 void
    465 updatertime(lwp_t *l, const struct bintime *now)
    466 {
    467 
    468 	if (__predict_false(l->l_flag & LW_IDLE))
    469 		return;
    470 
    471 	/* rtime += now - stime */
    472 	bintime_add(&l->l_rtime, now);
    473 	bintime_sub(&l->l_rtime, &l->l_stime);
    474 }
    475 
    476 /*
    477  * Select next LWP from the current CPU to run..
    478  */
    479 static inline lwp_t *
    480 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    481 {
    482 	lwp_t *newl;
    483 
    484 	/*
    485 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    486 	 * If no LWP is runnable, select the idle LWP.
    487 	 *
    488 	 * Note that spc_lwplock might not necessary be held, and
    489 	 * new thread would be unlocked after setting the LWP-lock.
    490 	 */
    491 	newl = sched_nextlwp();
    492 	if (newl != NULL) {
    493 		sched_dequeue(newl);
    494 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    495 		KASSERT(newl->l_cpu == ci);
    496 		newl->l_stat = LSONPROC;
    497 		newl->l_pflag |= LP_RUNNING;
    498 		lwp_setlock(newl, spc->spc_lwplock);
    499 	} else {
    500 		newl = ci->ci_data.cpu_idlelwp;
    501 		newl->l_stat = LSONPROC;
    502 		newl->l_pflag |= LP_RUNNING;
    503 	}
    504 
    505 	/*
    506 	 * Only clear want_resched if there are no pending (slow)
    507 	 * software interrupts.
    508 	 */
    509 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    510 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    511 	spc->spc_curpriority = lwp_eprio(newl);
    512 
    513 	return newl;
    514 }
    515 
    516 /*
    517  * The machine independent parts of context switch.
    518  *
    519  * Returns 1 if another LWP was actually run.
    520  */
    521 int
    522 mi_switch(lwp_t *l)
    523 {
    524 	struct cpu_info *ci;
    525 	struct schedstate_percpu *spc;
    526 	struct lwp *newl;
    527 	int retval, oldspl;
    528 	struct bintime bt;
    529 	bool returning;
    530 
    531 	KASSERT(lwp_locked(l, NULL));
    532 	KASSERT(kpreempt_disabled());
    533 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    534 
    535 	kstack_check_magic(l);
    536 
    537 	binuptime(&bt);
    538 
    539 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    540 	KASSERT(l->l_cpu == curcpu());
    541 	ci = l->l_cpu;
    542 	spc = &ci->ci_schedstate;
    543 	returning = false;
    544 	newl = NULL;
    545 
    546 	/*
    547 	 * If we have been asked to switch to a specific LWP, then there
    548 	 * is no need to inspect the run queues.  If a soft interrupt is
    549 	 * blocking, then return to the interrupted thread without adjusting
    550 	 * VM context or its start time: neither have been changed in order
    551 	 * to take the interrupt.
    552 	 */
    553 	if (l->l_switchto != NULL) {
    554 		if ((l->l_pflag & LP_INTR) != 0) {
    555 			returning = true;
    556 			softint_block(l);
    557 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    558 				updatertime(l, &bt);
    559 		}
    560 		newl = l->l_switchto;
    561 		l->l_switchto = NULL;
    562 	}
    563 #ifndef __HAVE_FAST_SOFTINTS
    564 	else if (ci->ci_data.cpu_softints != 0) {
    565 		/* There are pending soft interrupts, so pick one. */
    566 		newl = softint_picklwp();
    567 		newl->l_stat = LSONPROC;
    568 		newl->l_pflag |= LP_RUNNING;
    569 	}
    570 #endif	/* !__HAVE_FAST_SOFTINTS */
    571 
    572 	/* Count time spent in current system call */
    573 	if (!returning) {
    574 		SYSCALL_TIME_SLEEP(l);
    575 
    576 		/*
    577 		 * XXXSMP If we are using h/w performance counters,
    578 		 * save context.
    579 		 */
    580 #if PERFCTRS
    581 		if (PMC_ENABLED(l->l_proc)) {
    582 			pmc_save_context(l->l_proc);
    583 		}
    584 #endif
    585 		updatertime(l, &bt);
    586 	}
    587 
    588 	/* Lock the runqueue */
    589 	KASSERT(l->l_stat != LSRUN);
    590 	mutex_spin_enter(spc->spc_mutex);
    591 
    592 	/*
    593 	 * If on the CPU and we have gotten this far, then we must yield.
    594 	 */
    595 	if (l->l_stat == LSONPROC && l != newl) {
    596 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    597 		if ((l->l_flag & LW_IDLE) == 0) {
    598 			l->l_stat = LSRUN;
    599 			lwp_setlock(l, spc->spc_mutex);
    600 			sched_enqueue(l, true);
    601 			/*
    602 			 * Handle migration.  Note that "migrating LWP" may
    603 			 * be reset here, if interrupt/preemption happens
    604 			 * early in idle LWP.
    605 			 */
    606 			if (l->l_target_cpu != NULL) {
    607 				KASSERT((l->l_pflag & LP_INTR) == 0);
    608 				spc->spc_migrating = l;
    609 			}
    610 		} else
    611 			l->l_stat = LSIDL;
    612 	}
    613 
    614 	/* Pick new LWP to run. */
    615 	if (newl == NULL) {
    616 		newl = nextlwp(ci, spc);
    617 	}
    618 
    619 	/* Items that must be updated with the CPU locked. */
    620 	if (!returning) {
    621 		/* Update the new LWP's start time. */
    622 		newl->l_stime = bt;
    623 
    624 		/*
    625 		 * ci_curlwp changes when a fast soft interrupt occurs.
    626 		 * We use cpu_onproc to keep track of which kernel or
    627 		 * user thread is running 'underneath' the software
    628 		 * interrupt.  This is important for time accounting,
    629 		 * itimers and forcing user threads to preempt (aston).
    630 		 */
    631 		ci->ci_data.cpu_onproc = newl;
    632 	}
    633 
    634 	/*
    635 	 * Preemption related tasks.  Must be done with the current
    636 	 * CPU locked.
    637 	 */
    638 	cpu_did_resched(l);
    639 	l->l_dopreempt = 0;
    640 	if (__predict_false(l->l_pfailaddr != 0)) {
    641 		LOCKSTAT_FLAG(lsflag);
    642 		LOCKSTAT_ENTER(lsflag);
    643 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    644 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    645 		    1, l->l_pfailtime, l->l_pfailaddr);
    646 		LOCKSTAT_EXIT(lsflag);
    647 		l->l_pfailtime = 0;
    648 		l->l_pfaillock = 0;
    649 		l->l_pfailaddr = 0;
    650 	}
    651 
    652 	if (l != newl) {
    653 		struct lwp *prevlwp;
    654 
    655 		/* Release all locks, but leave the current LWP locked */
    656 		if (l->l_mutex == spc->spc_mutex) {
    657 			/*
    658 			 * Drop spc_lwplock, if the current LWP has been moved
    659 			 * to the run queue (it is now locked by spc_mutex).
    660 			 */
    661 			mutex_spin_exit(spc->spc_lwplock);
    662 		} else {
    663 			/*
    664 			 * Otherwise, drop the spc_mutex, we are done with the
    665 			 * run queues.
    666 			 */
    667 			mutex_spin_exit(spc->spc_mutex);
    668 		}
    669 
    670 		/*
    671 		 * Mark that context switch is going to be performed
    672 		 * for this LWP, to protect it from being switched
    673 		 * to on another CPU.
    674 		 */
    675 		KASSERT(l->l_ctxswtch == 0);
    676 		l->l_ctxswtch = 1;
    677 		l->l_ncsw++;
    678 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    679 		l->l_pflag &= ~LP_RUNNING;
    680 
    681 		/*
    682 		 * Increase the count of spin-mutexes before the release
    683 		 * of the last lock - we must remain at IPL_SCHED during
    684 		 * the context switch.
    685 		 */
    686 		KASSERTMSG(ci->ci_mtx_count == -1,
    687 		    "%s: cpu%u: ci_mtx_count (%d) != -1",
    688 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    689 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    690 		ci->ci_mtx_count--;
    691 		lwp_unlock(l);
    692 
    693 		/* Count the context switch on this CPU. */
    694 		ci->ci_data.cpu_nswtch++;
    695 
    696 		/* Update status for lwpctl, if present. */
    697 		if (l->l_lwpctl != NULL)
    698 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    699 
    700 		/*
    701 		 * Save old VM context, unless a soft interrupt
    702 		 * handler is blocking.
    703 		 */
    704 		if (!returning)
    705 			pmap_deactivate(l);
    706 
    707 		/*
    708 		 * We may need to spin-wait if 'newl' is still
    709 		 * context switching on another CPU.
    710 		 */
    711 		if (__predict_false(newl->l_ctxswtch != 0)) {
    712 			u_int count;
    713 			count = SPINLOCK_BACKOFF_MIN;
    714 			while (newl->l_ctxswtch)
    715 				SPINLOCK_BACKOFF(count);
    716 		}
    717 
    718 		/*
    719 		 * If DTrace has set the active vtime enum to anything
    720 		 * other than INACTIVE (0), then it should have set the
    721 		 * function to call.
    722 		 */
    723 		if (__predict_false(dtrace_vtime_active)) {
    724 			(*dtrace_vtime_switch_func)(newl);
    725 		}
    726 
    727 		/* Switch to the new LWP.. */
    728 		prevlwp = cpu_switchto(l, newl, returning);
    729 		ci = curcpu();
    730 
    731 		/*
    732 		 * Switched away - we have new curlwp.
    733 		 * Restore VM context and IPL.
    734 		 */
    735 		pmap_activate(l);
    736 		uvm_emap_switch(l);
    737 		pcu_switchpoint(l);
    738 
    739 		if (prevlwp != NULL) {
    740 			/* Normalize the count of the spin-mutexes */
    741 			ci->ci_mtx_count++;
    742 			/* Unmark the state of context switch */
    743 			membar_exit();
    744 			prevlwp->l_ctxswtch = 0;
    745 		}
    746 
    747 		/* Update status for lwpctl, if present. */
    748 		if (l->l_lwpctl != NULL) {
    749 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    750 			l->l_lwpctl->lc_pctr++;
    751 		}
    752 
    753 		/* Note trip through cpu_switchto(). */
    754 		pserialize_switchpoint();
    755 
    756 		KASSERT(l->l_cpu == ci);
    757 		splx(oldspl);
    758 		/*
    759 		 * note that, unless the caller disabled preemption,
    760 		 * we can be preempted at any time after the above splx() call.
    761 		 */
    762 		retval = 1;
    763 	} else {
    764 		/* Nothing to do - just unlock and return. */
    765 		mutex_spin_exit(spc->spc_mutex);
    766 		lwp_unlock(l);
    767 		retval = 0;
    768 	}
    769 
    770 	KASSERT(l == curlwp);
    771 	KASSERT(l->l_stat == LSONPROC);
    772 
    773 	/*
    774 	 * XXXSMP If we are using h/w performance counters, restore context.
    775 	 * XXXSMP preemption problem.
    776 	 */
    777 #if PERFCTRS
    778 	if (PMC_ENABLED(l->l_proc)) {
    779 		pmc_restore_context(l->l_proc);
    780 	}
    781 #endif
    782 	SYSCALL_TIME_WAKEUP(l);
    783 	LOCKDEBUG_BARRIER(NULL, 1);
    784 
    785 	return retval;
    786 }
    787 
    788 /*
    789  * The machine independent parts of context switch to oblivion.
    790  * Does not return.  Call with the LWP unlocked.
    791  */
    792 void
    793 lwp_exit_switchaway(lwp_t *l)
    794 {
    795 	struct cpu_info *ci;
    796 	struct lwp *newl;
    797 	struct bintime bt;
    798 
    799 	ci = l->l_cpu;
    800 
    801 	KASSERT(kpreempt_disabled());
    802 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    803 	KASSERT(ci == curcpu());
    804 	LOCKDEBUG_BARRIER(NULL, 0);
    805 
    806 	kstack_check_magic(l);
    807 
    808 	/* Count time spent in current system call */
    809 	SYSCALL_TIME_SLEEP(l);
    810 	binuptime(&bt);
    811 	updatertime(l, &bt);
    812 
    813 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    814 	(void)splsched();
    815 
    816 	/*
    817 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    818 	 * If no LWP is runnable, select the idle LWP.
    819 	 *
    820 	 * Note that spc_lwplock might not necessary be held, and
    821 	 * new thread would be unlocked after setting the LWP-lock.
    822 	 */
    823 	spc_lock(ci);
    824 #ifndef __HAVE_FAST_SOFTINTS
    825 	if (ci->ci_data.cpu_softints != 0) {
    826 		/* There are pending soft interrupts, so pick one. */
    827 		newl = softint_picklwp();
    828 		newl->l_stat = LSONPROC;
    829 		newl->l_pflag |= LP_RUNNING;
    830 	} else
    831 #endif	/* !__HAVE_FAST_SOFTINTS */
    832 	{
    833 		newl = nextlwp(ci, &ci->ci_schedstate);
    834 	}
    835 
    836 	/* Update the new LWP's start time. */
    837 	newl->l_stime = bt;
    838 	l->l_pflag &= ~LP_RUNNING;
    839 
    840 	/*
    841 	 * ci_curlwp changes when a fast soft interrupt occurs.
    842 	 * We use cpu_onproc to keep track of which kernel or
    843 	 * user thread is running 'underneath' the software
    844 	 * interrupt.  This is important for time accounting,
    845 	 * itimers and forcing user threads to preempt (aston).
    846 	 */
    847 	ci->ci_data.cpu_onproc = newl;
    848 
    849 	/*
    850 	 * Preemption related tasks.  Must be done with the current
    851 	 * CPU locked.
    852 	 */
    853 	cpu_did_resched(l);
    854 
    855 	/* Unlock the run queue. */
    856 	spc_unlock(ci);
    857 
    858 	/* Count the context switch on this CPU. */
    859 	ci->ci_data.cpu_nswtch++;
    860 
    861 	/* Update status for lwpctl, if present. */
    862 	if (l->l_lwpctl != NULL)
    863 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    864 
    865 	/*
    866 	 * We may need to spin-wait if 'newl' is still
    867 	 * context switching on another CPU.
    868 	 */
    869 	if (__predict_false(newl->l_ctxswtch != 0)) {
    870 		u_int count;
    871 		count = SPINLOCK_BACKOFF_MIN;
    872 		while (newl->l_ctxswtch)
    873 			SPINLOCK_BACKOFF(count);
    874 	}
    875 
    876 	/*
    877 	 * If DTrace has set the active vtime enum to anything
    878 	 * other than INACTIVE (0), then it should have set the
    879 	 * function to call.
    880 	 */
    881 	if (__predict_false(dtrace_vtime_active)) {
    882 		(*dtrace_vtime_switch_func)(newl);
    883 	}
    884 
    885 	/* Switch to the new LWP.. */
    886 	(void)cpu_switchto(NULL, newl, false);
    887 
    888 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    889 	/* NOTREACHED */
    890 }
    891 
    892 /*
    893  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    894  *
    895  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    896  */
    897 void
    898 setrunnable(struct lwp *l)
    899 {
    900 	struct proc *p = l->l_proc;
    901 	struct cpu_info *ci;
    902 
    903 	KASSERT((l->l_flag & LW_IDLE) == 0);
    904 	KASSERT(mutex_owned(p->p_lock));
    905 	KASSERT(lwp_locked(l, NULL));
    906 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    907 
    908 	switch (l->l_stat) {
    909 	case LSSTOP:
    910 		/*
    911 		 * If we're being traced (possibly because someone attached us
    912 		 * while we were stopped), check for a signal from the debugger.
    913 		 */
    914 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    915 			signotify(l);
    916 		p->p_nrlwps++;
    917 		break;
    918 	case LSSUSPENDED:
    919 		l->l_flag &= ~LW_WSUSPEND;
    920 		p->p_nrlwps++;
    921 		cv_broadcast(&p->p_lwpcv);
    922 		break;
    923 	case LSSLEEP:
    924 		KASSERT(l->l_wchan != NULL);
    925 		break;
    926 	default:
    927 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    928 	}
    929 
    930 	/*
    931 	 * If the LWP was sleeping, start it again.
    932 	 */
    933 	if (l->l_wchan != NULL) {
    934 		l->l_stat = LSSLEEP;
    935 		/* lwp_unsleep() will release the lock. */
    936 		lwp_unsleep(l, true);
    937 		return;
    938 	}
    939 
    940 	/*
    941 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    942 	 * about to call mi_switch(), in which case it will yield.
    943 	 */
    944 	if ((l->l_pflag & LP_RUNNING) != 0) {
    945 		l->l_stat = LSONPROC;
    946 		l->l_slptime = 0;
    947 		lwp_unlock(l);
    948 		return;
    949 	}
    950 
    951 	/*
    952 	 * Look for a CPU to run.
    953 	 * Set the LWP runnable.
    954 	 */
    955 	ci = sched_takecpu(l);
    956 	l->l_cpu = ci;
    957 	spc_lock(ci);
    958 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    959 	sched_setrunnable(l);
    960 	l->l_stat = LSRUN;
    961 	l->l_slptime = 0;
    962 
    963 	sched_enqueue(l, false);
    964 	resched_cpu(l);
    965 	lwp_unlock(l);
    966 }
    967 
    968 /*
    969  * suspendsched:
    970  *
    971  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    972  */
    973 void
    974 suspendsched(void)
    975 {
    976 	CPU_INFO_ITERATOR cii;
    977 	struct cpu_info *ci;
    978 	struct lwp *l;
    979 	struct proc *p;
    980 
    981 	/*
    982 	 * We do this by process in order not to violate the locking rules.
    983 	 */
    984 	mutex_enter(proc_lock);
    985 	PROCLIST_FOREACH(p, &allproc) {
    986 		mutex_enter(p->p_lock);
    987 		if ((p->p_flag & PK_SYSTEM) != 0) {
    988 			mutex_exit(p->p_lock);
    989 			continue;
    990 		}
    991 
    992 		p->p_stat = SSTOP;
    993 
    994 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    995 			if (l == curlwp)
    996 				continue;
    997 
    998 			lwp_lock(l);
    999 
   1000 			/*
   1001 			 * Set L_WREBOOT so that the LWP will suspend itself
   1002 			 * when it tries to return to user mode.  We want to
   1003 			 * try and get to get as many LWPs as possible to
   1004 			 * the user / kernel boundary, so that they will
   1005 			 * release any locks that they hold.
   1006 			 */
   1007 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1008 
   1009 			if (l->l_stat == LSSLEEP &&
   1010 			    (l->l_flag & LW_SINTR) != 0) {
   1011 				/* setrunnable() will release the lock. */
   1012 				setrunnable(l);
   1013 				continue;
   1014 			}
   1015 
   1016 			lwp_unlock(l);
   1017 		}
   1018 
   1019 		mutex_exit(p->p_lock);
   1020 	}
   1021 	mutex_exit(proc_lock);
   1022 
   1023 	/*
   1024 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1025 	 * They'll trap into the kernel and suspend themselves in userret().
   1026 	 */
   1027 	for (CPU_INFO_FOREACH(cii, ci)) {
   1028 		spc_lock(ci);
   1029 		cpu_need_resched(ci, RESCHED_IMMED);
   1030 		spc_unlock(ci);
   1031 	}
   1032 }
   1033 
   1034 /*
   1035  * sched_unsleep:
   1036  *
   1037  *	The is called when the LWP has not been awoken normally but instead
   1038  *	interrupted: for example, if the sleep timed out.  Because of this,
   1039  *	it's not a valid action for running or idle LWPs.
   1040  */
   1041 static void
   1042 sched_unsleep(struct lwp *l, bool cleanup)
   1043 {
   1044 
   1045 	lwp_unlock(l);
   1046 	panic("sched_unsleep");
   1047 }
   1048 
   1049 static void
   1050 resched_cpu(struct lwp *l)
   1051 {
   1052 	struct cpu_info *ci = l->l_cpu;
   1053 
   1054 	KASSERT(lwp_locked(l, NULL));
   1055 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1056 		cpu_need_resched(ci, 0);
   1057 }
   1058 
   1059 static void
   1060 sched_changepri(struct lwp *l, pri_t pri)
   1061 {
   1062 
   1063 	KASSERT(lwp_locked(l, NULL));
   1064 
   1065 	if (l->l_stat == LSRUN) {
   1066 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1067 		sched_dequeue(l);
   1068 		l->l_priority = pri;
   1069 		sched_enqueue(l, false);
   1070 	} else {
   1071 		l->l_priority = pri;
   1072 	}
   1073 	resched_cpu(l);
   1074 }
   1075 
   1076 static void
   1077 sched_lendpri(struct lwp *l, pri_t pri)
   1078 {
   1079 
   1080 	KASSERT(lwp_locked(l, NULL));
   1081 
   1082 	if (l->l_stat == LSRUN) {
   1083 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1084 		sched_dequeue(l);
   1085 		l->l_inheritedprio = pri;
   1086 		sched_enqueue(l, false);
   1087 	} else {
   1088 		l->l_inheritedprio = pri;
   1089 	}
   1090 	resched_cpu(l);
   1091 }
   1092 
   1093 struct lwp *
   1094 syncobj_noowner(wchan_t wchan)
   1095 {
   1096 
   1097 	return NULL;
   1098 }
   1099 
   1100 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1101 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1102 
   1103 /*
   1104  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1105  * 5 second intervals.
   1106  */
   1107 static const fixpt_t cexp[ ] = {
   1108 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1109 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1110 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1111 };
   1112 
   1113 /*
   1114  * sched_pstats:
   1115  *
   1116  * => Update process statistics and check CPU resource allocation.
   1117  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1118  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1119  */
   1120 void
   1121 sched_pstats(void)
   1122 {
   1123 	extern struct loadavg averunnable;
   1124 	struct loadavg *avg = &averunnable;
   1125 	const int clkhz = (stathz != 0 ? stathz : hz);
   1126 	static bool backwards = false;
   1127 	static u_int lavg_count = 0;
   1128 	struct proc *p;
   1129 	int nrun;
   1130 
   1131 	sched_pstats_ticks++;
   1132 	if (++lavg_count >= 5) {
   1133 		lavg_count = 0;
   1134 		nrun = 0;
   1135 	}
   1136 	mutex_enter(proc_lock);
   1137 	PROCLIST_FOREACH(p, &allproc) {
   1138 		struct lwp *l;
   1139 		struct rlimit *rlim;
   1140 		time_t runtm;
   1141 		int sig;
   1142 
   1143 		/* Increment sleep time (if sleeping), ignore overflow. */
   1144 		mutex_enter(p->p_lock);
   1145 		runtm = p->p_rtime.sec;
   1146 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1147 			fixpt_t lpctcpu;
   1148 			u_int lcpticks;
   1149 
   1150 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1151 				continue;
   1152 			lwp_lock(l);
   1153 			runtm += l->l_rtime.sec;
   1154 			l->l_swtime++;
   1155 			sched_lwp_stats(l);
   1156 
   1157 			/* For load average calculation. */
   1158 			if (__predict_false(lavg_count == 0) &&
   1159 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1160 				switch (l->l_stat) {
   1161 				case LSSLEEP:
   1162 					if (l->l_slptime > 1) {
   1163 						break;
   1164 					}
   1165 				case LSRUN:
   1166 				case LSONPROC:
   1167 				case LSIDL:
   1168 					nrun++;
   1169 				}
   1170 			}
   1171 			lwp_unlock(l);
   1172 
   1173 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1174 			if (l->l_slptime != 0)
   1175 				continue;
   1176 
   1177 			lpctcpu = l->l_pctcpu;
   1178 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1179 			lpctcpu += ((FSCALE - ccpu) *
   1180 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1181 			l->l_pctcpu = lpctcpu;
   1182 		}
   1183 		/* Calculating p_pctcpu only for ps(1) */
   1184 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1185 
   1186 		/*
   1187 		 * Check if the process exceeds its CPU resource allocation.
   1188 		 * If over the hard limit, kill it with SIGKILL.
   1189 		 * If over the soft limit, send SIGXCPU and raise
   1190 		 * the soft limit a little.
   1191 		 */
   1192 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1193 		sig = 0;
   1194 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1195 			if (runtm >= rlim->rlim_max) {
   1196 				sig = SIGKILL;
   1197 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1198 					p->p_pid, "exceeded RLIMIT_CPU");
   1199 				uprintf("pid %d, command %s, is killed: %s\n",
   1200 					p->p_pid, p->p_comm,
   1201 					"exceeded RLIMIT_CPU");
   1202 			} else {
   1203 				sig = SIGXCPU;
   1204 				if (rlim->rlim_cur < rlim->rlim_max)
   1205 					rlim->rlim_cur += 5;
   1206 			}
   1207 		}
   1208 		mutex_exit(p->p_lock);
   1209 		if (__predict_false(runtm < 0)) {
   1210 			if (!backwards) {
   1211 				backwards = true;
   1212 				printf("WARNING: negative runtime; "
   1213 				    "monotonic clock has gone backwards\n");
   1214 			}
   1215 		} else if (__predict_false(sig)) {
   1216 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1217 			psignal(p, sig);
   1218 		}
   1219 	}
   1220 	mutex_exit(proc_lock);
   1221 
   1222 	/* Load average calculation. */
   1223 	if (__predict_false(lavg_count == 0)) {
   1224 		int i;
   1225 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1226 		for (i = 0; i < __arraycount(cexp); i++) {
   1227 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1228 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1229 		}
   1230 	}
   1231 
   1232 	/* Lightning bolt. */
   1233 	cv_broadcast(&lbolt);
   1234 }
   1235