kern_synch.c revision 1.311.10.1 1 /* $NetBSD: kern_synch.c,v 1.311.10.1 2018/02/26 00:43:23 snj Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.311.10.1 2018/02/26 00:43:23 snj Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_dtrace.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/pserialize.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/syscall_stats.h>
92 #include <sys/sleepq.h>
93 #include <sys/lockdebug.h>
94 #include <sys/evcnt.h>
95 #include <sys/intr.h>
96 #include <sys/lwpctl.h>
97 #include <sys/atomic.h>
98 #include <sys/syslog.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #include <dev/lockstat.h>
103
104 #include <sys/dtrace_bsd.h>
105 int dtrace_vtime_active=0;
106 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
107
108 static void sched_unsleep(struct lwp *, bool);
109 static void sched_changepri(struct lwp *, pri_t);
110 static void sched_lendpri(struct lwp *, pri_t);
111 static void resched_cpu(struct lwp *);
112
113 syncobj_t sleep_syncobj = {
114 SOBJ_SLEEPQ_SORTED,
115 sleepq_unsleep,
116 sleepq_changepri,
117 sleepq_lendpri,
118 syncobj_noowner,
119 };
120
121 syncobj_t sched_syncobj = {
122 SOBJ_SLEEPQ_SORTED,
123 sched_unsleep,
124 sched_changepri,
125 sched_lendpri,
126 syncobj_noowner,
127 };
128
129 /* "Lightning bolt": once a second sleep address. */
130 kcondvar_t lbolt __cacheline_aligned;
131
132 u_int sched_pstats_ticks __cacheline_aligned;
133
134 /* Preemption event counters. */
135 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
136 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
137 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
138
139 void
140 synch_init(void)
141 {
142
143 cv_init(&lbolt, "lbolt");
144
145 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
146 "kpreempt", "defer: critical section");
147 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
148 "kpreempt", "defer: kernel_lock");
149 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "immediate");
151 }
152
153 /*
154 * OBSOLETE INTERFACE
155 *
156 * General sleep call. Suspends the current LWP until a wakeup is
157 * performed on the specified identifier. The LWP will then be made
158 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
159 * means no timeout). If pri includes PCATCH flag, signals are checked
160 * before and after sleeping, else signals are not checked. Returns 0 if
161 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
162 * signal needs to be delivered, ERESTART is returned if the current system
163 * call should be restarted if possible, and EINTR is returned if the system
164 * call should be interrupted by the signal (return EINTR).
165 */
166 int
167 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
168 {
169 struct lwp *l = curlwp;
170 sleepq_t *sq;
171 kmutex_t *mp;
172
173 KASSERT((l->l_pflag & LP_INTR) == 0);
174 KASSERT(ident != &lbolt);
175
176 if (sleepq_dontsleep(l)) {
177 (void)sleepq_abort(NULL, 0);
178 return 0;
179 }
180
181 l->l_kpriority = true;
182 sq = sleeptab_lookup(&sleeptab, ident, &mp);
183 sleepq_enter(sq, l, mp);
184 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
185 return sleepq_block(timo, priority & PCATCH);
186 }
187
188 int
189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
190 kmutex_t *mtx)
191 {
192 struct lwp *l = curlwp;
193 sleepq_t *sq;
194 kmutex_t *mp;
195 int error;
196
197 KASSERT((l->l_pflag & LP_INTR) == 0);
198 KASSERT(ident != &lbolt);
199
200 if (sleepq_dontsleep(l)) {
201 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
202 return 0;
203 }
204
205 l->l_kpriority = true;
206 sq = sleeptab_lookup(&sleeptab, ident, &mp);
207 sleepq_enter(sq, l, mp);
208 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
209 mutex_exit(mtx);
210 error = sleepq_block(timo, priority & PCATCH);
211
212 if ((priority & PNORELOCK) == 0)
213 mutex_enter(mtx);
214
215 return error;
216 }
217
218 /*
219 * General sleep call for situations where a wake-up is not expected.
220 */
221 int
222 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
223 {
224 struct lwp *l = curlwp;
225 kmutex_t *mp;
226 sleepq_t *sq;
227 int error;
228
229 KASSERT(!(timo == 0 && intr == false));
230
231 if (sleepq_dontsleep(l))
232 return sleepq_abort(NULL, 0);
233
234 if (mtx != NULL)
235 mutex_exit(mtx);
236 l->l_kpriority = true;
237 sq = sleeptab_lookup(&sleeptab, l, &mp);
238 sleepq_enter(sq, l, mp);
239 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
240 error = sleepq_block(timo, intr);
241 if (mtx != NULL)
242 mutex_enter(mtx);
243
244 return error;
245 }
246
247 /*
248 * OBSOLETE INTERFACE
249 *
250 * Make all LWPs sleeping on the specified identifier runnable.
251 */
252 void
253 wakeup(wchan_t ident)
254 {
255 sleepq_t *sq;
256 kmutex_t *mp;
257
258 if (__predict_false(cold))
259 return;
260
261 sq = sleeptab_lookup(&sleeptab, ident, &mp);
262 sleepq_wake(sq, ident, (u_int)-1, mp);
263 }
264
265 /*
266 * General yield call. Puts the current LWP back on its run queue and
267 * performs a voluntary context switch. Should only be called when the
268 * current LWP explicitly requests it (eg sched_yield(2)).
269 */
270 void
271 yield(void)
272 {
273 struct lwp *l = curlwp;
274
275 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
276 lwp_lock(l);
277 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
278 KASSERT(l->l_stat == LSONPROC);
279 l->l_kpriority = false;
280 (void)mi_switch(l);
281 KERNEL_LOCK(l->l_biglocks, l);
282 }
283
284 /*
285 * General preemption call. Puts the current LWP back on its run queue
286 * and performs an involuntary context switch.
287 */
288 void
289 preempt(void)
290 {
291 struct lwp *l = curlwp;
292
293 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
294 lwp_lock(l);
295 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 KASSERT(l->l_stat == LSONPROC);
297 l->l_kpriority = false;
298 l->l_nivcsw++;
299 (void)mi_switch(l);
300 KERNEL_LOCK(l->l_biglocks, l);
301 }
302
303 /*
304 * Handle a request made by another agent to preempt the current LWP
305 * in-kernel. Usually called when l_dopreempt may be non-zero.
306 *
307 * Character addresses for lockstat only.
308 */
309 static char in_critical_section;
310 static char kernel_lock_held;
311 static char is_softint;
312 static char cpu_kpreempt_enter_fail;
313
314 bool
315 kpreempt(uintptr_t where)
316 {
317 uintptr_t failed;
318 lwp_t *l;
319 int s, dop, lsflag;
320
321 l = curlwp;
322 failed = 0;
323 while ((dop = l->l_dopreempt) != 0) {
324 if (l->l_stat != LSONPROC) {
325 /*
326 * About to block (or die), let it happen.
327 * Doesn't really count as "preemption has
328 * been blocked", since we're going to
329 * context switch.
330 */
331 l->l_dopreempt = 0;
332 return true;
333 }
334 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
335 /* Can't preempt idle loop, don't count as failure. */
336 l->l_dopreempt = 0;
337 return true;
338 }
339 if (__predict_false(l->l_nopreempt != 0)) {
340 /* LWP holds preemption disabled, explicitly. */
341 if ((dop & DOPREEMPT_COUNTED) == 0) {
342 kpreempt_ev_crit.ev_count++;
343 }
344 failed = (uintptr_t)&in_critical_section;
345 break;
346 }
347 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
348 /* Can't preempt soft interrupts yet. */
349 l->l_dopreempt = 0;
350 failed = (uintptr_t)&is_softint;
351 break;
352 }
353 s = splsched();
354 if (__predict_false(l->l_blcnt != 0 ||
355 curcpu()->ci_biglock_wanted != NULL)) {
356 /* Hold or want kernel_lock, code is not MT safe. */
357 splx(s);
358 if ((dop & DOPREEMPT_COUNTED) == 0) {
359 kpreempt_ev_klock.ev_count++;
360 }
361 failed = (uintptr_t)&kernel_lock_held;
362 break;
363 }
364 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
365 /*
366 * It may be that the IPL is too high.
367 * kpreempt_enter() can schedule an
368 * interrupt to retry later.
369 */
370 splx(s);
371 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
372 break;
373 }
374 /* Do it! */
375 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
376 kpreempt_ev_immed.ev_count++;
377 }
378 lwp_lock(l);
379 mi_switch(l);
380 l->l_nopreempt++;
381 splx(s);
382
383 /* Take care of any MD cleanup. */
384 cpu_kpreempt_exit(where);
385 l->l_nopreempt--;
386 }
387
388 if (__predict_true(!failed)) {
389 return false;
390 }
391
392 /* Record preemption failure for reporting via lockstat. */
393 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
394 lsflag = 0;
395 LOCKSTAT_ENTER(lsflag);
396 if (__predict_false(lsflag)) {
397 if (where == 0) {
398 where = (uintptr_t)__builtin_return_address(0);
399 }
400 /* Preemption is on, might recurse, so make it atomic. */
401 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
402 (void *)where) == NULL) {
403 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
404 l->l_pfaillock = failed;
405 }
406 }
407 LOCKSTAT_EXIT(lsflag);
408 return true;
409 }
410
411 /*
412 * Return true if preemption is explicitly disabled.
413 */
414 bool
415 kpreempt_disabled(void)
416 {
417 const lwp_t *l = curlwp;
418
419 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
420 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
421 }
422
423 /*
424 * Disable kernel preemption.
425 */
426 void
427 kpreempt_disable(void)
428 {
429
430 KPREEMPT_DISABLE(curlwp);
431 }
432
433 /*
434 * Reenable kernel preemption.
435 */
436 void
437 kpreempt_enable(void)
438 {
439
440 KPREEMPT_ENABLE(curlwp);
441 }
442
443 /*
444 * Compute the amount of time during which the current lwp was running.
445 *
446 * - update l_rtime unless it's an idle lwp.
447 */
448
449 void
450 updatertime(lwp_t *l, const struct bintime *now)
451 {
452
453 if (__predict_false(l->l_flag & LW_IDLE))
454 return;
455
456 /* rtime += now - stime */
457 bintime_add(&l->l_rtime, now);
458 bintime_sub(&l->l_rtime, &l->l_stime);
459 }
460
461 /*
462 * Select next LWP from the current CPU to run..
463 */
464 static inline lwp_t *
465 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
466 {
467 lwp_t *newl;
468
469 /*
470 * Let sched_nextlwp() select the LWP to run the CPU next.
471 * If no LWP is runnable, select the idle LWP.
472 *
473 * Note that spc_lwplock might not necessary be held, and
474 * new thread would be unlocked after setting the LWP-lock.
475 */
476 newl = sched_nextlwp();
477 if (newl != NULL) {
478 sched_dequeue(newl);
479 KASSERT(lwp_locked(newl, spc->spc_mutex));
480 KASSERT(newl->l_cpu == ci);
481 newl->l_stat = LSONPROC;
482 newl->l_pflag |= LP_RUNNING;
483 lwp_setlock(newl, spc->spc_lwplock);
484 } else {
485 newl = ci->ci_data.cpu_idlelwp;
486 newl->l_stat = LSONPROC;
487 newl->l_pflag |= LP_RUNNING;
488 }
489
490 /*
491 * Only clear want_resched if there are no pending (slow)
492 * software interrupts.
493 */
494 ci->ci_want_resched = ci->ci_data.cpu_softints;
495 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
496 spc->spc_curpriority = lwp_eprio(newl);
497
498 return newl;
499 }
500
501 /*
502 * The machine independent parts of context switch.
503 *
504 * Returns 1 if another LWP was actually run.
505 */
506 int
507 mi_switch(lwp_t *l)
508 {
509 struct cpu_info *ci;
510 struct schedstate_percpu *spc;
511 struct lwp *newl;
512 int retval, oldspl;
513 struct bintime bt;
514 bool returning;
515
516 KASSERT(lwp_locked(l, NULL));
517 KASSERT(kpreempt_disabled());
518 LOCKDEBUG_BARRIER(l->l_mutex, 1);
519
520 kstack_check_magic(l);
521
522 binuptime(&bt);
523
524 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
525 KASSERT((l->l_pflag & LP_RUNNING) != 0);
526 KASSERT(l->l_cpu == curcpu());
527 ci = l->l_cpu;
528 spc = &ci->ci_schedstate;
529 returning = false;
530 newl = NULL;
531
532 /*
533 * If we have been asked to switch to a specific LWP, then there
534 * is no need to inspect the run queues. If a soft interrupt is
535 * blocking, then return to the interrupted thread without adjusting
536 * VM context or its start time: neither have been changed in order
537 * to take the interrupt.
538 */
539 if (l->l_switchto != NULL) {
540 if ((l->l_pflag & LP_INTR) != 0) {
541 returning = true;
542 softint_block(l);
543 if ((l->l_pflag & LP_TIMEINTR) != 0)
544 updatertime(l, &bt);
545 }
546 newl = l->l_switchto;
547 l->l_switchto = NULL;
548 }
549 #ifndef __HAVE_FAST_SOFTINTS
550 else if (ci->ci_data.cpu_softints != 0) {
551 /* There are pending soft interrupts, so pick one. */
552 newl = softint_picklwp();
553 newl->l_stat = LSONPROC;
554 newl->l_pflag |= LP_RUNNING;
555 }
556 #endif /* !__HAVE_FAST_SOFTINTS */
557
558 /* Count time spent in current system call */
559 if (!returning) {
560 SYSCALL_TIME_SLEEP(l);
561
562 /*
563 * XXXSMP If we are using h/w performance counters,
564 * save context.
565 */
566 #if PERFCTRS
567 if (PMC_ENABLED(l->l_proc)) {
568 pmc_save_context(l->l_proc);
569 }
570 #endif
571 updatertime(l, &bt);
572 }
573
574 /* Lock the runqueue */
575 KASSERT(l->l_stat != LSRUN);
576 mutex_spin_enter(spc->spc_mutex);
577
578 /*
579 * If on the CPU and we have gotten this far, then we must yield.
580 */
581 if (l->l_stat == LSONPROC && l != newl) {
582 KASSERT(lwp_locked(l, spc->spc_lwplock));
583 if ((l->l_flag & LW_IDLE) == 0) {
584 l->l_stat = LSRUN;
585 lwp_setlock(l, spc->spc_mutex);
586 sched_enqueue(l, true);
587 /*
588 * Handle migration. Note that "migrating LWP" may
589 * be reset here, if interrupt/preemption happens
590 * early in idle LWP.
591 */
592 if (l->l_target_cpu != NULL &&
593 (l->l_pflag & LP_BOUND) == 0) {
594 KASSERT((l->l_pflag & LP_INTR) == 0);
595 spc->spc_migrating = l;
596 }
597 } else
598 l->l_stat = LSIDL;
599 }
600
601 /* Pick new LWP to run. */
602 if (newl == NULL) {
603 newl = nextlwp(ci, spc);
604 }
605
606 /* Items that must be updated with the CPU locked. */
607 if (!returning) {
608 /* Update the new LWP's start time. */
609 newl->l_stime = bt;
610
611 /*
612 * ci_curlwp changes when a fast soft interrupt occurs.
613 * We use cpu_onproc to keep track of which kernel or
614 * user thread is running 'underneath' the software
615 * interrupt. This is important for time accounting,
616 * itimers and forcing user threads to preempt (aston).
617 */
618 ci->ci_data.cpu_onproc = newl;
619 }
620
621 /*
622 * Preemption related tasks. Must be done with the current
623 * CPU locked.
624 */
625 cpu_did_resched(l);
626 l->l_dopreempt = 0;
627 if (__predict_false(l->l_pfailaddr != 0)) {
628 LOCKSTAT_FLAG(lsflag);
629 LOCKSTAT_ENTER(lsflag);
630 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
631 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
632 1, l->l_pfailtime, l->l_pfailaddr);
633 LOCKSTAT_EXIT(lsflag);
634 l->l_pfailtime = 0;
635 l->l_pfaillock = 0;
636 l->l_pfailaddr = 0;
637 }
638
639 if (l != newl) {
640 struct lwp *prevlwp;
641
642 /* Release all locks, but leave the current LWP locked */
643 if (l->l_mutex == spc->spc_mutex) {
644 /*
645 * Drop spc_lwplock, if the current LWP has been moved
646 * to the run queue (it is now locked by spc_mutex).
647 */
648 mutex_spin_exit(spc->spc_lwplock);
649 } else {
650 /*
651 * Otherwise, drop the spc_mutex, we are done with the
652 * run queues.
653 */
654 mutex_spin_exit(spc->spc_mutex);
655 }
656
657 /*
658 * Mark that context switch is going to be performed
659 * for this LWP, to protect it from being switched
660 * to on another CPU.
661 */
662 KASSERT(l->l_ctxswtch == 0);
663 l->l_ctxswtch = 1;
664 l->l_ncsw++;
665 KASSERT((l->l_pflag & LP_RUNNING) != 0);
666 l->l_pflag &= ~LP_RUNNING;
667
668 /*
669 * Increase the count of spin-mutexes before the release
670 * of the last lock - we must remain at IPL_SCHED during
671 * the context switch.
672 */
673 KASSERTMSG(ci->ci_mtx_count == -1,
674 "%s: cpu%u: ci_mtx_count (%d) != -1 "
675 "(block with spin-mutex held)",
676 __func__, cpu_index(ci), ci->ci_mtx_count);
677 oldspl = MUTEX_SPIN_OLDSPL(ci);
678 ci->ci_mtx_count--;
679 lwp_unlock(l);
680
681 /* Count the context switch on this CPU. */
682 ci->ci_data.cpu_nswtch++;
683
684 /* Update status for lwpctl, if present. */
685 if (l->l_lwpctl != NULL)
686 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
687
688 /*
689 * Save old VM context, unless a soft interrupt
690 * handler is blocking.
691 */
692 if (!returning)
693 pmap_deactivate(l);
694
695 /*
696 * We may need to spin-wait if 'newl' is still
697 * context switching on another CPU.
698 */
699 if (__predict_false(newl->l_ctxswtch != 0)) {
700 u_int count;
701 count = SPINLOCK_BACKOFF_MIN;
702 while (newl->l_ctxswtch)
703 SPINLOCK_BACKOFF(count);
704 }
705
706 /*
707 * If DTrace has set the active vtime enum to anything
708 * other than INACTIVE (0), then it should have set the
709 * function to call.
710 */
711 if (__predict_false(dtrace_vtime_active)) {
712 (*dtrace_vtime_switch_func)(newl);
713 }
714
715 /* Switch to the new LWP.. */
716 #ifdef MULTIPROCESSOR
717 KASSERT(curlwp == ci->ci_curlwp);
718 #endif
719 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
720 prevlwp = cpu_switchto(l, newl, returning);
721 ci = curcpu();
722 #ifdef MULTIPROCESSOR
723 KASSERT(curlwp == ci->ci_curlwp);
724 #endif
725 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
726 l, curlwp, prevlwp);
727
728 /*
729 * Switched away - we have new curlwp.
730 * Restore VM context and IPL.
731 */
732 pmap_activate(l);
733 uvm_emap_switch(l);
734 pcu_switchpoint(l);
735
736 if (prevlwp != NULL) {
737 /* Normalize the count of the spin-mutexes */
738 ci->ci_mtx_count++;
739 /* Unmark the state of context switch */
740 membar_exit();
741 prevlwp->l_ctxswtch = 0;
742 }
743
744 /* Update status for lwpctl, if present. */
745 if (l->l_lwpctl != NULL) {
746 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
747 l->l_lwpctl->lc_pctr++;
748 }
749
750 /* Note trip through cpu_switchto(). */
751 pserialize_switchpoint();
752
753 KASSERT(l->l_cpu == ci);
754 splx(oldspl);
755 /*
756 * note that, unless the caller disabled preemption,
757 * we can be preempted at any time after the above splx() call.
758 */
759 retval = 1;
760 } else {
761 /* Nothing to do - just unlock and return. */
762 mutex_spin_exit(spc->spc_mutex);
763 lwp_unlock(l);
764 retval = 0;
765 }
766
767 KASSERT(l == curlwp);
768 KASSERT(l->l_stat == LSONPROC);
769
770 /*
771 * XXXSMP If we are using h/w performance counters, restore context.
772 * XXXSMP preemption problem.
773 */
774 #if PERFCTRS
775 if (PMC_ENABLED(l->l_proc)) {
776 pmc_restore_context(l->l_proc);
777 }
778 #endif
779 SYSCALL_TIME_WAKEUP(l);
780 LOCKDEBUG_BARRIER(NULL, 1);
781
782 return retval;
783 }
784
785 /*
786 * The machine independent parts of context switch to oblivion.
787 * Does not return. Call with the LWP unlocked.
788 */
789 void
790 lwp_exit_switchaway(lwp_t *l)
791 {
792 struct cpu_info *ci;
793 struct lwp *newl;
794 struct bintime bt;
795
796 ci = l->l_cpu;
797
798 KASSERT(kpreempt_disabled());
799 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
800 KASSERT(ci == curcpu());
801 LOCKDEBUG_BARRIER(NULL, 0);
802
803 kstack_check_magic(l);
804
805 /* Count time spent in current system call */
806 SYSCALL_TIME_SLEEP(l);
807 binuptime(&bt);
808 updatertime(l, &bt);
809
810 /* Must stay at IPL_SCHED even after releasing run queue lock. */
811 (void)splsched();
812
813 /*
814 * Let sched_nextlwp() select the LWP to run the CPU next.
815 * If no LWP is runnable, select the idle LWP.
816 *
817 * Note that spc_lwplock might not necessary be held, and
818 * new thread would be unlocked after setting the LWP-lock.
819 */
820 spc_lock(ci);
821 #ifndef __HAVE_FAST_SOFTINTS
822 if (ci->ci_data.cpu_softints != 0) {
823 /* There are pending soft interrupts, so pick one. */
824 newl = softint_picklwp();
825 newl->l_stat = LSONPROC;
826 newl->l_pflag |= LP_RUNNING;
827 } else
828 #endif /* !__HAVE_FAST_SOFTINTS */
829 {
830 newl = nextlwp(ci, &ci->ci_schedstate);
831 }
832
833 /* Update the new LWP's start time. */
834 newl->l_stime = bt;
835 l->l_pflag &= ~LP_RUNNING;
836
837 /*
838 * ci_curlwp changes when a fast soft interrupt occurs.
839 * We use cpu_onproc to keep track of which kernel or
840 * user thread is running 'underneath' the software
841 * interrupt. This is important for time accounting,
842 * itimers and forcing user threads to preempt (aston).
843 */
844 ci->ci_data.cpu_onproc = newl;
845
846 /*
847 * Preemption related tasks. Must be done with the current
848 * CPU locked.
849 */
850 cpu_did_resched(l);
851
852 /* Unlock the run queue. */
853 spc_unlock(ci);
854
855 /* Count the context switch on this CPU. */
856 ci->ci_data.cpu_nswtch++;
857
858 /* Update status for lwpctl, if present. */
859 if (l->l_lwpctl != NULL)
860 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
861
862 /*
863 * We may need to spin-wait if 'newl' is still
864 * context switching on another CPU.
865 */
866 if (__predict_false(newl->l_ctxswtch != 0)) {
867 u_int count;
868 count = SPINLOCK_BACKOFF_MIN;
869 while (newl->l_ctxswtch)
870 SPINLOCK_BACKOFF(count);
871 }
872
873 /*
874 * If DTrace has set the active vtime enum to anything
875 * other than INACTIVE (0), then it should have set the
876 * function to call.
877 */
878 if (__predict_false(dtrace_vtime_active)) {
879 (*dtrace_vtime_switch_func)(newl);
880 }
881
882 /* Switch to the new LWP.. */
883 (void)cpu_switchto(NULL, newl, false);
884
885 for (;;) continue; /* XXX: convince gcc about "noreturn" */
886 /* NOTREACHED */
887 }
888
889 /*
890 * setrunnable: change LWP state to be runnable, placing it on the run queue.
891 *
892 * Call with the process and LWP locked. Will return with the LWP unlocked.
893 */
894 void
895 setrunnable(struct lwp *l)
896 {
897 struct proc *p = l->l_proc;
898 struct cpu_info *ci;
899
900 KASSERT((l->l_flag & LW_IDLE) == 0);
901 KASSERT(mutex_owned(p->p_lock));
902 KASSERT(lwp_locked(l, NULL));
903 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
904
905 switch (l->l_stat) {
906 case LSSTOP:
907 /*
908 * If we're being traced (possibly because someone attached us
909 * while we were stopped), check for a signal from the debugger.
910 */
911 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
912 signotify(l);
913 p->p_nrlwps++;
914 break;
915 case LSSUSPENDED:
916 l->l_flag &= ~LW_WSUSPEND;
917 p->p_nrlwps++;
918 cv_broadcast(&p->p_lwpcv);
919 break;
920 case LSSLEEP:
921 KASSERT(l->l_wchan != NULL);
922 break;
923 default:
924 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
925 }
926
927 /*
928 * If the LWP was sleeping, start it again.
929 */
930 if (l->l_wchan != NULL) {
931 l->l_stat = LSSLEEP;
932 /* lwp_unsleep() will release the lock. */
933 lwp_unsleep(l, true);
934 return;
935 }
936
937 /*
938 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
939 * about to call mi_switch(), in which case it will yield.
940 */
941 if ((l->l_pflag & LP_RUNNING) != 0) {
942 l->l_stat = LSONPROC;
943 l->l_slptime = 0;
944 lwp_unlock(l);
945 return;
946 }
947
948 /*
949 * Look for a CPU to run.
950 * Set the LWP runnable.
951 */
952 ci = sched_takecpu(l);
953 l->l_cpu = ci;
954 spc_lock(ci);
955 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
956 sched_setrunnable(l);
957 l->l_stat = LSRUN;
958 l->l_slptime = 0;
959
960 sched_enqueue(l, false);
961 resched_cpu(l);
962 lwp_unlock(l);
963 }
964
965 /*
966 * suspendsched:
967 *
968 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
969 */
970 void
971 suspendsched(void)
972 {
973 CPU_INFO_ITERATOR cii;
974 struct cpu_info *ci;
975 struct lwp *l;
976 struct proc *p;
977
978 /*
979 * We do this by process in order not to violate the locking rules.
980 */
981 mutex_enter(proc_lock);
982 PROCLIST_FOREACH(p, &allproc) {
983 mutex_enter(p->p_lock);
984 if ((p->p_flag & PK_SYSTEM) != 0) {
985 mutex_exit(p->p_lock);
986 continue;
987 }
988
989 if (p->p_stat != SSTOP) {
990 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
991 p->p_pptr->p_nstopchild++;
992 p->p_waited = 0;
993 }
994 p->p_stat = SSTOP;
995 }
996
997 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
998 if (l == curlwp)
999 continue;
1000
1001 lwp_lock(l);
1002
1003 /*
1004 * Set L_WREBOOT so that the LWP will suspend itself
1005 * when it tries to return to user mode. We want to
1006 * try and get to get as many LWPs as possible to
1007 * the user / kernel boundary, so that they will
1008 * release any locks that they hold.
1009 */
1010 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1011
1012 if (l->l_stat == LSSLEEP &&
1013 (l->l_flag & LW_SINTR) != 0) {
1014 /* setrunnable() will release the lock. */
1015 setrunnable(l);
1016 continue;
1017 }
1018
1019 lwp_unlock(l);
1020 }
1021
1022 mutex_exit(p->p_lock);
1023 }
1024 mutex_exit(proc_lock);
1025
1026 /*
1027 * Kick all CPUs to make them preempt any LWPs running in user mode.
1028 * They'll trap into the kernel and suspend themselves in userret().
1029 */
1030 for (CPU_INFO_FOREACH(cii, ci)) {
1031 spc_lock(ci);
1032 cpu_need_resched(ci, RESCHED_IMMED);
1033 spc_unlock(ci);
1034 }
1035 }
1036
1037 /*
1038 * sched_unsleep:
1039 *
1040 * The is called when the LWP has not been awoken normally but instead
1041 * interrupted: for example, if the sleep timed out. Because of this,
1042 * it's not a valid action for running or idle LWPs.
1043 */
1044 static void
1045 sched_unsleep(struct lwp *l, bool cleanup)
1046 {
1047
1048 lwp_unlock(l);
1049 panic("sched_unsleep");
1050 }
1051
1052 static void
1053 resched_cpu(struct lwp *l)
1054 {
1055 struct cpu_info *ci = l->l_cpu;
1056
1057 KASSERT(lwp_locked(l, NULL));
1058 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1059 cpu_need_resched(ci, 0);
1060 }
1061
1062 static void
1063 sched_changepri(struct lwp *l, pri_t pri)
1064 {
1065
1066 KASSERT(lwp_locked(l, NULL));
1067
1068 if (l->l_stat == LSRUN) {
1069 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1070 sched_dequeue(l);
1071 l->l_priority = pri;
1072 sched_enqueue(l, false);
1073 } else {
1074 l->l_priority = pri;
1075 }
1076 resched_cpu(l);
1077 }
1078
1079 static void
1080 sched_lendpri(struct lwp *l, pri_t pri)
1081 {
1082
1083 KASSERT(lwp_locked(l, NULL));
1084
1085 if (l->l_stat == LSRUN) {
1086 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1087 sched_dequeue(l);
1088 l->l_inheritedprio = pri;
1089 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1090 sched_enqueue(l, false);
1091 } else {
1092 l->l_inheritedprio = pri;
1093 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1094 }
1095 resched_cpu(l);
1096 }
1097
1098 struct lwp *
1099 syncobj_noowner(wchan_t wchan)
1100 {
1101
1102 return NULL;
1103 }
1104
1105 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1106 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1107
1108 /*
1109 * Constants for averages over 1, 5 and 15 minutes when sampling at
1110 * 5 second intervals.
1111 */
1112 static const fixpt_t cexp[ ] = {
1113 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1114 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1115 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1116 };
1117
1118 /*
1119 * sched_pstats:
1120 *
1121 * => Update process statistics and check CPU resource allocation.
1122 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1123 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1124 */
1125 void
1126 sched_pstats(void)
1127 {
1128 extern struct loadavg averunnable;
1129 struct loadavg *avg = &averunnable;
1130 const int clkhz = (stathz != 0 ? stathz : hz);
1131 static bool backwards = false;
1132 static u_int lavg_count = 0;
1133 struct proc *p;
1134 int nrun;
1135
1136 sched_pstats_ticks++;
1137 if (++lavg_count >= 5) {
1138 lavg_count = 0;
1139 nrun = 0;
1140 }
1141 mutex_enter(proc_lock);
1142 PROCLIST_FOREACH(p, &allproc) {
1143 struct lwp *l;
1144 struct rlimit *rlim;
1145 time_t runtm;
1146 int sig;
1147
1148 /* Increment sleep time (if sleeping), ignore overflow. */
1149 mutex_enter(p->p_lock);
1150 runtm = p->p_rtime.sec;
1151 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1152 fixpt_t lpctcpu;
1153 u_int lcpticks;
1154
1155 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1156 continue;
1157 lwp_lock(l);
1158 runtm += l->l_rtime.sec;
1159 l->l_swtime++;
1160 sched_lwp_stats(l);
1161
1162 /* For load average calculation. */
1163 if (__predict_false(lavg_count == 0) &&
1164 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1165 switch (l->l_stat) {
1166 case LSSLEEP:
1167 if (l->l_slptime > 1) {
1168 break;
1169 }
1170 case LSRUN:
1171 case LSONPROC:
1172 case LSIDL:
1173 nrun++;
1174 }
1175 }
1176 lwp_unlock(l);
1177
1178 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1179 if (l->l_slptime != 0)
1180 continue;
1181
1182 lpctcpu = l->l_pctcpu;
1183 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1184 lpctcpu += ((FSCALE - ccpu) *
1185 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1186 l->l_pctcpu = lpctcpu;
1187 }
1188 /* Calculating p_pctcpu only for ps(1) */
1189 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1190
1191 if (__predict_false(runtm < 0)) {
1192 if (!backwards) {
1193 backwards = true;
1194 printf("WARNING: negative runtime; "
1195 "monotonic clock has gone backwards\n");
1196 }
1197 mutex_exit(p->p_lock);
1198 continue;
1199 }
1200
1201 /*
1202 * Check if the process exceeds its CPU resource allocation.
1203 * If over the hard limit, kill it with SIGKILL.
1204 * If over the soft limit, send SIGXCPU and raise
1205 * the soft limit a little.
1206 */
1207 rlim = &p->p_rlimit[RLIMIT_CPU];
1208 sig = 0;
1209 if (__predict_false(runtm >= rlim->rlim_cur)) {
1210 if (runtm >= rlim->rlim_max) {
1211 sig = SIGKILL;
1212 log(LOG_NOTICE, "pid %d is killed: %s\n",
1213 p->p_pid, "exceeded RLIMIT_CPU");
1214 uprintf("pid %d, command %s, is killed: %s\n",
1215 p->p_pid, p->p_comm,
1216 "exceeded RLIMIT_CPU");
1217 } else {
1218 sig = SIGXCPU;
1219 if (rlim->rlim_cur < rlim->rlim_max)
1220 rlim->rlim_cur += 5;
1221 }
1222 }
1223 mutex_exit(p->p_lock);
1224 if (__predict_false(sig)) {
1225 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1226 psignal(p, sig);
1227 }
1228 }
1229 mutex_exit(proc_lock);
1230
1231 /* Load average calculation. */
1232 if (__predict_false(lavg_count == 0)) {
1233 int i;
1234 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1235 for (i = 0; i < __arraycount(cexp); i++) {
1236 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1237 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1238 }
1239 }
1240
1241 /* Lightning bolt. */
1242 cv_broadcast(&lbolt);
1243 }
1244