Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.307
      1 /*	$NetBSD: kern_synch.c,v 1.307 2013/09/15 13:03:59 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.307 2013/09/15 13:03:59 martin Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_dtrace.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #if defined(PERFCTRS)
     85 #include <sys/pmc.h>
     86 #endif
     87 #include <sys/cpu.h>
     88 #include <sys/pserialize.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/syscall_stats.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/lockdebug.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/lwpctl.h>
     97 #include <sys/atomic.h>
     98 #include <sys/simplelock.h>
     99 #include <sys/syslog.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #include <dev/lockstat.h>
    104 
    105 #include <sys/dtrace_bsd.h>
    106 int                             dtrace_vtime_active=0;
    107 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    108 
    109 static void	sched_unsleep(struct lwp *, bool);
    110 static void	sched_changepri(struct lwp *, pri_t);
    111 static void	sched_lendpri(struct lwp *, pri_t);
    112 static void	resched_cpu(struct lwp *);
    113 
    114 syncobj_t sleep_syncobj = {
    115 	SOBJ_SLEEPQ_SORTED,
    116 	sleepq_unsleep,
    117 	sleepq_changepri,
    118 	sleepq_lendpri,
    119 	syncobj_noowner,
    120 };
    121 
    122 syncobj_t sched_syncobj = {
    123 	SOBJ_SLEEPQ_SORTED,
    124 	sched_unsleep,
    125 	sched_changepri,
    126 	sched_lendpri,
    127 	syncobj_noowner,
    128 };
    129 
    130 /* "Lightning bolt": once a second sleep address. */
    131 kcondvar_t		lbolt			__cacheline_aligned;
    132 
    133 u_int			sched_pstats_ticks	__cacheline_aligned;
    134 
    135 /* Preemption event counters. */
    136 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    137 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    138 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    139 
    140 void
    141 synch_init(void)
    142 {
    143 
    144 	cv_init(&lbolt, "lbolt");
    145 
    146 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    147 	   "kpreempt", "defer: critical section");
    148 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    149 	   "kpreempt", "defer: kernel_lock");
    150 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    151 	   "kpreempt", "immediate");
    152 }
    153 
    154 /*
    155  * OBSOLETE INTERFACE
    156  *
    157  * General sleep call.  Suspends the current LWP until a wakeup is
    158  * performed on the specified identifier.  The LWP will then be made
    159  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    160  * means no timeout).  If pri includes PCATCH flag, signals are checked
    161  * before and after sleeping, else signals are not checked.  Returns 0 if
    162  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    163  * signal needs to be delivered, ERESTART is returned if the current system
    164  * call should be restarted if possible, and EINTR is returned if the system
    165  * call should be interrupted by the signal (return EINTR).
    166  */
    167 int
    168 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    169 {
    170 	struct lwp *l = curlwp;
    171 	sleepq_t *sq;
    172 	kmutex_t *mp;
    173 
    174 	KASSERT((l->l_pflag & LP_INTR) == 0);
    175 	KASSERT(ident != &lbolt);
    176 
    177 	if (sleepq_dontsleep(l)) {
    178 		(void)sleepq_abort(NULL, 0);
    179 		return 0;
    180 	}
    181 
    182 	l->l_kpriority = true;
    183 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    184 	sleepq_enter(sq, l, mp);
    185 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    186 	return sleepq_block(timo, priority & PCATCH);
    187 }
    188 
    189 int
    190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    191 	kmutex_t *mtx)
    192 {
    193 	struct lwp *l = curlwp;
    194 	sleepq_t *sq;
    195 	kmutex_t *mp;
    196 	int error;
    197 
    198 	KASSERT((l->l_pflag & LP_INTR) == 0);
    199 	KASSERT(ident != &lbolt);
    200 
    201 	if (sleepq_dontsleep(l)) {
    202 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    203 		return 0;
    204 	}
    205 
    206 	l->l_kpriority = true;
    207 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    208 	sleepq_enter(sq, l, mp);
    209 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    210 	mutex_exit(mtx);
    211 	error = sleepq_block(timo, priority & PCATCH);
    212 
    213 	if ((priority & PNORELOCK) == 0)
    214 		mutex_enter(mtx);
    215 
    216 	return error;
    217 }
    218 
    219 /*
    220  * General sleep call for situations where a wake-up is not expected.
    221  */
    222 int
    223 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    224 {
    225 	struct lwp *l = curlwp;
    226 	kmutex_t *mp;
    227 	sleepq_t *sq;
    228 	int error;
    229 
    230 	KASSERT(!(timo == 0 && intr == false));
    231 
    232 	if (sleepq_dontsleep(l))
    233 		return sleepq_abort(NULL, 0);
    234 
    235 	if (mtx != NULL)
    236 		mutex_exit(mtx);
    237 	l->l_kpriority = true;
    238 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    239 	sleepq_enter(sq, l, mp);
    240 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    241 	error = sleepq_block(timo, intr);
    242 	if (mtx != NULL)
    243 		mutex_enter(mtx);
    244 
    245 	return error;
    246 }
    247 
    248 /*
    249  * OBSOLETE INTERFACE
    250  *
    251  * Make all LWPs sleeping on the specified identifier runnable.
    252  */
    253 void
    254 wakeup(wchan_t ident)
    255 {
    256 	sleepq_t *sq;
    257 	kmutex_t *mp;
    258 
    259 	if (__predict_false(cold))
    260 		return;
    261 
    262 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    263 	sleepq_wake(sq, ident, (u_int)-1, mp);
    264 }
    265 
    266 /*
    267  * General yield call.  Puts the current LWP back on its run queue and
    268  * performs a voluntary context switch.  Should only be called when the
    269  * current LWP explicitly requests it (eg sched_yield(2)).
    270  */
    271 void
    272 yield(void)
    273 {
    274 	struct lwp *l = curlwp;
    275 
    276 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    277 	lwp_lock(l);
    278 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    279 	KASSERT(l->l_stat == LSONPROC);
    280 	l->l_kpriority = false;
    281 	(void)mi_switch(l);
    282 	KERNEL_LOCK(l->l_biglocks, l);
    283 }
    284 
    285 /*
    286  * General preemption call.  Puts the current LWP back on its run queue
    287  * and performs an involuntary context switch.
    288  */
    289 void
    290 preempt(void)
    291 {
    292 	struct lwp *l = curlwp;
    293 
    294 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    295 	lwp_lock(l);
    296 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    297 	KASSERT(l->l_stat == LSONPROC);
    298 	l->l_kpriority = false;
    299 	l->l_nivcsw++;
    300 	(void)mi_switch(l);
    301 	KERNEL_LOCK(l->l_biglocks, l);
    302 }
    303 
    304 /*
    305  * Handle a request made by another agent to preempt the current LWP
    306  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    307  *
    308  * Character addresses for lockstat only.
    309  */
    310 static char	in_critical_section;
    311 static char	kernel_lock_held;
    312 static char	is_softint;
    313 static char	cpu_kpreempt_enter_fail;
    314 
    315 bool
    316 kpreempt(uintptr_t where)
    317 {
    318 	uintptr_t failed;
    319 	lwp_t *l;
    320 	int s, dop, lsflag;
    321 
    322 	l = curlwp;
    323 	failed = 0;
    324 	while ((dop = l->l_dopreempt) != 0) {
    325 		if (l->l_stat != LSONPROC) {
    326 			/*
    327 			 * About to block (or die), let it happen.
    328 			 * Doesn't really count as "preemption has
    329 			 * been blocked", since we're going to
    330 			 * context switch.
    331 			 */
    332 			l->l_dopreempt = 0;
    333 			return true;
    334 		}
    335 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    336 			/* Can't preempt idle loop, don't count as failure. */
    337 			l->l_dopreempt = 0;
    338 			return true;
    339 		}
    340 		if (__predict_false(l->l_nopreempt != 0)) {
    341 			/* LWP holds preemption disabled, explicitly. */
    342 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    343 				kpreempt_ev_crit.ev_count++;
    344 			}
    345 			failed = (uintptr_t)&in_critical_section;
    346 			break;
    347 		}
    348 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    349 			/* Can't preempt soft interrupts yet. */
    350 			l->l_dopreempt = 0;
    351 			failed = (uintptr_t)&is_softint;
    352 			break;
    353 		}
    354 		s = splsched();
    355 		if (__predict_false(l->l_blcnt != 0 ||
    356 		    curcpu()->ci_biglock_wanted != NULL)) {
    357 			/* Hold or want kernel_lock, code is not MT safe. */
    358 			splx(s);
    359 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    360 				kpreempt_ev_klock.ev_count++;
    361 			}
    362 			failed = (uintptr_t)&kernel_lock_held;
    363 			break;
    364 		}
    365 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    366 			/*
    367 			 * It may be that the IPL is too high.
    368 			 * kpreempt_enter() can schedule an
    369 			 * interrupt to retry later.
    370 			 */
    371 			splx(s);
    372 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    373 			break;
    374 		}
    375 		/* Do it! */
    376 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    377 			kpreempt_ev_immed.ev_count++;
    378 		}
    379 		lwp_lock(l);
    380 		mi_switch(l);
    381 		l->l_nopreempt++;
    382 		splx(s);
    383 
    384 		/* Take care of any MD cleanup. */
    385 		cpu_kpreempt_exit(where);
    386 		l->l_nopreempt--;
    387 	}
    388 
    389 	if (__predict_true(!failed)) {
    390 		return false;
    391 	}
    392 
    393 	/* Record preemption failure for reporting via lockstat. */
    394 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    395 	lsflag = 0;
    396 	LOCKSTAT_ENTER(lsflag);
    397 	if (__predict_false(lsflag)) {
    398 		if (where == 0) {
    399 			where = (uintptr_t)__builtin_return_address(0);
    400 		}
    401 		/* Preemption is on, might recurse, so make it atomic. */
    402 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    403 		    (void *)where) == NULL) {
    404 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    405 			l->l_pfaillock = failed;
    406 		}
    407 	}
    408 	LOCKSTAT_EXIT(lsflag);
    409 	return true;
    410 }
    411 
    412 /*
    413  * Return true if preemption is explicitly disabled.
    414  */
    415 bool
    416 kpreempt_disabled(void)
    417 {
    418 	const lwp_t *l = curlwp;
    419 
    420 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    421 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    422 }
    423 
    424 /*
    425  * Disable kernel preemption.
    426  */
    427 void
    428 kpreempt_disable(void)
    429 {
    430 
    431 	KPREEMPT_DISABLE(curlwp);
    432 }
    433 
    434 /*
    435  * Reenable kernel preemption.
    436  */
    437 void
    438 kpreempt_enable(void)
    439 {
    440 
    441 	KPREEMPT_ENABLE(curlwp);
    442 }
    443 
    444 /*
    445  * Compute the amount of time during which the current lwp was running.
    446  *
    447  * - update l_rtime unless it's an idle lwp.
    448  */
    449 
    450 void
    451 updatertime(lwp_t *l, const struct bintime *now)
    452 {
    453 
    454 	if (__predict_false(l->l_flag & LW_IDLE))
    455 		return;
    456 
    457 	/* rtime += now - stime */
    458 	bintime_add(&l->l_rtime, now);
    459 	bintime_sub(&l->l_rtime, &l->l_stime);
    460 }
    461 
    462 /*
    463  * Select next LWP from the current CPU to run..
    464  */
    465 static inline lwp_t *
    466 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    467 {
    468 	lwp_t *newl;
    469 
    470 	/*
    471 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    472 	 * If no LWP is runnable, select the idle LWP.
    473 	 *
    474 	 * Note that spc_lwplock might not necessary be held, and
    475 	 * new thread would be unlocked after setting the LWP-lock.
    476 	 */
    477 	newl = sched_nextlwp();
    478 	if (newl != NULL) {
    479 		sched_dequeue(newl);
    480 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    481 		KASSERT(newl->l_cpu == ci);
    482 		newl->l_stat = LSONPROC;
    483 		newl->l_pflag |= LP_RUNNING;
    484 		lwp_setlock(newl, spc->spc_lwplock);
    485 	} else {
    486 		newl = ci->ci_data.cpu_idlelwp;
    487 		newl->l_stat = LSONPROC;
    488 		newl->l_pflag |= LP_RUNNING;
    489 	}
    490 
    491 	/*
    492 	 * Only clear want_resched if there are no pending (slow)
    493 	 * software interrupts.
    494 	 */
    495 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    496 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    497 	spc->spc_curpriority = lwp_eprio(newl);
    498 
    499 	return newl;
    500 }
    501 
    502 /*
    503  * The machine independent parts of context switch.
    504  *
    505  * Returns 1 if another LWP was actually run.
    506  */
    507 int
    508 mi_switch(lwp_t *l)
    509 {
    510 	struct cpu_info *ci;
    511 	struct schedstate_percpu *spc;
    512 	struct lwp *newl;
    513 	int retval, oldspl;
    514 	struct bintime bt;
    515 	bool returning;
    516 
    517 	KASSERT(lwp_locked(l, NULL));
    518 	KASSERT(kpreempt_disabled());
    519 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    520 
    521 	kstack_check_magic(l);
    522 
    523 	binuptime(&bt);
    524 
    525 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    526 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    527 	KASSERT(l->l_cpu == curcpu());
    528 	ci = l->l_cpu;
    529 	spc = &ci->ci_schedstate;
    530 	returning = false;
    531 	newl = NULL;
    532 
    533 	/*
    534 	 * If we have been asked to switch to a specific LWP, then there
    535 	 * is no need to inspect the run queues.  If a soft interrupt is
    536 	 * blocking, then return to the interrupted thread without adjusting
    537 	 * VM context or its start time: neither have been changed in order
    538 	 * to take the interrupt.
    539 	 */
    540 	if (l->l_switchto != NULL) {
    541 		if ((l->l_pflag & LP_INTR) != 0) {
    542 			returning = true;
    543 			softint_block(l);
    544 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    545 				updatertime(l, &bt);
    546 		}
    547 		newl = l->l_switchto;
    548 		l->l_switchto = NULL;
    549 	}
    550 #ifndef __HAVE_FAST_SOFTINTS
    551 	else if (ci->ci_data.cpu_softints != 0) {
    552 		/* There are pending soft interrupts, so pick one. */
    553 		newl = softint_picklwp();
    554 		newl->l_stat = LSONPROC;
    555 		newl->l_pflag |= LP_RUNNING;
    556 	}
    557 #endif	/* !__HAVE_FAST_SOFTINTS */
    558 
    559 	/* Count time spent in current system call */
    560 	if (!returning) {
    561 		SYSCALL_TIME_SLEEP(l);
    562 
    563 		/*
    564 		 * XXXSMP If we are using h/w performance counters,
    565 		 * save context.
    566 		 */
    567 #if PERFCTRS
    568 		if (PMC_ENABLED(l->l_proc)) {
    569 			pmc_save_context(l->l_proc);
    570 		}
    571 #endif
    572 		updatertime(l, &bt);
    573 	}
    574 
    575 	/* Lock the runqueue */
    576 	KASSERT(l->l_stat != LSRUN);
    577 	mutex_spin_enter(spc->spc_mutex);
    578 
    579 	/*
    580 	 * If on the CPU and we have gotten this far, then we must yield.
    581 	 */
    582 	if (l->l_stat == LSONPROC && l != newl) {
    583 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    584 		if ((l->l_flag & LW_IDLE) == 0) {
    585 			l->l_stat = LSRUN;
    586 			lwp_setlock(l, spc->spc_mutex);
    587 			sched_enqueue(l, true);
    588 			/*
    589 			 * Handle migration.  Note that "migrating LWP" may
    590 			 * be reset here, if interrupt/preemption happens
    591 			 * early in idle LWP.
    592 			 */
    593 			if (l->l_target_cpu != NULL) {
    594 				KASSERT((l->l_pflag & LP_INTR) == 0);
    595 				spc->spc_migrating = l;
    596 			}
    597 		} else
    598 			l->l_stat = LSIDL;
    599 	}
    600 
    601 	/* Pick new LWP to run. */
    602 	if (newl == NULL) {
    603 		newl = nextlwp(ci, spc);
    604 	}
    605 
    606 	/* Items that must be updated with the CPU locked. */
    607 	if (!returning) {
    608 		/* Update the new LWP's start time. */
    609 		newl->l_stime = bt;
    610 
    611 		/*
    612 		 * ci_curlwp changes when a fast soft interrupt occurs.
    613 		 * We use cpu_onproc to keep track of which kernel or
    614 		 * user thread is running 'underneath' the software
    615 		 * interrupt.  This is important for time accounting,
    616 		 * itimers and forcing user threads to preempt (aston).
    617 		 */
    618 		ci->ci_data.cpu_onproc = newl;
    619 	}
    620 
    621 	/*
    622 	 * Preemption related tasks.  Must be done with the current
    623 	 * CPU locked.
    624 	 */
    625 	cpu_did_resched(l);
    626 	l->l_dopreempt = 0;
    627 	if (__predict_false(l->l_pfailaddr != 0)) {
    628 		LOCKSTAT_FLAG(lsflag);
    629 		LOCKSTAT_ENTER(lsflag);
    630 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    631 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    632 		    1, l->l_pfailtime, l->l_pfailaddr);
    633 		LOCKSTAT_EXIT(lsflag);
    634 		l->l_pfailtime = 0;
    635 		l->l_pfaillock = 0;
    636 		l->l_pfailaddr = 0;
    637 	}
    638 
    639 	if (l != newl) {
    640 		struct lwp *prevlwp;
    641 
    642 		/* Release all locks, but leave the current LWP locked */
    643 		if (l->l_mutex == spc->spc_mutex) {
    644 			/*
    645 			 * Drop spc_lwplock, if the current LWP has been moved
    646 			 * to the run queue (it is now locked by spc_mutex).
    647 			 */
    648 			mutex_spin_exit(spc->spc_lwplock);
    649 		} else {
    650 			/*
    651 			 * Otherwise, drop the spc_mutex, we are done with the
    652 			 * run queues.
    653 			 */
    654 			mutex_spin_exit(spc->spc_mutex);
    655 		}
    656 
    657 		/*
    658 		 * Mark that context switch is going to be performed
    659 		 * for this LWP, to protect it from being switched
    660 		 * to on another CPU.
    661 		 */
    662 		KASSERT(l->l_ctxswtch == 0);
    663 		l->l_ctxswtch = 1;
    664 		l->l_ncsw++;
    665 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    666 		l->l_pflag &= ~LP_RUNNING;
    667 
    668 		/*
    669 		 * Increase the count of spin-mutexes before the release
    670 		 * of the last lock - we must remain at IPL_SCHED during
    671 		 * the context switch.
    672 		 */
    673 		KASSERTMSG(ci->ci_mtx_count == -1,
    674 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    675 		    "(block with spin-mutex held)",
    676 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    677 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    678 		ci->ci_mtx_count--;
    679 		lwp_unlock(l);
    680 
    681 		/* Count the context switch on this CPU. */
    682 		ci->ci_data.cpu_nswtch++;
    683 
    684 		/* Update status for lwpctl, if present. */
    685 		if (l->l_lwpctl != NULL)
    686 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    687 
    688 		/*
    689 		 * Save old VM context, unless a soft interrupt
    690 		 * handler is blocking.
    691 		 */
    692 		if (!returning)
    693 			pmap_deactivate(l);
    694 
    695 		/*
    696 		 * We may need to spin-wait if 'newl' is still
    697 		 * context switching on another CPU.
    698 		 */
    699 		if (__predict_false(newl->l_ctxswtch != 0)) {
    700 			u_int count;
    701 			count = SPINLOCK_BACKOFF_MIN;
    702 			while (newl->l_ctxswtch)
    703 				SPINLOCK_BACKOFF(count);
    704 		}
    705 
    706 		/*
    707 		 * If DTrace has set the active vtime enum to anything
    708 		 * other than INACTIVE (0), then it should have set the
    709 		 * function to call.
    710 		 */
    711 		if (__predict_false(dtrace_vtime_active)) {
    712 			(*dtrace_vtime_switch_func)(newl);
    713 		}
    714 
    715 		/* Switch to the new LWP.. */
    716 #ifdef MULTIPROCESSOR
    717 		KASSERT(curlwp == ci->ci_curlwp);
    718 #endif
    719 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    720 		prevlwp = cpu_switchto(l, newl, returning);
    721 		ci = curcpu();
    722 #ifdef MULTIPROCESSOR
    723 		KASSERT(curlwp == ci->ci_curlwp);
    724 #endif
    725 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    726 		    l, curlwp, prevlwp);
    727 
    728 		/*
    729 		 * Switched away - we have new curlwp.
    730 		 * Restore VM context and IPL.
    731 		 */
    732 		pmap_activate(l);
    733 		uvm_emap_switch(l);
    734 		pcu_switchpoint(l);
    735 
    736 		if (prevlwp != NULL) {
    737 			/* Normalize the count of the spin-mutexes */
    738 			ci->ci_mtx_count++;
    739 			/* Unmark the state of context switch */
    740 			membar_exit();
    741 			prevlwp->l_ctxswtch = 0;
    742 		}
    743 
    744 		/* Update status for lwpctl, if present. */
    745 		if (l->l_lwpctl != NULL) {
    746 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    747 			l->l_lwpctl->lc_pctr++;
    748 		}
    749 
    750 		/* Note trip through cpu_switchto(). */
    751 		pserialize_switchpoint();
    752 
    753 		KASSERT(l->l_cpu == ci);
    754 		splx(oldspl);
    755 		/*
    756 		 * note that, unless the caller disabled preemption,
    757 		 * we can be preempted at any time after the above splx() call.
    758 		 */
    759 		retval = 1;
    760 	} else {
    761 		/* Nothing to do - just unlock and return. */
    762 		mutex_spin_exit(spc->spc_mutex);
    763 		lwp_unlock(l);
    764 		retval = 0;
    765 	}
    766 
    767 	KASSERT(l == curlwp);
    768 	KASSERT(l->l_stat == LSONPROC);
    769 
    770 	/*
    771 	 * XXXSMP If we are using h/w performance counters, restore context.
    772 	 * XXXSMP preemption problem.
    773 	 */
    774 #if PERFCTRS
    775 	if (PMC_ENABLED(l->l_proc)) {
    776 		pmc_restore_context(l->l_proc);
    777 	}
    778 #endif
    779 	SYSCALL_TIME_WAKEUP(l);
    780 	LOCKDEBUG_BARRIER(NULL, 1);
    781 
    782 	return retval;
    783 }
    784 
    785 /*
    786  * The machine independent parts of context switch to oblivion.
    787  * Does not return.  Call with the LWP unlocked.
    788  */
    789 void
    790 lwp_exit_switchaway(lwp_t *l)
    791 {
    792 	struct cpu_info *ci;
    793 	struct lwp *newl;
    794 	struct bintime bt;
    795 
    796 	ci = l->l_cpu;
    797 
    798 	KASSERT(kpreempt_disabled());
    799 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    800 	KASSERT(ci == curcpu());
    801 	LOCKDEBUG_BARRIER(NULL, 0);
    802 
    803 	kstack_check_magic(l);
    804 
    805 	/* Count time spent in current system call */
    806 	SYSCALL_TIME_SLEEP(l);
    807 	binuptime(&bt);
    808 	updatertime(l, &bt);
    809 
    810 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    811 	(void)splsched();
    812 
    813 	/*
    814 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    815 	 * If no LWP is runnable, select the idle LWP.
    816 	 *
    817 	 * Note that spc_lwplock might not necessary be held, and
    818 	 * new thread would be unlocked after setting the LWP-lock.
    819 	 */
    820 	spc_lock(ci);
    821 #ifndef __HAVE_FAST_SOFTINTS
    822 	if (ci->ci_data.cpu_softints != 0) {
    823 		/* There are pending soft interrupts, so pick one. */
    824 		newl = softint_picklwp();
    825 		newl->l_stat = LSONPROC;
    826 		newl->l_pflag |= LP_RUNNING;
    827 	} else
    828 #endif	/* !__HAVE_FAST_SOFTINTS */
    829 	{
    830 		newl = nextlwp(ci, &ci->ci_schedstate);
    831 	}
    832 
    833 	/* Update the new LWP's start time. */
    834 	newl->l_stime = bt;
    835 	l->l_pflag &= ~LP_RUNNING;
    836 
    837 	/*
    838 	 * ci_curlwp changes when a fast soft interrupt occurs.
    839 	 * We use cpu_onproc to keep track of which kernel or
    840 	 * user thread is running 'underneath' the software
    841 	 * interrupt.  This is important for time accounting,
    842 	 * itimers and forcing user threads to preempt (aston).
    843 	 */
    844 	ci->ci_data.cpu_onproc = newl;
    845 
    846 	/*
    847 	 * Preemption related tasks.  Must be done with the current
    848 	 * CPU locked.
    849 	 */
    850 	cpu_did_resched(l);
    851 
    852 	/* Unlock the run queue. */
    853 	spc_unlock(ci);
    854 
    855 	/* Count the context switch on this CPU. */
    856 	ci->ci_data.cpu_nswtch++;
    857 
    858 	/* Update status for lwpctl, if present. */
    859 	if (l->l_lwpctl != NULL)
    860 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    861 
    862 	/*
    863 	 * We may need to spin-wait if 'newl' is still
    864 	 * context switching on another CPU.
    865 	 */
    866 	if (__predict_false(newl->l_ctxswtch != 0)) {
    867 		u_int count;
    868 		count = SPINLOCK_BACKOFF_MIN;
    869 		while (newl->l_ctxswtch)
    870 			SPINLOCK_BACKOFF(count);
    871 	}
    872 
    873 	/*
    874 	 * If DTrace has set the active vtime enum to anything
    875 	 * other than INACTIVE (0), then it should have set the
    876 	 * function to call.
    877 	 */
    878 	if (__predict_false(dtrace_vtime_active)) {
    879 		(*dtrace_vtime_switch_func)(newl);
    880 	}
    881 
    882 	/* Switch to the new LWP.. */
    883 	(void)cpu_switchto(NULL, newl, false);
    884 
    885 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    886 	/* NOTREACHED */
    887 }
    888 
    889 /*
    890  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    891  *
    892  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    893  */
    894 void
    895 setrunnable(struct lwp *l)
    896 {
    897 	struct proc *p = l->l_proc;
    898 	struct cpu_info *ci;
    899 
    900 	KASSERT((l->l_flag & LW_IDLE) == 0);
    901 	KASSERT(mutex_owned(p->p_lock));
    902 	KASSERT(lwp_locked(l, NULL));
    903 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    904 
    905 	switch (l->l_stat) {
    906 	case LSSTOP:
    907 		/*
    908 		 * If we're being traced (possibly because someone attached us
    909 		 * while we were stopped), check for a signal from the debugger.
    910 		 */
    911 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    912 			signotify(l);
    913 		p->p_nrlwps++;
    914 		break;
    915 	case LSSUSPENDED:
    916 		l->l_flag &= ~LW_WSUSPEND;
    917 		p->p_nrlwps++;
    918 		cv_broadcast(&p->p_lwpcv);
    919 		break;
    920 	case LSSLEEP:
    921 		KASSERT(l->l_wchan != NULL);
    922 		break;
    923 	default:
    924 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    925 	}
    926 
    927 	/*
    928 	 * If the LWP was sleeping, start it again.
    929 	 */
    930 	if (l->l_wchan != NULL) {
    931 		l->l_stat = LSSLEEP;
    932 		/* lwp_unsleep() will release the lock. */
    933 		lwp_unsleep(l, true);
    934 		return;
    935 	}
    936 
    937 	/*
    938 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    939 	 * about to call mi_switch(), in which case it will yield.
    940 	 */
    941 	if ((l->l_pflag & LP_RUNNING) != 0) {
    942 		l->l_stat = LSONPROC;
    943 		l->l_slptime = 0;
    944 		lwp_unlock(l);
    945 		return;
    946 	}
    947 
    948 	/*
    949 	 * Look for a CPU to run.
    950 	 * Set the LWP runnable.
    951 	 */
    952 	ci = sched_takecpu(l);
    953 	l->l_cpu = ci;
    954 	spc_lock(ci);
    955 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    956 	sched_setrunnable(l);
    957 	l->l_stat = LSRUN;
    958 	l->l_slptime = 0;
    959 
    960 	sched_enqueue(l, false);
    961 	resched_cpu(l);
    962 	lwp_unlock(l);
    963 }
    964 
    965 /*
    966  * suspendsched:
    967  *
    968  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    969  */
    970 void
    971 suspendsched(void)
    972 {
    973 	CPU_INFO_ITERATOR cii;
    974 	struct cpu_info *ci;
    975 	struct lwp *l;
    976 	struct proc *p;
    977 
    978 	/*
    979 	 * We do this by process in order not to violate the locking rules.
    980 	 */
    981 	mutex_enter(proc_lock);
    982 	PROCLIST_FOREACH(p, &allproc) {
    983 		mutex_enter(p->p_lock);
    984 		if ((p->p_flag & PK_SYSTEM) != 0) {
    985 			mutex_exit(p->p_lock);
    986 			continue;
    987 		}
    988 
    989 		p->p_stat = SSTOP;
    990 
    991 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    992 			if (l == curlwp)
    993 				continue;
    994 
    995 			lwp_lock(l);
    996 
    997 			/*
    998 			 * Set L_WREBOOT so that the LWP will suspend itself
    999 			 * when it tries to return to user mode.  We want to
   1000 			 * try and get to get as many LWPs as possible to
   1001 			 * the user / kernel boundary, so that they will
   1002 			 * release any locks that they hold.
   1003 			 */
   1004 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1005 
   1006 			if (l->l_stat == LSSLEEP &&
   1007 			    (l->l_flag & LW_SINTR) != 0) {
   1008 				/* setrunnable() will release the lock. */
   1009 				setrunnable(l);
   1010 				continue;
   1011 			}
   1012 
   1013 			lwp_unlock(l);
   1014 		}
   1015 
   1016 		mutex_exit(p->p_lock);
   1017 	}
   1018 	mutex_exit(proc_lock);
   1019 
   1020 	/*
   1021 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1022 	 * They'll trap into the kernel and suspend themselves in userret().
   1023 	 */
   1024 	for (CPU_INFO_FOREACH(cii, ci)) {
   1025 		spc_lock(ci);
   1026 		cpu_need_resched(ci, RESCHED_IMMED);
   1027 		spc_unlock(ci);
   1028 	}
   1029 }
   1030 
   1031 /*
   1032  * sched_unsleep:
   1033  *
   1034  *	The is called when the LWP has not been awoken normally but instead
   1035  *	interrupted: for example, if the sleep timed out.  Because of this,
   1036  *	it's not a valid action for running or idle LWPs.
   1037  */
   1038 static void
   1039 sched_unsleep(struct lwp *l, bool cleanup)
   1040 {
   1041 
   1042 	lwp_unlock(l);
   1043 	panic("sched_unsleep");
   1044 }
   1045 
   1046 static void
   1047 resched_cpu(struct lwp *l)
   1048 {
   1049 	struct cpu_info *ci = l->l_cpu;
   1050 
   1051 	KASSERT(lwp_locked(l, NULL));
   1052 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1053 		cpu_need_resched(ci, 0);
   1054 }
   1055 
   1056 static void
   1057 sched_changepri(struct lwp *l, pri_t pri)
   1058 {
   1059 
   1060 	KASSERT(lwp_locked(l, NULL));
   1061 
   1062 	if (l->l_stat == LSRUN) {
   1063 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1064 		sched_dequeue(l);
   1065 		l->l_priority = pri;
   1066 		sched_enqueue(l, false);
   1067 	} else {
   1068 		l->l_priority = pri;
   1069 	}
   1070 	resched_cpu(l);
   1071 }
   1072 
   1073 static void
   1074 sched_lendpri(struct lwp *l, pri_t pri)
   1075 {
   1076 
   1077 	KASSERT(lwp_locked(l, NULL));
   1078 
   1079 	if (l->l_stat == LSRUN) {
   1080 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1081 		sched_dequeue(l);
   1082 		l->l_inheritedprio = pri;
   1083 		sched_enqueue(l, false);
   1084 	} else {
   1085 		l->l_inheritedprio = pri;
   1086 	}
   1087 	resched_cpu(l);
   1088 }
   1089 
   1090 struct lwp *
   1091 syncobj_noowner(wchan_t wchan)
   1092 {
   1093 
   1094 	return NULL;
   1095 }
   1096 
   1097 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1098 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1099 
   1100 /*
   1101  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1102  * 5 second intervals.
   1103  */
   1104 static const fixpt_t cexp[ ] = {
   1105 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1106 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1107 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1108 };
   1109 
   1110 /*
   1111  * sched_pstats:
   1112  *
   1113  * => Update process statistics and check CPU resource allocation.
   1114  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1115  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1116  */
   1117 void
   1118 sched_pstats(void)
   1119 {
   1120 	extern struct loadavg averunnable;
   1121 	struct loadavg *avg = &averunnable;
   1122 	const int clkhz = (stathz != 0 ? stathz : hz);
   1123 	static bool backwards = false;
   1124 	static u_int lavg_count = 0;
   1125 	struct proc *p;
   1126 	int nrun;
   1127 
   1128 	sched_pstats_ticks++;
   1129 	if (++lavg_count >= 5) {
   1130 		lavg_count = 0;
   1131 		nrun = 0;
   1132 	}
   1133 	mutex_enter(proc_lock);
   1134 	PROCLIST_FOREACH(p, &allproc) {
   1135 		struct lwp *l;
   1136 		struct rlimit *rlim;
   1137 		time_t runtm;
   1138 		int sig;
   1139 
   1140 		/* Increment sleep time (if sleeping), ignore overflow. */
   1141 		mutex_enter(p->p_lock);
   1142 		runtm = p->p_rtime.sec;
   1143 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1144 			fixpt_t lpctcpu;
   1145 			u_int lcpticks;
   1146 
   1147 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1148 				continue;
   1149 			lwp_lock(l);
   1150 			runtm += l->l_rtime.sec;
   1151 			l->l_swtime++;
   1152 			sched_lwp_stats(l);
   1153 
   1154 			/* For load average calculation. */
   1155 			if (__predict_false(lavg_count == 0) &&
   1156 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1157 				switch (l->l_stat) {
   1158 				case LSSLEEP:
   1159 					if (l->l_slptime > 1) {
   1160 						break;
   1161 					}
   1162 				case LSRUN:
   1163 				case LSONPROC:
   1164 				case LSIDL:
   1165 					nrun++;
   1166 				}
   1167 			}
   1168 			lwp_unlock(l);
   1169 
   1170 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1171 			if (l->l_slptime != 0)
   1172 				continue;
   1173 
   1174 			lpctcpu = l->l_pctcpu;
   1175 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1176 			lpctcpu += ((FSCALE - ccpu) *
   1177 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1178 			l->l_pctcpu = lpctcpu;
   1179 		}
   1180 		/* Calculating p_pctcpu only for ps(1) */
   1181 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1182 
   1183 		if (__predict_false(runtm < 0)) {
   1184 			if (!backwards) {
   1185 				backwards = true;
   1186 				printf("WARNING: negative runtime; "
   1187 				    "monotonic clock has gone backwards\n");
   1188 			}
   1189 			mutex_exit(p->p_lock);
   1190 			continue;
   1191 		}
   1192 
   1193 		/*
   1194 		 * Check if the process exceeds its CPU resource allocation.
   1195 		 * If over the hard limit, kill it with SIGKILL.
   1196 		 * If over the soft limit, send SIGXCPU and raise
   1197 		 * the soft limit a little.
   1198 		 */
   1199 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1200 		sig = 0;
   1201 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1202 			if (runtm >= rlim->rlim_max) {
   1203 				sig = SIGKILL;
   1204 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1205 					p->p_pid, "exceeded RLIMIT_CPU");
   1206 				uprintf("pid %d, command %s, is killed: %s\n",
   1207 					p->p_pid, p->p_comm,
   1208 					"exceeded RLIMIT_CPU");
   1209 			} else {
   1210 				sig = SIGXCPU;
   1211 				if (rlim->rlim_cur < rlim->rlim_max)
   1212 					rlim->rlim_cur += 5;
   1213 			}
   1214 		}
   1215 		mutex_exit(p->p_lock);
   1216 		if (__predict_false(sig)) {
   1217 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1218 			psignal(p, sig);
   1219 		}
   1220 	}
   1221 	mutex_exit(proc_lock);
   1222 
   1223 	/* Load average calculation. */
   1224 	if (__predict_false(lavg_count == 0)) {
   1225 		int i;
   1226 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1227 		for (i = 0; i < __arraycount(cexp); i++) {
   1228 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1229 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1230 		}
   1231 	}
   1232 
   1233 	/* Lightning bolt. */
   1234 	cv_broadcast(&lbolt);
   1235 }
   1236