kern_synch.c revision 1.307 1 /* $NetBSD: kern_synch.c,v 1.307 2013/09/15 13:03:59 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.307 2013/09/15 13:03:59 martin Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_dtrace.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/pserialize.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/syscall_stats.h>
92 #include <sys/sleepq.h>
93 #include <sys/lockdebug.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/lwpctl.h>
97 #include <sys/atomic.h>
98 #include <sys/simplelock.h>
99 #include <sys/syslog.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <dev/lockstat.h>
104
105 #include <sys/dtrace_bsd.h>
106 int dtrace_vtime_active=0;
107 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
108
109 static void sched_unsleep(struct lwp *, bool);
110 static void sched_changepri(struct lwp *, pri_t);
111 static void sched_lendpri(struct lwp *, pri_t);
112 static void resched_cpu(struct lwp *);
113
114 syncobj_t sleep_syncobj = {
115 SOBJ_SLEEPQ_SORTED,
116 sleepq_unsleep,
117 sleepq_changepri,
118 sleepq_lendpri,
119 syncobj_noowner,
120 };
121
122 syncobj_t sched_syncobj = {
123 SOBJ_SLEEPQ_SORTED,
124 sched_unsleep,
125 sched_changepri,
126 sched_lendpri,
127 syncobj_noowner,
128 };
129
130 /* "Lightning bolt": once a second sleep address. */
131 kcondvar_t lbolt __cacheline_aligned;
132
133 u_int sched_pstats_ticks __cacheline_aligned;
134
135 /* Preemption event counters. */
136 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
137 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
138 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
139
140 void
141 synch_init(void)
142 {
143
144 cv_init(&lbolt, "lbolt");
145
146 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
147 "kpreempt", "defer: critical section");
148 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
149 "kpreempt", "defer: kernel_lock");
150 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
151 "kpreempt", "immediate");
152 }
153
154 /*
155 * OBSOLETE INTERFACE
156 *
157 * General sleep call. Suspends the current LWP until a wakeup is
158 * performed on the specified identifier. The LWP will then be made
159 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
160 * means no timeout). If pri includes PCATCH flag, signals are checked
161 * before and after sleeping, else signals are not checked. Returns 0 if
162 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
163 * signal needs to be delivered, ERESTART is returned if the current system
164 * call should be restarted if possible, and EINTR is returned if the system
165 * call should be interrupted by the signal (return EINTR).
166 */
167 int
168 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
169 {
170 struct lwp *l = curlwp;
171 sleepq_t *sq;
172 kmutex_t *mp;
173
174 KASSERT((l->l_pflag & LP_INTR) == 0);
175 KASSERT(ident != &lbolt);
176
177 if (sleepq_dontsleep(l)) {
178 (void)sleepq_abort(NULL, 0);
179 return 0;
180 }
181
182 l->l_kpriority = true;
183 sq = sleeptab_lookup(&sleeptab, ident, &mp);
184 sleepq_enter(sq, l, mp);
185 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
186 return sleepq_block(timo, priority & PCATCH);
187 }
188
189 int
190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 kmutex_t *mtx)
192 {
193 struct lwp *l = curlwp;
194 sleepq_t *sq;
195 kmutex_t *mp;
196 int error;
197
198 KASSERT((l->l_pflag & LP_INTR) == 0);
199 KASSERT(ident != &lbolt);
200
201 if (sleepq_dontsleep(l)) {
202 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
203 return 0;
204 }
205
206 l->l_kpriority = true;
207 sq = sleeptab_lookup(&sleeptab, ident, &mp);
208 sleepq_enter(sq, l, mp);
209 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
210 mutex_exit(mtx);
211 error = sleepq_block(timo, priority & PCATCH);
212
213 if ((priority & PNORELOCK) == 0)
214 mutex_enter(mtx);
215
216 return error;
217 }
218
219 /*
220 * General sleep call for situations where a wake-up is not expected.
221 */
222 int
223 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
224 {
225 struct lwp *l = curlwp;
226 kmutex_t *mp;
227 sleepq_t *sq;
228 int error;
229
230 KASSERT(!(timo == 0 && intr == false));
231
232 if (sleepq_dontsleep(l))
233 return sleepq_abort(NULL, 0);
234
235 if (mtx != NULL)
236 mutex_exit(mtx);
237 l->l_kpriority = true;
238 sq = sleeptab_lookup(&sleeptab, l, &mp);
239 sleepq_enter(sq, l, mp);
240 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
241 error = sleepq_block(timo, intr);
242 if (mtx != NULL)
243 mutex_enter(mtx);
244
245 return error;
246 }
247
248 /*
249 * OBSOLETE INTERFACE
250 *
251 * Make all LWPs sleeping on the specified identifier runnable.
252 */
253 void
254 wakeup(wchan_t ident)
255 {
256 sleepq_t *sq;
257 kmutex_t *mp;
258
259 if (__predict_false(cold))
260 return;
261
262 sq = sleeptab_lookup(&sleeptab, ident, &mp);
263 sleepq_wake(sq, ident, (u_int)-1, mp);
264 }
265
266 /*
267 * General yield call. Puts the current LWP back on its run queue and
268 * performs a voluntary context switch. Should only be called when the
269 * current LWP explicitly requests it (eg sched_yield(2)).
270 */
271 void
272 yield(void)
273 {
274 struct lwp *l = curlwp;
275
276 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
277 lwp_lock(l);
278 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
279 KASSERT(l->l_stat == LSONPROC);
280 l->l_kpriority = false;
281 (void)mi_switch(l);
282 KERNEL_LOCK(l->l_biglocks, l);
283 }
284
285 /*
286 * General preemption call. Puts the current LWP back on its run queue
287 * and performs an involuntary context switch.
288 */
289 void
290 preempt(void)
291 {
292 struct lwp *l = curlwp;
293
294 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
295 lwp_lock(l);
296 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
297 KASSERT(l->l_stat == LSONPROC);
298 l->l_kpriority = false;
299 l->l_nivcsw++;
300 (void)mi_switch(l);
301 KERNEL_LOCK(l->l_biglocks, l);
302 }
303
304 /*
305 * Handle a request made by another agent to preempt the current LWP
306 * in-kernel. Usually called when l_dopreempt may be non-zero.
307 *
308 * Character addresses for lockstat only.
309 */
310 static char in_critical_section;
311 static char kernel_lock_held;
312 static char is_softint;
313 static char cpu_kpreempt_enter_fail;
314
315 bool
316 kpreempt(uintptr_t where)
317 {
318 uintptr_t failed;
319 lwp_t *l;
320 int s, dop, lsflag;
321
322 l = curlwp;
323 failed = 0;
324 while ((dop = l->l_dopreempt) != 0) {
325 if (l->l_stat != LSONPROC) {
326 /*
327 * About to block (or die), let it happen.
328 * Doesn't really count as "preemption has
329 * been blocked", since we're going to
330 * context switch.
331 */
332 l->l_dopreempt = 0;
333 return true;
334 }
335 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
336 /* Can't preempt idle loop, don't count as failure. */
337 l->l_dopreempt = 0;
338 return true;
339 }
340 if (__predict_false(l->l_nopreempt != 0)) {
341 /* LWP holds preemption disabled, explicitly. */
342 if ((dop & DOPREEMPT_COUNTED) == 0) {
343 kpreempt_ev_crit.ev_count++;
344 }
345 failed = (uintptr_t)&in_critical_section;
346 break;
347 }
348 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
349 /* Can't preempt soft interrupts yet. */
350 l->l_dopreempt = 0;
351 failed = (uintptr_t)&is_softint;
352 break;
353 }
354 s = splsched();
355 if (__predict_false(l->l_blcnt != 0 ||
356 curcpu()->ci_biglock_wanted != NULL)) {
357 /* Hold or want kernel_lock, code is not MT safe. */
358 splx(s);
359 if ((dop & DOPREEMPT_COUNTED) == 0) {
360 kpreempt_ev_klock.ev_count++;
361 }
362 failed = (uintptr_t)&kernel_lock_held;
363 break;
364 }
365 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
366 /*
367 * It may be that the IPL is too high.
368 * kpreempt_enter() can schedule an
369 * interrupt to retry later.
370 */
371 splx(s);
372 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
373 break;
374 }
375 /* Do it! */
376 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
377 kpreempt_ev_immed.ev_count++;
378 }
379 lwp_lock(l);
380 mi_switch(l);
381 l->l_nopreempt++;
382 splx(s);
383
384 /* Take care of any MD cleanup. */
385 cpu_kpreempt_exit(where);
386 l->l_nopreempt--;
387 }
388
389 if (__predict_true(!failed)) {
390 return false;
391 }
392
393 /* Record preemption failure for reporting via lockstat. */
394 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
395 lsflag = 0;
396 LOCKSTAT_ENTER(lsflag);
397 if (__predict_false(lsflag)) {
398 if (where == 0) {
399 where = (uintptr_t)__builtin_return_address(0);
400 }
401 /* Preemption is on, might recurse, so make it atomic. */
402 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
403 (void *)where) == NULL) {
404 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
405 l->l_pfaillock = failed;
406 }
407 }
408 LOCKSTAT_EXIT(lsflag);
409 return true;
410 }
411
412 /*
413 * Return true if preemption is explicitly disabled.
414 */
415 bool
416 kpreempt_disabled(void)
417 {
418 const lwp_t *l = curlwp;
419
420 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
421 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
422 }
423
424 /*
425 * Disable kernel preemption.
426 */
427 void
428 kpreempt_disable(void)
429 {
430
431 KPREEMPT_DISABLE(curlwp);
432 }
433
434 /*
435 * Reenable kernel preemption.
436 */
437 void
438 kpreempt_enable(void)
439 {
440
441 KPREEMPT_ENABLE(curlwp);
442 }
443
444 /*
445 * Compute the amount of time during which the current lwp was running.
446 *
447 * - update l_rtime unless it's an idle lwp.
448 */
449
450 void
451 updatertime(lwp_t *l, const struct bintime *now)
452 {
453
454 if (__predict_false(l->l_flag & LW_IDLE))
455 return;
456
457 /* rtime += now - stime */
458 bintime_add(&l->l_rtime, now);
459 bintime_sub(&l->l_rtime, &l->l_stime);
460 }
461
462 /*
463 * Select next LWP from the current CPU to run..
464 */
465 static inline lwp_t *
466 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
467 {
468 lwp_t *newl;
469
470 /*
471 * Let sched_nextlwp() select the LWP to run the CPU next.
472 * If no LWP is runnable, select the idle LWP.
473 *
474 * Note that spc_lwplock might not necessary be held, and
475 * new thread would be unlocked after setting the LWP-lock.
476 */
477 newl = sched_nextlwp();
478 if (newl != NULL) {
479 sched_dequeue(newl);
480 KASSERT(lwp_locked(newl, spc->spc_mutex));
481 KASSERT(newl->l_cpu == ci);
482 newl->l_stat = LSONPROC;
483 newl->l_pflag |= LP_RUNNING;
484 lwp_setlock(newl, spc->spc_lwplock);
485 } else {
486 newl = ci->ci_data.cpu_idlelwp;
487 newl->l_stat = LSONPROC;
488 newl->l_pflag |= LP_RUNNING;
489 }
490
491 /*
492 * Only clear want_resched if there are no pending (slow)
493 * software interrupts.
494 */
495 ci->ci_want_resched = ci->ci_data.cpu_softints;
496 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
497 spc->spc_curpriority = lwp_eprio(newl);
498
499 return newl;
500 }
501
502 /*
503 * The machine independent parts of context switch.
504 *
505 * Returns 1 if another LWP was actually run.
506 */
507 int
508 mi_switch(lwp_t *l)
509 {
510 struct cpu_info *ci;
511 struct schedstate_percpu *spc;
512 struct lwp *newl;
513 int retval, oldspl;
514 struct bintime bt;
515 bool returning;
516
517 KASSERT(lwp_locked(l, NULL));
518 KASSERT(kpreempt_disabled());
519 LOCKDEBUG_BARRIER(l->l_mutex, 1);
520
521 kstack_check_magic(l);
522
523 binuptime(&bt);
524
525 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
526 KASSERT((l->l_pflag & LP_RUNNING) != 0);
527 KASSERT(l->l_cpu == curcpu());
528 ci = l->l_cpu;
529 spc = &ci->ci_schedstate;
530 returning = false;
531 newl = NULL;
532
533 /*
534 * If we have been asked to switch to a specific LWP, then there
535 * is no need to inspect the run queues. If a soft interrupt is
536 * blocking, then return to the interrupted thread without adjusting
537 * VM context or its start time: neither have been changed in order
538 * to take the interrupt.
539 */
540 if (l->l_switchto != NULL) {
541 if ((l->l_pflag & LP_INTR) != 0) {
542 returning = true;
543 softint_block(l);
544 if ((l->l_pflag & LP_TIMEINTR) != 0)
545 updatertime(l, &bt);
546 }
547 newl = l->l_switchto;
548 l->l_switchto = NULL;
549 }
550 #ifndef __HAVE_FAST_SOFTINTS
551 else if (ci->ci_data.cpu_softints != 0) {
552 /* There are pending soft interrupts, so pick one. */
553 newl = softint_picklwp();
554 newl->l_stat = LSONPROC;
555 newl->l_pflag |= LP_RUNNING;
556 }
557 #endif /* !__HAVE_FAST_SOFTINTS */
558
559 /* Count time spent in current system call */
560 if (!returning) {
561 SYSCALL_TIME_SLEEP(l);
562
563 /*
564 * XXXSMP If we are using h/w performance counters,
565 * save context.
566 */
567 #if PERFCTRS
568 if (PMC_ENABLED(l->l_proc)) {
569 pmc_save_context(l->l_proc);
570 }
571 #endif
572 updatertime(l, &bt);
573 }
574
575 /* Lock the runqueue */
576 KASSERT(l->l_stat != LSRUN);
577 mutex_spin_enter(spc->spc_mutex);
578
579 /*
580 * If on the CPU and we have gotten this far, then we must yield.
581 */
582 if (l->l_stat == LSONPROC && l != newl) {
583 KASSERT(lwp_locked(l, spc->spc_lwplock));
584 if ((l->l_flag & LW_IDLE) == 0) {
585 l->l_stat = LSRUN;
586 lwp_setlock(l, spc->spc_mutex);
587 sched_enqueue(l, true);
588 /*
589 * Handle migration. Note that "migrating LWP" may
590 * be reset here, if interrupt/preemption happens
591 * early in idle LWP.
592 */
593 if (l->l_target_cpu != NULL) {
594 KASSERT((l->l_pflag & LP_INTR) == 0);
595 spc->spc_migrating = l;
596 }
597 } else
598 l->l_stat = LSIDL;
599 }
600
601 /* Pick new LWP to run. */
602 if (newl == NULL) {
603 newl = nextlwp(ci, spc);
604 }
605
606 /* Items that must be updated with the CPU locked. */
607 if (!returning) {
608 /* Update the new LWP's start time. */
609 newl->l_stime = bt;
610
611 /*
612 * ci_curlwp changes when a fast soft interrupt occurs.
613 * We use cpu_onproc to keep track of which kernel or
614 * user thread is running 'underneath' the software
615 * interrupt. This is important for time accounting,
616 * itimers and forcing user threads to preempt (aston).
617 */
618 ci->ci_data.cpu_onproc = newl;
619 }
620
621 /*
622 * Preemption related tasks. Must be done with the current
623 * CPU locked.
624 */
625 cpu_did_resched(l);
626 l->l_dopreempt = 0;
627 if (__predict_false(l->l_pfailaddr != 0)) {
628 LOCKSTAT_FLAG(lsflag);
629 LOCKSTAT_ENTER(lsflag);
630 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
631 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
632 1, l->l_pfailtime, l->l_pfailaddr);
633 LOCKSTAT_EXIT(lsflag);
634 l->l_pfailtime = 0;
635 l->l_pfaillock = 0;
636 l->l_pfailaddr = 0;
637 }
638
639 if (l != newl) {
640 struct lwp *prevlwp;
641
642 /* Release all locks, but leave the current LWP locked */
643 if (l->l_mutex == spc->spc_mutex) {
644 /*
645 * Drop spc_lwplock, if the current LWP has been moved
646 * to the run queue (it is now locked by spc_mutex).
647 */
648 mutex_spin_exit(spc->spc_lwplock);
649 } else {
650 /*
651 * Otherwise, drop the spc_mutex, we are done with the
652 * run queues.
653 */
654 mutex_spin_exit(spc->spc_mutex);
655 }
656
657 /*
658 * Mark that context switch is going to be performed
659 * for this LWP, to protect it from being switched
660 * to on another CPU.
661 */
662 KASSERT(l->l_ctxswtch == 0);
663 l->l_ctxswtch = 1;
664 l->l_ncsw++;
665 KASSERT((l->l_pflag & LP_RUNNING) != 0);
666 l->l_pflag &= ~LP_RUNNING;
667
668 /*
669 * Increase the count of spin-mutexes before the release
670 * of the last lock - we must remain at IPL_SCHED during
671 * the context switch.
672 */
673 KASSERTMSG(ci->ci_mtx_count == -1,
674 "%s: cpu%u: ci_mtx_count (%d) != -1 "
675 "(block with spin-mutex held)",
676 __func__, cpu_index(ci), ci->ci_mtx_count);
677 oldspl = MUTEX_SPIN_OLDSPL(ci);
678 ci->ci_mtx_count--;
679 lwp_unlock(l);
680
681 /* Count the context switch on this CPU. */
682 ci->ci_data.cpu_nswtch++;
683
684 /* Update status for lwpctl, if present. */
685 if (l->l_lwpctl != NULL)
686 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
687
688 /*
689 * Save old VM context, unless a soft interrupt
690 * handler is blocking.
691 */
692 if (!returning)
693 pmap_deactivate(l);
694
695 /*
696 * We may need to spin-wait if 'newl' is still
697 * context switching on another CPU.
698 */
699 if (__predict_false(newl->l_ctxswtch != 0)) {
700 u_int count;
701 count = SPINLOCK_BACKOFF_MIN;
702 while (newl->l_ctxswtch)
703 SPINLOCK_BACKOFF(count);
704 }
705
706 /*
707 * If DTrace has set the active vtime enum to anything
708 * other than INACTIVE (0), then it should have set the
709 * function to call.
710 */
711 if (__predict_false(dtrace_vtime_active)) {
712 (*dtrace_vtime_switch_func)(newl);
713 }
714
715 /* Switch to the new LWP.. */
716 #ifdef MULTIPROCESSOR
717 KASSERT(curlwp == ci->ci_curlwp);
718 #endif
719 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
720 prevlwp = cpu_switchto(l, newl, returning);
721 ci = curcpu();
722 #ifdef MULTIPROCESSOR
723 KASSERT(curlwp == ci->ci_curlwp);
724 #endif
725 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
726 l, curlwp, prevlwp);
727
728 /*
729 * Switched away - we have new curlwp.
730 * Restore VM context and IPL.
731 */
732 pmap_activate(l);
733 uvm_emap_switch(l);
734 pcu_switchpoint(l);
735
736 if (prevlwp != NULL) {
737 /* Normalize the count of the spin-mutexes */
738 ci->ci_mtx_count++;
739 /* Unmark the state of context switch */
740 membar_exit();
741 prevlwp->l_ctxswtch = 0;
742 }
743
744 /* Update status for lwpctl, if present. */
745 if (l->l_lwpctl != NULL) {
746 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
747 l->l_lwpctl->lc_pctr++;
748 }
749
750 /* Note trip through cpu_switchto(). */
751 pserialize_switchpoint();
752
753 KASSERT(l->l_cpu == ci);
754 splx(oldspl);
755 /*
756 * note that, unless the caller disabled preemption,
757 * we can be preempted at any time after the above splx() call.
758 */
759 retval = 1;
760 } else {
761 /* Nothing to do - just unlock and return. */
762 mutex_spin_exit(spc->spc_mutex);
763 lwp_unlock(l);
764 retval = 0;
765 }
766
767 KASSERT(l == curlwp);
768 KASSERT(l->l_stat == LSONPROC);
769
770 /*
771 * XXXSMP If we are using h/w performance counters, restore context.
772 * XXXSMP preemption problem.
773 */
774 #if PERFCTRS
775 if (PMC_ENABLED(l->l_proc)) {
776 pmc_restore_context(l->l_proc);
777 }
778 #endif
779 SYSCALL_TIME_WAKEUP(l);
780 LOCKDEBUG_BARRIER(NULL, 1);
781
782 return retval;
783 }
784
785 /*
786 * The machine independent parts of context switch to oblivion.
787 * Does not return. Call with the LWP unlocked.
788 */
789 void
790 lwp_exit_switchaway(lwp_t *l)
791 {
792 struct cpu_info *ci;
793 struct lwp *newl;
794 struct bintime bt;
795
796 ci = l->l_cpu;
797
798 KASSERT(kpreempt_disabled());
799 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
800 KASSERT(ci == curcpu());
801 LOCKDEBUG_BARRIER(NULL, 0);
802
803 kstack_check_magic(l);
804
805 /* Count time spent in current system call */
806 SYSCALL_TIME_SLEEP(l);
807 binuptime(&bt);
808 updatertime(l, &bt);
809
810 /* Must stay at IPL_SCHED even after releasing run queue lock. */
811 (void)splsched();
812
813 /*
814 * Let sched_nextlwp() select the LWP to run the CPU next.
815 * If no LWP is runnable, select the idle LWP.
816 *
817 * Note that spc_lwplock might not necessary be held, and
818 * new thread would be unlocked after setting the LWP-lock.
819 */
820 spc_lock(ci);
821 #ifndef __HAVE_FAST_SOFTINTS
822 if (ci->ci_data.cpu_softints != 0) {
823 /* There are pending soft interrupts, so pick one. */
824 newl = softint_picklwp();
825 newl->l_stat = LSONPROC;
826 newl->l_pflag |= LP_RUNNING;
827 } else
828 #endif /* !__HAVE_FAST_SOFTINTS */
829 {
830 newl = nextlwp(ci, &ci->ci_schedstate);
831 }
832
833 /* Update the new LWP's start time. */
834 newl->l_stime = bt;
835 l->l_pflag &= ~LP_RUNNING;
836
837 /*
838 * ci_curlwp changes when a fast soft interrupt occurs.
839 * We use cpu_onproc to keep track of which kernel or
840 * user thread is running 'underneath' the software
841 * interrupt. This is important for time accounting,
842 * itimers and forcing user threads to preempt (aston).
843 */
844 ci->ci_data.cpu_onproc = newl;
845
846 /*
847 * Preemption related tasks. Must be done with the current
848 * CPU locked.
849 */
850 cpu_did_resched(l);
851
852 /* Unlock the run queue. */
853 spc_unlock(ci);
854
855 /* Count the context switch on this CPU. */
856 ci->ci_data.cpu_nswtch++;
857
858 /* Update status for lwpctl, if present. */
859 if (l->l_lwpctl != NULL)
860 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
861
862 /*
863 * We may need to spin-wait if 'newl' is still
864 * context switching on another CPU.
865 */
866 if (__predict_false(newl->l_ctxswtch != 0)) {
867 u_int count;
868 count = SPINLOCK_BACKOFF_MIN;
869 while (newl->l_ctxswtch)
870 SPINLOCK_BACKOFF(count);
871 }
872
873 /*
874 * If DTrace has set the active vtime enum to anything
875 * other than INACTIVE (0), then it should have set the
876 * function to call.
877 */
878 if (__predict_false(dtrace_vtime_active)) {
879 (*dtrace_vtime_switch_func)(newl);
880 }
881
882 /* Switch to the new LWP.. */
883 (void)cpu_switchto(NULL, newl, false);
884
885 for (;;) continue; /* XXX: convince gcc about "noreturn" */
886 /* NOTREACHED */
887 }
888
889 /*
890 * setrunnable: change LWP state to be runnable, placing it on the run queue.
891 *
892 * Call with the process and LWP locked. Will return with the LWP unlocked.
893 */
894 void
895 setrunnable(struct lwp *l)
896 {
897 struct proc *p = l->l_proc;
898 struct cpu_info *ci;
899
900 KASSERT((l->l_flag & LW_IDLE) == 0);
901 KASSERT(mutex_owned(p->p_lock));
902 KASSERT(lwp_locked(l, NULL));
903 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
904
905 switch (l->l_stat) {
906 case LSSTOP:
907 /*
908 * If we're being traced (possibly because someone attached us
909 * while we were stopped), check for a signal from the debugger.
910 */
911 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
912 signotify(l);
913 p->p_nrlwps++;
914 break;
915 case LSSUSPENDED:
916 l->l_flag &= ~LW_WSUSPEND;
917 p->p_nrlwps++;
918 cv_broadcast(&p->p_lwpcv);
919 break;
920 case LSSLEEP:
921 KASSERT(l->l_wchan != NULL);
922 break;
923 default:
924 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
925 }
926
927 /*
928 * If the LWP was sleeping, start it again.
929 */
930 if (l->l_wchan != NULL) {
931 l->l_stat = LSSLEEP;
932 /* lwp_unsleep() will release the lock. */
933 lwp_unsleep(l, true);
934 return;
935 }
936
937 /*
938 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
939 * about to call mi_switch(), in which case it will yield.
940 */
941 if ((l->l_pflag & LP_RUNNING) != 0) {
942 l->l_stat = LSONPROC;
943 l->l_slptime = 0;
944 lwp_unlock(l);
945 return;
946 }
947
948 /*
949 * Look for a CPU to run.
950 * Set the LWP runnable.
951 */
952 ci = sched_takecpu(l);
953 l->l_cpu = ci;
954 spc_lock(ci);
955 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
956 sched_setrunnable(l);
957 l->l_stat = LSRUN;
958 l->l_slptime = 0;
959
960 sched_enqueue(l, false);
961 resched_cpu(l);
962 lwp_unlock(l);
963 }
964
965 /*
966 * suspendsched:
967 *
968 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
969 */
970 void
971 suspendsched(void)
972 {
973 CPU_INFO_ITERATOR cii;
974 struct cpu_info *ci;
975 struct lwp *l;
976 struct proc *p;
977
978 /*
979 * We do this by process in order not to violate the locking rules.
980 */
981 mutex_enter(proc_lock);
982 PROCLIST_FOREACH(p, &allproc) {
983 mutex_enter(p->p_lock);
984 if ((p->p_flag & PK_SYSTEM) != 0) {
985 mutex_exit(p->p_lock);
986 continue;
987 }
988
989 p->p_stat = SSTOP;
990
991 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
992 if (l == curlwp)
993 continue;
994
995 lwp_lock(l);
996
997 /*
998 * Set L_WREBOOT so that the LWP will suspend itself
999 * when it tries to return to user mode. We want to
1000 * try and get to get as many LWPs as possible to
1001 * the user / kernel boundary, so that they will
1002 * release any locks that they hold.
1003 */
1004 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1005
1006 if (l->l_stat == LSSLEEP &&
1007 (l->l_flag & LW_SINTR) != 0) {
1008 /* setrunnable() will release the lock. */
1009 setrunnable(l);
1010 continue;
1011 }
1012
1013 lwp_unlock(l);
1014 }
1015
1016 mutex_exit(p->p_lock);
1017 }
1018 mutex_exit(proc_lock);
1019
1020 /*
1021 * Kick all CPUs to make them preempt any LWPs running in user mode.
1022 * They'll trap into the kernel and suspend themselves in userret().
1023 */
1024 for (CPU_INFO_FOREACH(cii, ci)) {
1025 spc_lock(ci);
1026 cpu_need_resched(ci, RESCHED_IMMED);
1027 spc_unlock(ci);
1028 }
1029 }
1030
1031 /*
1032 * sched_unsleep:
1033 *
1034 * The is called when the LWP has not been awoken normally but instead
1035 * interrupted: for example, if the sleep timed out. Because of this,
1036 * it's not a valid action for running or idle LWPs.
1037 */
1038 static void
1039 sched_unsleep(struct lwp *l, bool cleanup)
1040 {
1041
1042 lwp_unlock(l);
1043 panic("sched_unsleep");
1044 }
1045
1046 static void
1047 resched_cpu(struct lwp *l)
1048 {
1049 struct cpu_info *ci = l->l_cpu;
1050
1051 KASSERT(lwp_locked(l, NULL));
1052 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1053 cpu_need_resched(ci, 0);
1054 }
1055
1056 static void
1057 sched_changepri(struct lwp *l, pri_t pri)
1058 {
1059
1060 KASSERT(lwp_locked(l, NULL));
1061
1062 if (l->l_stat == LSRUN) {
1063 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1064 sched_dequeue(l);
1065 l->l_priority = pri;
1066 sched_enqueue(l, false);
1067 } else {
1068 l->l_priority = pri;
1069 }
1070 resched_cpu(l);
1071 }
1072
1073 static void
1074 sched_lendpri(struct lwp *l, pri_t pri)
1075 {
1076
1077 KASSERT(lwp_locked(l, NULL));
1078
1079 if (l->l_stat == LSRUN) {
1080 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1081 sched_dequeue(l);
1082 l->l_inheritedprio = pri;
1083 sched_enqueue(l, false);
1084 } else {
1085 l->l_inheritedprio = pri;
1086 }
1087 resched_cpu(l);
1088 }
1089
1090 struct lwp *
1091 syncobj_noowner(wchan_t wchan)
1092 {
1093
1094 return NULL;
1095 }
1096
1097 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1098 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1099
1100 /*
1101 * Constants for averages over 1, 5 and 15 minutes when sampling at
1102 * 5 second intervals.
1103 */
1104 static const fixpt_t cexp[ ] = {
1105 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1106 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1107 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1108 };
1109
1110 /*
1111 * sched_pstats:
1112 *
1113 * => Update process statistics and check CPU resource allocation.
1114 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1115 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1116 */
1117 void
1118 sched_pstats(void)
1119 {
1120 extern struct loadavg averunnable;
1121 struct loadavg *avg = &averunnable;
1122 const int clkhz = (stathz != 0 ? stathz : hz);
1123 static bool backwards = false;
1124 static u_int lavg_count = 0;
1125 struct proc *p;
1126 int nrun;
1127
1128 sched_pstats_ticks++;
1129 if (++lavg_count >= 5) {
1130 lavg_count = 0;
1131 nrun = 0;
1132 }
1133 mutex_enter(proc_lock);
1134 PROCLIST_FOREACH(p, &allproc) {
1135 struct lwp *l;
1136 struct rlimit *rlim;
1137 time_t runtm;
1138 int sig;
1139
1140 /* Increment sleep time (if sleeping), ignore overflow. */
1141 mutex_enter(p->p_lock);
1142 runtm = p->p_rtime.sec;
1143 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1144 fixpt_t lpctcpu;
1145 u_int lcpticks;
1146
1147 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1148 continue;
1149 lwp_lock(l);
1150 runtm += l->l_rtime.sec;
1151 l->l_swtime++;
1152 sched_lwp_stats(l);
1153
1154 /* For load average calculation. */
1155 if (__predict_false(lavg_count == 0) &&
1156 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1157 switch (l->l_stat) {
1158 case LSSLEEP:
1159 if (l->l_slptime > 1) {
1160 break;
1161 }
1162 case LSRUN:
1163 case LSONPROC:
1164 case LSIDL:
1165 nrun++;
1166 }
1167 }
1168 lwp_unlock(l);
1169
1170 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1171 if (l->l_slptime != 0)
1172 continue;
1173
1174 lpctcpu = l->l_pctcpu;
1175 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1176 lpctcpu += ((FSCALE - ccpu) *
1177 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1178 l->l_pctcpu = lpctcpu;
1179 }
1180 /* Calculating p_pctcpu only for ps(1) */
1181 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1182
1183 if (__predict_false(runtm < 0)) {
1184 if (!backwards) {
1185 backwards = true;
1186 printf("WARNING: negative runtime; "
1187 "monotonic clock has gone backwards\n");
1188 }
1189 mutex_exit(p->p_lock);
1190 continue;
1191 }
1192
1193 /*
1194 * Check if the process exceeds its CPU resource allocation.
1195 * If over the hard limit, kill it with SIGKILL.
1196 * If over the soft limit, send SIGXCPU and raise
1197 * the soft limit a little.
1198 */
1199 rlim = &p->p_rlimit[RLIMIT_CPU];
1200 sig = 0;
1201 if (__predict_false(runtm >= rlim->rlim_cur)) {
1202 if (runtm >= rlim->rlim_max) {
1203 sig = SIGKILL;
1204 log(LOG_NOTICE, "pid %d is killed: %s\n",
1205 p->p_pid, "exceeded RLIMIT_CPU");
1206 uprintf("pid %d, command %s, is killed: %s\n",
1207 p->p_pid, p->p_comm,
1208 "exceeded RLIMIT_CPU");
1209 } else {
1210 sig = SIGXCPU;
1211 if (rlim->rlim_cur < rlim->rlim_max)
1212 rlim->rlim_cur += 5;
1213 }
1214 }
1215 mutex_exit(p->p_lock);
1216 if (__predict_false(sig)) {
1217 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1218 psignal(p, sig);
1219 }
1220 }
1221 mutex_exit(proc_lock);
1222
1223 /* Load average calculation. */
1224 if (__predict_false(lavg_count == 0)) {
1225 int i;
1226 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1227 for (i = 0; i < __arraycount(cexp); i++) {
1228 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1229 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1230 }
1231 }
1232
1233 /* Lightning bolt. */
1234 cv_broadcast(&lbolt);
1235 }
1236