kern_synch.c revision 1.314.2.2 1 /* $NetBSD: kern_synch.c,v 1.314.2.2 2018/07/28 04:38:08 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.314.2.2 2018/07/28 04:38:08 pgoyette Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107 static void resched_cpu(struct lwp *);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 /* "Lightning bolt": once a second sleep address. */
126 kcondvar_t lbolt __cacheline_aligned;
127
128 u_int sched_pstats_ticks __cacheline_aligned;
129
130 /* Preemption event counters. */
131 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
132 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
133 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
134
135 void
136 synch_init(void)
137 {
138
139 cv_init(&lbolt, "lbolt");
140
141 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
142 "kpreempt", "defer: critical section");
143 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
144 "kpreempt", "defer: kernel_lock");
145 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
146 "kpreempt", "immediate");
147 }
148
149 /*
150 * OBSOLETE INTERFACE
151 *
152 * General sleep call. Suspends the current LWP until a wakeup is
153 * performed on the specified identifier. The LWP will then be made
154 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
155 * means no timeout). If pri includes PCATCH flag, signals are checked
156 * before and after sleeping, else signals are not checked. Returns 0 if
157 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
158 * signal needs to be delivered, ERESTART is returned if the current system
159 * call should be restarted if possible, and EINTR is returned if the system
160 * call should be interrupted by the signal (return EINTR).
161 */
162 int
163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
164 {
165 struct lwp *l = curlwp;
166 sleepq_t *sq;
167 kmutex_t *mp;
168
169 KASSERT((l->l_pflag & LP_INTR) == 0);
170 KASSERT(ident != &lbolt);
171
172 if (sleepq_dontsleep(l)) {
173 (void)sleepq_abort(NULL, 0);
174 return 0;
175 }
176
177 l->l_kpriority = true;
178 sq = sleeptab_lookup(&sleeptab, ident, &mp);
179 sleepq_enter(sq, l, mp);
180 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 return sleepq_block(timo, priority & PCATCH);
182 }
183
184 int
185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
186 kmutex_t *mtx)
187 {
188 struct lwp *l = curlwp;
189 sleepq_t *sq;
190 kmutex_t *mp;
191 int error;
192
193 KASSERT((l->l_pflag & LP_INTR) == 0);
194 KASSERT(ident != &lbolt);
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 l->l_kpriority = true;
202 sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 sleepq_enter(sq, l, mp);
204 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 mutex_exit(mtx);
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if ((priority & PNORELOCK) == 0)
209 mutex_enter(mtx);
210
211 return error;
212 }
213
214 /*
215 * General sleep call for situations where a wake-up is not expected.
216 */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 kmutex_t *mp;
222 sleepq_t *sq;
223 int error;
224
225 KASSERT(!(timo == 0 && intr == false));
226
227 if (sleepq_dontsleep(l))
228 return sleepq_abort(NULL, 0);
229
230 if (mtx != NULL)
231 mutex_exit(mtx);
232 l->l_kpriority = true;
233 sq = sleeptab_lookup(&sleeptab, l, &mp);
234 sleepq_enter(sq, l, mp);
235 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
236 error = sleepq_block(timo, intr);
237 if (mtx != NULL)
238 mutex_enter(mtx);
239
240 return error;
241 }
242
243 /*
244 * OBSOLETE INTERFACE
245 *
246 * Make all LWPs sleeping on the specified identifier runnable.
247 */
248 void
249 wakeup(wchan_t ident)
250 {
251 sleepq_t *sq;
252 kmutex_t *mp;
253
254 if (__predict_false(cold))
255 return;
256
257 sq = sleeptab_lookup(&sleeptab, ident, &mp);
258 sleepq_wake(sq, ident, (u_int)-1, mp);
259 }
260
261 /*
262 * General yield call. Puts the current LWP back on its run queue and
263 * performs a voluntary context switch. Should only be called when the
264 * current LWP explicitly requests it (eg sched_yield(2)).
265 */
266 void
267 yield(void)
268 {
269 struct lwp *l = curlwp;
270
271 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
272 lwp_lock(l);
273 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 KASSERT(l->l_stat == LSONPROC);
275 l->l_kpriority = false;
276 (void)mi_switch(l);
277 KERNEL_LOCK(l->l_biglocks, l);
278 }
279
280 /*
281 * General preemption call. Puts the current LWP back on its run queue
282 * and performs an involuntary context switch.
283 */
284 void
285 preempt(void)
286 {
287 struct lwp *l = curlwp;
288
289 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 lwp_lock(l);
291 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
292 KASSERT(l->l_stat == LSONPROC);
293 l->l_kpriority = false;
294 l->l_nivcsw++;
295 (void)mi_switch(l);
296 KERNEL_LOCK(l->l_biglocks, l);
297 }
298
299 /*
300 * Handle a request made by another agent to preempt the current LWP
301 * in-kernel. Usually called when l_dopreempt may be non-zero.
302 *
303 * Character addresses for lockstat only.
304 */
305 static char in_critical_section;
306 static char kernel_lock_held;
307 static char is_softint;
308 static char cpu_kpreempt_enter_fail;
309
310 bool
311 kpreempt(uintptr_t where)
312 {
313 uintptr_t failed;
314 lwp_t *l;
315 int s, dop, lsflag;
316
317 l = curlwp;
318 failed = 0;
319 while ((dop = l->l_dopreempt) != 0) {
320 if (l->l_stat != LSONPROC) {
321 /*
322 * About to block (or die), let it happen.
323 * Doesn't really count as "preemption has
324 * been blocked", since we're going to
325 * context switch.
326 */
327 l->l_dopreempt = 0;
328 return true;
329 }
330 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
331 /* Can't preempt idle loop, don't count as failure. */
332 l->l_dopreempt = 0;
333 return true;
334 }
335 if (__predict_false(l->l_nopreempt != 0)) {
336 /* LWP holds preemption disabled, explicitly. */
337 if ((dop & DOPREEMPT_COUNTED) == 0) {
338 kpreempt_ev_crit.ev_count++;
339 }
340 failed = (uintptr_t)&in_critical_section;
341 break;
342 }
343 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
344 /* Can't preempt soft interrupts yet. */
345 l->l_dopreempt = 0;
346 failed = (uintptr_t)&is_softint;
347 break;
348 }
349 s = splsched();
350 if (__predict_false(l->l_blcnt != 0 ||
351 curcpu()->ci_biglock_wanted != NULL)) {
352 /* Hold or want kernel_lock, code is not MT safe. */
353 splx(s);
354 if ((dop & DOPREEMPT_COUNTED) == 0) {
355 kpreempt_ev_klock.ev_count++;
356 }
357 failed = (uintptr_t)&kernel_lock_held;
358 break;
359 }
360 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
361 /*
362 * It may be that the IPL is too high.
363 * kpreempt_enter() can schedule an
364 * interrupt to retry later.
365 */
366 splx(s);
367 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
368 break;
369 }
370 /* Do it! */
371 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
372 kpreempt_ev_immed.ev_count++;
373 }
374 lwp_lock(l);
375 mi_switch(l);
376 l->l_nopreempt++;
377 splx(s);
378
379 /* Take care of any MD cleanup. */
380 cpu_kpreempt_exit(where);
381 l->l_nopreempt--;
382 }
383
384 if (__predict_true(!failed)) {
385 return false;
386 }
387
388 /* Record preemption failure for reporting via lockstat. */
389 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
390 lsflag = 0;
391 LOCKSTAT_ENTER(lsflag);
392 if (__predict_false(lsflag)) {
393 if (where == 0) {
394 where = (uintptr_t)__builtin_return_address(0);
395 }
396 /* Preemption is on, might recurse, so make it atomic. */
397 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
398 (void *)where) == NULL) {
399 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
400 l->l_pfaillock = failed;
401 }
402 }
403 LOCKSTAT_EXIT(lsflag);
404 return true;
405 }
406
407 /*
408 * Return true if preemption is explicitly disabled.
409 */
410 bool
411 kpreempt_disabled(void)
412 {
413 const lwp_t *l = curlwp;
414
415 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
416 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
417 }
418
419 /*
420 * Disable kernel preemption.
421 */
422 void
423 kpreempt_disable(void)
424 {
425
426 KPREEMPT_DISABLE(curlwp);
427 }
428
429 /*
430 * Reenable kernel preemption.
431 */
432 void
433 kpreempt_enable(void)
434 {
435
436 KPREEMPT_ENABLE(curlwp);
437 }
438
439 /*
440 * Compute the amount of time during which the current lwp was running.
441 *
442 * - update l_rtime unless it's an idle lwp.
443 */
444
445 void
446 updatertime(lwp_t *l, const struct bintime *now)
447 {
448
449 if (__predict_false(l->l_flag & LW_IDLE))
450 return;
451
452 /* rtime += now - stime */
453 bintime_add(&l->l_rtime, now);
454 bintime_sub(&l->l_rtime, &l->l_stime);
455 }
456
457 /*
458 * Select next LWP from the current CPU to run..
459 */
460 static inline lwp_t *
461 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
462 {
463 lwp_t *newl;
464
465 /*
466 * Let sched_nextlwp() select the LWP to run the CPU next.
467 * If no LWP is runnable, select the idle LWP.
468 *
469 * Note that spc_lwplock might not necessary be held, and
470 * new thread would be unlocked after setting the LWP-lock.
471 */
472 newl = sched_nextlwp();
473 if (newl != NULL) {
474 sched_dequeue(newl);
475 KASSERT(lwp_locked(newl, spc->spc_mutex));
476 KASSERT(newl->l_cpu == ci);
477 newl->l_stat = LSONPROC;
478 newl->l_pflag |= LP_RUNNING;
479 lwp_setlock(newl, spc->spc_lwplock);
480 } else {
481 newl = ci->ci_data.cpu_idlelwp;
482 newl->l_stat = LSONPROC;
483 newl->l_pflag |= LP_RUNNING;
484 }
485
486 /*
487 * Only clear want_resched if there are no pending (slow)
488 * software interrupts.
489 */
490 ci->ci_want_resched = ci->ci_data.cpu_softints;
491 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
492 spc->spc_curpriority = lwp_eprio(newl);
493
494 return newl;
495 }
496
497 /*
498 * The machine independent parts of context switch.
499 *
500 * Returns 1 if another LWP was actually run.
501 */
502 int
503 mi_switch(lwp_t *l)
504 {
505 struct cpu_info *ci;
506 struct schedstate_percpu *spc;
507 struct lwp *newl;
508 int retval, oldspl;
509 struct bintime bt;
510 bool returning;
511
512 KASSERT(lwp_locked(l, NULL));
513 KASSERT(kpreempt_disabled());
514 LOCKDEBUG_BARRIER(l->l_mutex, 1);
515
516 kstack_check_magic(l);
517
518 binuptime(&bt);
519
520 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
521 KASSERT((l->l_pflag & LP_RUNNING) != 0);
522 KASSERT(l->l_cpu == curcpu());
523 ci = l->l_cpu;
524 spc = &ci->ci_schedstate;
525 returning = false;
526 newl = NULL;
527
528 /*
529 * If we have been asked to switch to a specific LWP, then there
530 * is no need to inspect the run queues. If a soft interrupt is
531 * blocking, then return to the interrupted thread without adjusting
532 * VM context or its start time: neither have been changed in order
533 * to take the interrupt.
534 */
535 if (l->l_switchto != NULL) {
536 if ((l->l_pflag & LP_INTR) != 0) {
537 returning = true;
538 softint_block(l);
539 if ((l->l_pflag & LP_TIMEINTR) != 0)
540 updatertime(l, &bt);
541 }
542 newl = l->l_switchto;
543 l->l_switchto = NULL;
544 }
545 #ifndef __HAVE_FAST_SOFTINTS
546 else if (ci->ci_data.cpu_softints != 0) {
547 /* There are pending soft interrupts, so pick one. */
548 newl = softint_picklwp();
549 newl->l_stat = LSONPROC;
550 newl->l_pflag |= LP_RUNNING;
551 }
552 #endif /* !__HAVE_FAST_SOFTINTS */
553
554 /* Count time spent in current system call */
555 if (!returning) {
556 SYSCALL_TIME_SLEEP(l);
557
558 updatertime(l, &bt);
559 }
560
561 /* Lock the runqueue */
562 KASSERT(l->l_stat != LSRUN);
563 mutex_spin_enter(spc->spc_mutex);
564
565 /*
566 * If on the CPU and we have gotten this far, then we must yield.
567 */
568 if (l->l_stat == LSONPROC && l != newl) {
569 KASSERT(lwp_locked(l, spc->spc_lwplock));
570 if ((l->l_flag & LW_IDLE) == 0) {
571 l->l_stat = LSRUN;
572 lwp_setlock(l, spc->spc_mutex);
573 sched_enqueue(l, true);
574 /*
575 * Handle migration. Note that "migrating LWP" may
576 * be reset here, if interrupt/preemption happens
577 * early in idle LWP.
578 */
579 if (l->l_target_cpu != NULL &&
580 (l->l_pflag & LP_BOUND) == 0) {
581 KASSERT((l->l_pflag & LP_INTR) == 0);
582 spc->spc_migrating = l;
583 }
584 } else
585 l->l_stat = LSIDL;
586 }
587
588 /* Pick new LWP to run. */
589 if (newl == NULL) {
590 newl = nextlwp(ci, spc);
591 }
592
593 /* Items that must be updated with the CPU locked. */
594 if (!returning) {
595 /* Update the new LWP's start time. */
596 newl->l_stime = bt;
597
598 /*
599 * ci_curlwp changes when a fast soft interrupt occurs.
600 * We use cpu_onproc to keep track of which kernel or
601 * user thread is running 'underneath' the software
602 * interrupt. This is important for time accounting,
603 * itimers and forcing user threads to preempt (aston).
604 */
605 ci->ci_data.cpu_onproc = newl;
606 }
607
608 /*
609 * Preemption related tasks. Must be done with the current
610 * CPU locked.
611 */
612 cpu_did_resched(l);
613 l->l_dopreempt = 0;
614 if (__predict_false(l->l_pfailaddr != 0)) {
615 LOCKSTAT_FLAG(lsflag);
616 LOCKSTAT_ENTER(lsflag);
617 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
618 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
619 1, l->l_pfailtime, l->l_pfailaddr);
620 LOCKSTAT_EXIT(lsflag);
621 l->l_pfailtime = 0;
622 l->l_pfaillock = 0;
623 l->l_pfailaddr = 0;
624 }
625
626 if (l != newl) {
627 struct lwp *prevlwp;
628
629 /* Release all locks, but leave the current LWP locked */
630 if (l->l_mutex == spc->spc_mutex) {
631 /*
632 * Drop spc_lwplock, if the current LWP has been moved
633 * to the run queue (it is now locked by spc_mutex).
634 */
635 mutex_spin_exit(spc->spc_lwplock);
636 } else {
637 /*
638 * Otherwise, drop the spc_mutex, we are done with the
639 * run queues.
640 */
641 mutex_spin_exit(spc->spc_mutex);
642 }
643
644 /*
645 * Mark that context switch is going to be performed
646 * for this LWP, to protect it from being switched
647 * to on another CPU.
648 */
649 KASSERT(l->l_ctxswtch == 0);
650 l->l_ctxswtch = 1;
651 l->l_ncsw++;
652 KASSERT((l->l_pflag & LP_RUNNING) != 0);
653 l->l_pflag &= ~LP_RUNNING;
654
655 /*
656 * Increase the count of spin-mutexes before the release
657 * of the last lock - we must remain at IPL_SCHED during
658 * the context switch.
659 */
660 KASSERTMSG(ci->ci_mtx_count == -1,
661 "%s: cpu%u: ci_mtx_count (%d) != -1 "
662 "(block with spin-mutex held)",
663 __func__, cpu_index(ci), ci->ci_mtx_count);
664 oldspl = MUTEX_SPIN_OLDSPL(ci);
665 ci->ci_mtx_count--;
666 lwp_unlock(l);
667
668 /* Count the context switch on this CPU. */
669 ci->ci_data.cpu_nswtch++;
670
671 /* Update status for lwpctl, if present. */
672 if (l->l_lwpctl != NULL)
673 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
674
675 /*
676 * Save old VM context, unless a soft interrupt
677 * handler is blocking.
678 */
679 if (!returning)
680 pmap_deactivate(l);
681
682 /*
683 * We may need to spin-wait if 'newl' is still
684 * context switching on another CPU.
685 */
686 if (__predict_false(newl->l_ctxswtch != 0)) {
687 u_int count;
688 count = SPINLOCK_BACKOFF_MIN;
689 while (newl->l_ctxswtch)
690 SPINLOCK_BACKOFF(count);
691 }
692
693 /*
694 * If DTrace has set the active vtime enum to anything
695 * other than INACTIVE (0), then it should have set the
696 * function to call.
697 */
698 if (__predict_false(dtrace_vtime_active)) {
699 (*dtrace_vtime_switch_func)(newl);
700 }
701
702 /* Switch to the new LWP.. */
703 #ifdef MULTIPROCESSOR
704 KASSERT(curlwp == ci->ci_curlwp);
705 #endif
706 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
707 prevlwp = cpu_switchto(l, newl, returning);
708 ci = curcpu();
709 #ifdef MULTIPROCESSOR
710 KASSERT(curlwp == ci->ci_curlwp);
711 #endif
712 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
713 l, curlwp, prevlwp);
714
715 /*
716 * Switched away - we have new curlwp.
717 * Restore VM context and IPL.
718 */
719 pmap_activate(l);
720 pcu_switchpoint(l);
721
722 if (prevlwp != NULL) {
723 /* Normalize the count of the spin-mutexes */
724 ci->ci_mtx_count++;
725 /* Unmark the state of context switch */
726 membar_exit();
727 prevlwp->l_ctxswtch = 0;
728 }
729
730 /* Update status for lwpctl, if present. */
731 if (l->l_lwpctl != NULL) {
732 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
733 l->l_lwpctl->lc_pctr++;
734 }
735
736 /* Note trip through cpu_switchto(). */
737 pserialize_switchpoint();
738
739 KASSERT(l->l_cpu == ci);
740 splx(oldspl);
741 /*
742 * note that, unless the caller disabled preemption,
743 * we can be preempted at any time after the above splx() call.
744 */
745 retval = 1;
746 } else {
747 /* Nothing to do - just unlock and return. */
748 pserialize_switchpoint();
749 mutex_spin_exit(spc->spc_mutex);
750 lwp_unlock(l);
751 retval = 0;
752 }
753
754 KASSERT(l == curlwp);
755 KASSERT(l->l_stat == LSONPROC);
756
757 SYSCALL_TIME_WAKEUP(l);
758 LOCKDEBUG_BARRIER(NULL, 1);
759
760 return retval;
761 }
762
763 /*
764 * The machine independent parts of context switch to oblivion.
765 * Does not return. Call with the LWP unlocked.
766 */
767 void
768 lwp_exit_switchaway(lwp_t *l)
769 {
770 struct cpu_info *ci;
771 struct lwp *newl;
772 struct bintime bt;
773
774 ci = l->l_cpu;
775
776 KASSERT(kpreempt_disabled());
777 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
778 KASSERT(ci == curcpu());
779 LOCKDEBUG_BARRIER(NULL, 0);
780
781 kstack_check_magic(l);
782
783 /* Count time spent in current system call */
784 SYSCALL_TIME_SLEEP(l);
785 binuptime(&bt);
786 updatertime(l, &bt);
787
788 /* Must stay at IPL_SCHED even after releasing run queue lock. */
789 (void)splsched();
790
791 /*
792 * Let sched_nextlwp() select the LWP to run the CPU next.
793 * If no LWP is runnable, select the idle LWP.
794 *
795 * Note that spc_lwplock might not necessary be held, and
796 * new thread would be unlocked after setting the LWP-lock.
797 */
798 spc_lock(ci);
799 #ifndef __HAVE_FAST_SOFTINTS
800 if (ci->ci_data.cpu_softints != 0) {
801 /* There are pending soft interrupts, so pick one. */
802 newl = softint_picklwp();
803 newl->l_stat = LSONPROC;
804 newl->l_pflag |= LP_RUNNING;
805 } else
806 #endif /* !__HAVE_FAST_SOFTINTS */
807 {
808 newl = nextlwp(ci, &ci->ci_schedstate);
809 }
810
811 /* Update the new LWP's start time. */
812 newl->l_stime = bt;
813 l->l_pflag &= ~LP_RUNNING;
814
815 /*
816 * ci_curlwp changes when a fast soft interrupt occurs.
817 * We use cpu_onproc to keep track of which kernel or
818 * user thread is running 'underneath' the software
819 * interrupt. This is important for time accounting,
820 * itimers and forcing user threads to preempt (aston).
821 */
822 ci->ci_data.cpu_onproc = newl;
823
824 /*
825 * Preemption related tasks. Must be done with the current
826 * CPU locked.
827 */
828 cpu_did_resched(l);
829
830 /* Unlock the run queue. */
831 spc_unlock(ci);
832
833 /* Count the context switch on this CPU. */
834 ci->ci_data.cpu_nswtch++;
835
836 /* Update status for lwpctl, if present. */
837 if (l->l_lwpctl != NULL)
838 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
839
840 /*
841 * We may need to spin-wait if 'newl' is still
842 * context switching on another CPU.
843 */
844 if (__predict_false(newl->l_ctxswtch != 0)) {
845 u_int count;
846 count = SPINLOCK_BACKOFF_MIN;
847 while (newl->l_ctxswtch)
848 SPINLOCK_BACKOFF(count);
849 }
850
851 /*
852 * If DTrace has set the active vtime enum to anything
853 * other than INACTIVE (0), then it should have set the
854 * function to call.
855 */
856 if (__predict_false(dtrace_vtime_active)) {
857 (*dtrace_vtime_switch_func)(newl);
858 }
859
860 /* Switch to the new LWP.. */
861 (void)cpu_switchto(NULL, newl, false);
862
863 for (;;) continue; /* XXX: convince gcc about "noreturn" */
864 /* NOTREACHED */
865 }
866
867 /*
868 * setrunnable: change LWP state to be runnable, placing it on the run queue.
869 *
870 * Call with the process and LWP locked. Will return with the LWP unlocked.
871 */
872 void
873 setrunnable(struct lwp *l)
874 {
875 struct proc *p = l->l_proc;
876 struct cpu_info *ci;
877
878 KASSERT((l->l_flag & LW_IDLE) == 0);
879 KASSERT(mutex_owned(p->p_lock));
880 KASSERT(lwp_locked(l, NULL));
881 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
882
883 switch (l->l_stat) {
884 case LSSTOP:
885 /*
886 * If we're being traced (possibly because someone attached us
887 * while we were stopped), check for a signal from the debugger.
888 */
889 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
890 signotify(l);
891 p->p_nrlwps++;
892 break;
893 case LSSUSPENDED:
894 l->l_flag &= ~LW_WSUSPEND;
895 p->p_nrlwps++;
896 cv_broadcast(&p->p_lwpcv);
897 break;
898 case LSSLEEP:
899 KASSERT(l->l_wchan != NULL);
900 break;
901 default:
902 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
903 }
904
905 /*
906 * If the LWP was sleeping, start it again.
907 */
908 if (l->l_wchan != NULL) {
909 l->l_stat = LSSLEEP;
910 /* lwp_unsleep() will release the lock. */
911 lwp_unsleep(l, true);
912 return;
913 }
914
915 /*
916 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
917 * about to call mi_switch(), in which case it will yield.
918 */
919 if ((l->l_pflag & LP_RUNNING) != 0) {
920 l->l_stat = LSONPROC;
921 l->l_slptime = 0;
922 lwp_unlock(l);
923 return;
924 }
925
926 /*
927 * Look for a CPU to run.
928 * Set the LWP runnable.
929 */
930 ci = sched_takecpu(l);
931 l->l_cpu = ci;
932 spc_lock(ci);
933 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
934 sched_setrunnable(l);
935 l->l_stat = LSRUN;
936 l->l_slptime = 0;
937
938 sched_enqueue(l, false);
939 resched_cpu(l);
940 lwp_unlock(l);
941 }
942
943 /*
944 * suspendsched:
945 *
946 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
947 */
948 void
949 suspendsched(void)
950 {
951 CPU_INFO_ITERATOR cii;
952 struct cpu_info *ci;
953 struct lwp *l;
954 struct proc *p;
955
956 /*
957 * We do this by process in order not to violate the locking rules.
958 */
959 mutex_enter(proc_lock);
960 PROCLIST_FOREACH(p, &allproc) {
961 mutex_enter(p->p_lock);
962 if ((p->p_flag & PK_SYSTEM) != 0) {
963 mutex_exit(p->p_lock);
964 continue;
965 }
966
967 if (p->p_stat != SSTOP) {
968 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
969 p->p_pptr->p_nstopchild++;
970 p->p_waited = 0;
971 }
972 p->p_stat = SSTOP;
973 }
974
975 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
976 if (l == curlwp)
977 continue;
978
979 lwp_lock(l);
980
981 /*
982 * Set L_WREBOOT so that the LWP will suspend itself
983 * when it tries to return to user mode. We want to
984 * try and get to get as many LWPs as possible to
985 * the user / kernel boundary, so that they will
986 * release any locks that they hold.
987 */
988 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
989
990 if (l->l_stat == LSSLEEP &&
991 (l->l_flag & LW_SINTR) != 0) {
992 /* setrunnable() will release the lock. */
993 setrunnable(l);
994 continue;
995 }
996
997 lwp_unlock(l);
998 }
999
1000 mutex_exit(p->p_lock);
1001 }
1002 mutex_exit(proc_lock);
1003
1004 /*
1005 * Kick all CPUs to make them preempt any LWPs running in user mode.
1006 * They'll trap into the kernel and suspend themselves in userret().
1007 */
1008 for (CPU_INFO_FOREACH(cii, ci)) {
1009 spc_lock(ci);
1010 cpu_need_resched(ci, RESCHED_IMMED);
1011 spc_unlock(ci);
1012 }
1013 }
1014
1015 /*
1016 * sched_unsleep:
1017 *
1018 * The is called when the LWP has not been awoken normally but instead
1019 * interrupted: for example, if the sleep timed out. Because of this,
1020 * it's not a valid action for running or idle LWPs.
1021 */
1022 static void
1023 sched_unsleep(struct lwp *l, bool cleanup)
1024 {
1025
1026 lwp_unlock(l);
1027 panic("sched_unsleep");
1028 }
1029
1030 static void
1031 resched_cpu(struct lwp *l)
1032 {
1033 struct cpu_info *ci = l->l_cpu;
1034
1035 KASSERT(lwp_locked(l, NULL));
1036 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1037 cpu_need_resched(ci, 0);
1038 }
1039
1040 static void
1041 sched_changepri(struct lwp *l, pri_t pri)
1042 {
1043
1044 KASSERT(lwp_locked(l, NULL));
1045
1046 if (l->l_stat == LSRUN) {
1047 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1048 sched_dequeue(l);
1049 l->l_priority = pri;
1050 sched_enqueue(l, false);
1051 } else {
1052 l->l_priority = pri;
1053 }
1054 resched_cpu(l);
1055 }
1056
1057 static void
1058 sched_lendpri(struct lwp *l, pri_t pri)
1059 {
1060
1061 KASSERT(lwp_locked(l, NULL));
1062
1063 if (l->l_stat == LSRUN) {
1064 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1065 sched_dequeue(l);
1066 l->l_inheritedprio = pri;
1067 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1068 sched_enqueue(l, false);
1069 } else {
1070 l->l_inheritedprio = pri;
1071 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1072 }
1073 resched_cpu(l);
1074 }
1075
1076 struct lwp *
1077 syncobj_noowner(wchan_t wchan)
1078 {
1079
1080 return NULL;
1081 }
1082
1083 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1084 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1085
1086 /*
1087 * Constants for averages over 1, 5 and 15 minutes when sampling at
1088 * 5 second intervals.
1089 */
1090 static const fixpt_t cexp[ ] = {
1091 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1092 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1093 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1094 };
1095
1096 /*
1097 * sched_pstats:
1098 *
1099 * => Update process statistics and check CPU resource allocation.
1100 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1101 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1102 */
1103 void
1104 sched_pstats(void)
1105 {
1106 extern struct loadavg averunnable;
1107 struct loadavg *avg = &averunnable;
1108 const int clkhz = (stathz != 0 ? stathz : hz);
1109 static bool backwards = false;
1110 static u_int lavg_count = 0;
1111 struct proc *p;
1112 int nrun;
1113
1114 sched_pstats_ticks++;
1115 if (++lavg_count >= 5) {
1116 lavg_count = 0;
1117 nrun = 0;
1118 }
1119 mutex_enter(proc_lock);
1120 PROCLIST_FOREACH(p, &allproc) {
1121 struct lwp *l;
1122 struct rlimit *rlim;
1123 time_t runtm;
1124 int sig;
1125
1126 /* Increment sleep time (if sleeping), ignore overflow. */
1127 mutex_enter(p->p_lock);
1128 runtm = p->p_rtime.sec;
1129 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1130 fixpt_t lpctcpu;
1131 u_int lcpticks;
1132
1133 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1134 continue;
1135 lwp_lock(l);
1136 runtm += l->l_rtime.sec;
1137 l->l_swtime++;
1138 sched_lwp_stats(l);
1139
1140 /* For load average calculation. */
1141 if (__predict_false(lavg_count == 0) &&
1142 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1143 switch (l->l_stat) {
1144 case LSSLEEP:
1145 if (l->l_slptime > 1) {
1146 break;
1147 }
1148 case LSRUN:
1149 case LSONPROC:
1150 case LSIDL:
1151 nrun++;
1152 }
1153 }
1154 lwp_unlock(l);
1155
1156 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1157 if (l->l_slptime != 0)
1158 continue;
1159
1160 lpctcpu = l->l_pctcpu;
1161 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1162 lpctcpu += ((FSCALE - ccpu) *
1163 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1164 l->l_pctcpu = lpctcpu;
1165 }
1166 /* Calculating p_pctcpu only for ps(1) */
1167 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1168
1169 if (__predict_false(runtm < 0)) {
1170 if (!backwards) {
1171 backwards = true;
1172 printf("WARNING: negative runtime; "
1173 "monotonic clock has gone backwards\n");
1174 }
1175 mutex_exit(p->p_lock);
1176 continue;
1177 }
1178
1179 /*
1180 * Check if the process exceeds its CPU resource allocation.
1181 * If over the hard limit, kill it with SIGKILL.
1182 * If over the soft limit, send SIGXCPU and raise
1183 * the soft limit a little.
1184 */
1185 rlim = &p->p_rlimit[RLIMIT_CPU];
1186 sig = 0;
1187 if (__predict_false(runtm >= rlim->rlim_cur)) {
1188 if (runtm >= rlim->rlim_max) {
1189 sig = SIGKILL;
1190 log(LOG_NOTICE,
1191 "pid %d, command %s, is killed: %s\n",
1192 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1193 uprintf("pid %d, command %s, is killed: %s\n",
1194 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1195 } else {
1196 sig = SIGXCPU;
1197 if (rlim->rlim_cur < rlim->rlim_max)
1198 rlim->rlim_cur += 5;
1199 }
1200 }
1201 mutex_exit(p->p_lock);
1202 if (__predict_false(sig)) {
1203 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1204 psignal(p, sig);
1205 }
1206 }
1207 mutex_exit(proc_lock);
1208
1209 /* Load average calculation. */
1210 if (__predict_false(lavg_count == 0)) {
1211 int i;
1212 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1213 for (i = 0; i < __arraycount(cexp); i++) {
1214 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1215 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1216 }
1217 }
1218
1219 /* Lightning bolt. */
1220 cv_broadcast(&lbolt);
1221 }
1222