kern_synch.c revision 1.315.2.2 1 /* $NetBSD: kern_synch.c,v 1.315.2.2 2020/04/08 14:08:51 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.315.2.2 2020/04/08 14:08:51 martin Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/syslog.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 #include <sys/dtrace_bsd.h>
102 int dtrace_vtime_active=0;
103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
104
105 static void sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 syncobj_t kpause_syncobj = {
126 .sobj_flag = SOBJ_SLEEPQ_NULL,
127 .sobj_unsleep = sleepq_unsleep,
128 .sobj_changepri = sleepq_changepri,
129 .sobj_lendpri = sleepq_lendpri,
130 .sobj_owner = syncobj_noowner,
131 };
132
133 /* "Lightning bolt": once a second sleep address. */
134 kcondvar_t lbolt __cacheline_aligned;
135
136 u_int sched_pstats_ticks __cacheline_aligned;
137
138 /* Preemption event counters. */
139 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
140 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
141 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
142
143 void
144 synch_init(void)
145 {
146
147 cv_init(&lbolt, "lbolt");
148
149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "defer: critical section");
151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 "kpreempt", "defer: kernel_lock");
153 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "immediate");
155 }
156
157 /*
158 * OBSOLETE INTERFACE
159 *
160 * General sleep call. Suspends the current LWP until a wakeup is
161 * performed on the specified identifier. The LWP will then be made
162 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
163 * means no timeout). If pri includes PCATCH flag, signals are checked
164 * before and after sleeping, else signals are not checked. Returns 0 if
165 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
166 * signal needs to be delivered, ERESTART is returned if the current system
167 * call should be restarted if possible, and EINTR is returned if the system
168 * call should be interrupted by the signal (return EINTR).
169 */
170 int
171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
172 {
173 struct lwp *l = curlwp;
174 sleepq_t *sq;
175 kmutex_t *mp;
176
177 KASSERT((l->l_pflag & LP_INTR) == 0);
178 KASSERT(ident != &lbolt);
179
180 if (sleepq_dontsleep(l)) {
181 (void)sleepq_abort(NULL, 0);
182 return 0;
183 }
184
185 l->l_kpriority = true;
186 sq = sleeptab_lookup(&sleeptab, ident, &mp);
187 sleepq_enter(sq, l, mp);
188 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
189 return sleepq_block(timo, priority & PCATCH);
190 }
191
192 int
193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
194 kmutex_t *mtx)
195 {
196 struct lwp *l = curlwp;
197 sleepq_t *sq;
198 kmutex_t *mp;
199 int error;
200
201 KASSERT((l->l_pflag & LP_INTR) == 0);
202 KASSERT(ident != &lbolt);
203
204 if (sleepq_dontsleep(l)) {
205 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
206 return 0;
207 }
208
209 l->l_kpriority = true;
210 sq = sleeptab_lookup(&sleeptab, ident, &mp);
211 sleepq_enter(sq, l, mp);
212 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
213 mutex_exit(mtx);
214 error = sleepq_block(timo, priority & PCATCH);
215
216 if ((priority & PNORELOCK) == 0)
217 mutex_enter(mtx);
218
219 return error;
220 }
221
222 /*
223 * General sleep call for situations where a wake-up is not expected.
224 */
225 int
226 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
227 {
228 struct lwp *l = curlwp;
229 int error;
230
231 KASSERT(!(timo == 0 && intr == false));
232
233 if (sleepq_dontsleep(l))
234 return sleepq_abort(NULL, 0);
235
236 if (mtx != NULL)
237 mutex_exit(mtx);
238 l->l_kpriority = true;
239 lwp_lock(l);
240 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
241 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj);
242 error = sleepq_block(timo, intr);
243 if (mtx != NULL)
244 mutex_enter(mtx);
245
246 return error;
247 }
248
249 /*
250 * OBSOLETE INTERFACE
251 *
252 * Make all LWPs sleeping on the specified identifier runnable.
253 */
254 void
255 wakeup(wchan_t ident)
256 {
257 sleepq_t *sq;
258 kmutex_t *mp;
259
260 if (__predict_false(cold))
261 return;
262
263 sq = sleeptab_lookup(&sleeptab, ident, &mp);
264 sleepq_wake(sq, ident, (u_int)-1, mp);
265 }
266
267 /*
268 * General yield call. Puts the current LWP back on its run queue and
269 * performs a context switch.
270 */
271 void
272 yield(void)
273 {
274 struct lwp *l = curlwp;
275
276 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
277 lwp_lock(l);
278
279 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
280 KASSERT(l->l_stat == LSONPROC);
281
282 /* Voluntary - ditch kpriority boost. */
283 l->l_kpriority = false;
284 spc_lock(l->l_cpu);
285 mi_switch(l);
286 KERNEL_LOCK(l->l_biglocks, l);
287 }
288
289 /*
290 * General preemption call. Puts the current LWP back on its run queue
291 * and performs an involuntary context switch. Different from yield()
292 * in that:
293 *
294 * - It's counted differently (involuntary vs. voluntary).
295 * - Realtime threads go to the head of their runqueue vs. tail for yield().
296 * - Priority boost is retained unless LWP has exceeded timeslice.
297 */
298 void
299 preempt(void)
300 {
301 struct lwp *l = curlwp;
302
303 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 lwp_lock(l);
305
306 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
307 KASSERT(l->l_stat == LSONPROC);
308
309 spc_lock(l->l_cpu);
310 /* Involuntary - keep kpriority boost unless a CPU hog. */
311 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
312 l->l_kpriority = false;
313 }
314 l->l_pflag |= LP_PREEMPTING;
315 mi_switch(l);
316 KERNEL_LOCK(l->l_biglocks, l);
317 }
318
319 /*
320 * Return true if the current LWP should yield the processor. Intended to
321 * be used by long-running code in kernel.
322 */
323 inline bool
324 preempt_needed(void)
325 {
326 lwp_t *l = curlwp;
327 int needed;
328
329 KPREEMPT_DISABLE(l);
330 needed = l->l_cpu->ci_want_resched;
331 KPREEMPT_ENABLE(l);
332
333 return (bool)needed;
334 }
335
336 /*
337 * A breathing point for long running code in kernel.
338 */
339 void
340 preempt_point(void)
341 {
342
343 if (__predict_false(preempt_needed())) {
344 preempt();
345 }
346 }
347
348 /*
349 * Handle a request made by another agent to preempt the current LWP
350 * in-kernel. Usually called when l_dopreempt may be non-zero.
351 *
352 * Character addresses for lockstat only.
353 */
354 static char kpreempt_is_disabled;
355 static char kernel_lock_held;
356 static char is_softint_lwp;
357 static char spl_is_raised;
358
359 bool
360 kpreempt(uintptr_t where)
361 {
362 uintptr_t failed;
363 lwp_t *l;
364 int s, dop, lsflag;
365
366 l = curlwp;
367 failed = 0;
368 while ((dop = l->l_dopreempt) != 0) {
369 if (l->l_stat != LSONPROC) {
370 /*
371 * About to block (or die), let it happen.
372 * Doesn't really count as "preemption has
373 * been blocked", since we're going to
374 * context switch.
375 */
376 atomic_swap_uint(&l->l_dopreempt, 0);
377 return true;
378 }
379 KASSERT((l->l_flag & LW_IDLE) == 0);
380 if (__predict_false(l->l_nopreempt != 0)) {
381 /* LWP holds preemption disabled, explicitly. */
382 if ((dop & DOPREEMPT_COUNTED) == 0) {
383 kpreempt_ev_crit.ev_count++;
384 }
385 failed = (uintptr_t)&kpreempt_is_disabled;
386 break;
387 }
388 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
389 /* Can't preempt soft interrupts yet. */
390 atomic_swap_uint(&l->l_dopreempt, 0);
391 failed = (uintptr_t)&is_softint_lwp;
392 break;
393 }
394 s = splsched();
395 if (__predict_false(l->l_blcnt != 0 ||
396 curcpu()->ci_biglock_wanted != NULL)) {
397 /* Hold or want kernel_lock, code is not MT safe. */
398 splx(s);
399 if ((dop & DOPREEMPT_COUNTED) == 0) {
400 kpreempt_ev_klock.ev_count++;
401 }
402 failed = (uintptr_t)&kernel_lock_held;
403 break;
404 }
405 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
406 /*
407 * It may be that the IPL is too high.
408 * kpreempt_enter() can schedule an
409 * interrupt to retry later.
410 */
411 splx(s);
412 failed = (uintptr_t)&spl_is_raised;
413 break;
414 }
415 /* Do it! */
416 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
417 kpreempt_ev_immed.ev_count++;
418 }
419 lwp_lock(l);
420 /* Involuntary - keep kpriority boost. */
421 l->l_pflag |= LP_PREEMPTING;
422 spc_lock(l->l_cpu);
423 mi_switch(l);
424 l->l_nopreempt++;
425 splx(s);
426
427 /* Take care of any MD cleanup. */
428 cpu_kpreempt_exit(where);
429 l->l_nopreempt--;
430 }
431
432 if (__predict_true(!failed)) {
433 return false;
434 }
435
436 /* Record preemption failure for reporting via lockstat. */
437 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
438 lsflag = 0;
439 LOCKSTAT_ENTER(lsflag);
440 if (__predict_false(lsflag)) {
441 if (where == 0) {
442 where = (uintptr_t)__builtin_return_address(0);
443 }
444 /* Preemption is on, might recurse, so make it atomic. */
445 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
446 (void *)where) == NULL) {
447 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
448 l->l_pfaillock = failed;
449 }
450 }
451 LOCKSTAT_EXIT(lsflag);
452 return true;
453 }
454
455 /*
456 * Return true if preemption is explicitly disabled.
457 */
458 bool
459 kpreempt_disabled(void)
460 {
461 const lwp_t *l = curlwp;
462
463 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
464 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
465 cpu_kpreempt_disabled();
466 }
467
468 /*
469 * Disable kernel preemption.
470 */
471 void
472 kpreempt_disable(void)
473 {
474
475 KPREEMPT_DISABLE(curlwp);
476 }
477
478 /*
479 * Reenable kernel preemption.
480 */
481 void
482 kpreempt_enable(void)
483 {
484
485 KPREEMPT_ENABLE(curlwp);
486 }
487
488 /*
489 * Compute the amount of time during which the current lwp was running.
490 *
491 * - update l_rtime unless it's an idle lwp.
492 */
493
494 void
495 updatertime(lwp_t *l, const struct bintime *now)
496 {
497
498 if (__predict_false(l->l_flag & LW_IDLE))
499 return;
500
501 /* rtime += now - stime */
502 bintime_add(&l->l_rtime, now);
503 bintime_sub(&l->l_rtime, &l->l_stime);
504 }
505
506 /*
507 * Select next LWP from the current CPU to run..
508 */
509 static inline lwp_t *
510 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
511 {
512 lwp_t *newl;
513
514 /*
515 * Let sched_nextlwp() select the LWP to run the CPU next.
516 * If no LWP is runnable, select the idle LWP.
517 *
518 * On arrival here LWPs on a run queue are locked by spc_mutex which
519 * is currently held. Idle LWPs are always locked by spc_lwplock,
520 * which may or may not be held here. On exit from this code block,
521 * in all cases newl is locked by spc_lwplock.
522 */
523 newl = sched_nextlwp();
524 if (newl != NULL) {
525 sched_dequeue(newl);
526 KASSERT(lwp_locked(newl, spc->spc_mutex));
527 KASSERT(newl->l_cpu == ci);
528 newl->l_stat = LSONPROC;
529 newl->l_pflag |= LP_RUNNING;
530 spc->spc_curpriority = lwp_eprio(newl);
531 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
532 lwp_setlock(newl, spc->spc_lwplock);
533 } else {
534 /*
535 * The idle LWP does not get set to LSONPROC, because
536 * otherwise it screws up the output from top(1) etc.
537 */
538 newl = ci->ci_data.cpu_idlelwp;
539 newl->l_pflag |= LP_RUNNING;
540 spc->spc_curpriority = PRI_IDLE;
541 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
542 SPCF_IDLE;
543 }
544
545 /*
546 * Only clear want_resched if there are no pending (slow) software
547 * interrupts. We can do this without an atomic, because no new
548 * LWPs can appear in the queue due to our hold on spc_mutex, and
549 * the update to ci_want_resched will become globally visible before
550 * the release of spc_mutex becomes globally visible.
551 */
552 ci->ci_want_resched = ci->ci_data.cpu_softints;
553
554 return newl;
555 }
556
557 /*
558 * The machine independent parts of context switch.
559 *
560 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
561 * changes its own l_cpu (that would screw up curcpu on many ports and could
562 * cause all kinds of other evil stuff). l_cpu is always changed by some
563 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
564 * is checked under lock).
565 */
566 void
567 mi_switch(lwp_t *l)
568 {
569 struct cpu_info *ci;
570 struct schedstate_percpu *spc;
571 struct lwp *newl;
572 kmutex_t *lock;
573 int oldspl;
574 struct bintime bt;
575 bool returning;
576
577 KASSERT(lwp_locked(l, NULL));
578 KASSERT(kpreempt_disabled());
579 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
580 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
581
582 kstack_check_magic(l);
583
584 binuptime(&bt);
585
586 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
587 KASSERT((l->l_pflag & LP_RUNNING) != 0);
588 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
589 ci = curcpu();
590 spc = &ci->ci_schedstate;
591 returning = false;
592 newl = NULL;
593
594 /*
595 * If we have been asked to switch to a specific LWP, then there
596 * is no need to inspect the run queues. If a soft interrupt is
597 * blocking, then return to the interrupted thread without adjusting
598 * VM context or its start time: neither have been changed in order
599 * to take the interrupt.
600 */
601 if (l->l_switchto != NULL) {
602 if ((l->l_pflag & LP_INTR) != 0) {
603 returning = true;
604 softint_block(l);
605 if ((l->l_pflag & LP_TIMEINTR) != 0)
606 updatertime(l, &bt);
607 }
608 newl = l->l_switchto;
609 l->l_switchto = NULL;
610 }
611 #ifndef __HAVE_FAST_SOFTINTS
612 else if (ci->ci_data.cpu_softints != 0) {
613 /* There are pending soft interrupts, so pick one. */
614 newl = softint_picklwp();
615 newl->l_stat = LSONPROC;
616 newl->l_pflag |= LP_RUNNING;
617 }
618 #endif /* !__HAVE_FAST_SOFTINTS */
619
620 /*
621 * If on the CPU and we have gotten this far, then we must yield.
622 */
623 if (l->l_stat == LSONPROC && l != newl) {
624 KASSERT(lwp_locked(l, spc->spc_lwplock));
625 KASSERT((l->l_flag & LW_IDLE) == 0);
626 l->l_stat = LSRUN;
627 lwp_setlock(l, spc->spc_mutex);
628 sched_enqueue(l);
629 sched_preempted(l);
630
631 /*
632 * Handle migration. Note that "migrating LWP" may
633 * be reset here, if interrupt/preemption happens
634 * early in idle LWP.
635 */
636 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
637 KASSERT((l->l_pflag & LP_INTR) == 0);
638 spc->spc_migrating = l;
639 }
640 }
641
642 /* Pick new LWP to run. */
643 if (newl == NULL) {
644 newl = nextlwp(ci, spc);
645 }
646
647 /* Items that must be updated with the CPU locked. */
648 if (!returning) {
649 /* Count time spent in current system call */
650 SYSCALL_TIME_SLEEP(l);
651
652 updatertime(l, &bt);
653
654 /* Update the new LWP's start time. */
655 newl->l_stime = bt;
656
657 /*
658 * ci_curlwp changes when a fast soft interrupt occurs.
659 * We use ci_onproc to keep track of which kernel or
660 * user thread is running 'underneath' the software
661 * interrupt. This is important for time accounting,
662 * itimers and forcing user threads to preempt (aston).
663 */
664 ci->ci_onproc = newl;
665 }
666
667 /*
668 * Preemption related tasks. Must be done holding spc_mutex. Clear
669 * l_dopreempt without an atomic - it's only ever set non-zero by
670 * sched_resched_cpu() which also holds spc_mutex, and only ever
671 * cleared by the LWP itself (us) with atomics when not under lock.
672 */
673 l->l_dopreempt = 0;
674 if (__predict_false(l->l_pfailaddr != 0)) {
675 LOCKSTAT_FLAG(lsflag);
676 LOCKSTAT_ENTER(lsflag);
677 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
678 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
679 1, l->l_pfailtime, l->l_pfailaddr);
680 LOCKSTAT_EXIT(lsflag);
681 l->l_pfailtime = 0;
682 l->l_pfaillock = 0;
683 l->l_pfailaddr = 0;
684 }
685
686 if (l != newl) {
687 struct lwp *prevlwp;
688
689 /* Release all locks, but leave the current LWP locked */
690 if (l->l_mutex == spc->spc_mutex) {
691 /*
692 * Drop spc_lwplock, if the current LWP has been moved
693 * to the run queue (it is now locked by spc_mutex).
694 */
695 mutex_spin_exit(spc->spc_lwplock);
696 } else {
697 /*
698 * Otherwise, drop the spc_mutex, we are done with the
699 * run queues.
700 */
701 mutex_spin_exit(spc->spc_mutex);
702 }
703
704 /* We're down to only one lock, so do debug checks. */
705 LOCKDEBUG_BARRIER(l->l_mutex, 1);
706
707 /* Count the context switch. */
708 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
709 l->l_ncsw++;
710 if ((l->l_pflag & LP_PREEMPTING) != 0) {
711 l->l_nivcsw++;
712 l->l_pflag &= ~LP_PREEMPTING;
713 }
714
715 /*
716 * Increase the count of spin-mutexes before the release
717 * of the last lock - we must remain at IPL_SCHED after
718 * releasing the lock.
719 */
720 KASSERTMSG(ci->ci_mtx_count == -1,
721 "%s: cpu%u: ci_mtx_count (%d) != -1 "
722 "(block with spin-mutex held)",
723 __func__, cpu_index(ci), ci->ci_mtx_count);
724 oldspl = MUTEX_SPIN_OLDSPL(ci);
725 ci->ci_mtx_count = -2;
726
727 /* Update status for lwpctl, if present. */
728 if (l->l_lwpctl != NULL) {
729 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
730 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
731 }
732
733 /*
734 * If curlwp is a soft interrupt LWP, there's nobody on the
735 * other side to unlock - we're returning into an assembly
736 * trampoline. Unlock now. This is safe because this is a
737 * kernel LWP and is bound to current CPU: the worst anyone
738 * else will do to it, is to put it back onto this CPU's run
739 * queue (and the CPU is busy here right now!).
740 */
741 if (returning) {
742 /* Keep IPL_SCHED after this; MD code will fix up. */
743 l->l_pflag &= ~LP_RUNNING;
744 lwp_unlock(l);
745 } else {
746 /* A normal LWP: save old VM context. */
747 pmap_deactivate(l);
748 }
749
750 /*
751 * If DTrace has set the active vtime enum to anything
752 * other than INACTIVE (0), then it should have set the
753 * function to call.
754 */
755 if (__predict_false(dtrace_vtime_active)) {
756 (*dtrace_vtime_switch_func)(newl);
757 }
758
759 /*
760 * We must ensure not to come here from inside a read section.
761 */
762 KASSERT(pserialize_not_in_read_section());
763
764 /* Switch to the new LWP.. */
765 #ifdef MULTIPROCESSOR
766 KASSERT(curlwp == ci->ci_curlwp);
767 #endif
768 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
769 prevlwp = cpu_switchto(l, newl, returning);
770 ci = curcpu();
771 #ifdef MULTIPROCESSOR
772 KASSERT(curlwp == ci->ci_curlwp);
773 #endif
774 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
775 l, curlwp, prevlwp);
776 KASSERT(prevlwp != NULL);
777 KASSERT(l->l_cpu == ci);
778 KASSERT(ci->ci_mtx_count == -2);
779
780 /*
781 * Immediately mark the previous LWP as no longer running
782 * and unlock (to keep lock wait times short as possible).
783 * We'll still be at IPL_SCHED afterwards. If a zombie,
784 * don't touch after clearing LP_RUNNING as it could be
785 * reaped by another CPU. Issue a memory barrier to ensure
786 * this.
787 */
788 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
789 lock = prevlwp->l_mutex;
790 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
791 membar_sync();
792 }
793 prevlwp->l_pflag &= ~LP_RUNNING;
794 mutex_spin_exit(lock);
795
796 /*
797 * Switched away - we have new curlwp.
798 * Restore VM context and IPL.
799 */
800 pmap_activate(l);
801 pcu_switchpoint(l);
802
803 /* Update status for lwpctl, if present. */
804 if (l->l_lwpctl != NULL) {
805 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
806 l->l_lwpctl->lc_pctr++;
807 }
808
809 /*
810 * Normalize the spin mutex count and restore the previous
811 * SPL. Note that, unless the caller disabled preemption,
812 * we can be preempted at any time after this splx().
813 */
814 KASSERT(l->l_cpu == ci);
815 KASSERT(ci->ci_mtx_count == -1);
816 ci->ci_mtx_count = 0;
817 splx(oldspl);
818 } else {
819 /* Nothing to do - just unlock and return. */
820 mutex_spin_exit(spc->spc_mutex);
821 l->l_pflag &= ~LP_PREEMPTING;
822 lwp_unlock(l);
823 }
824
825 KASSERT(l == curlwp);
826 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
827
828 SYSCALL_TIME_WAKEUP(l);
829 LOCKDEBUG_BARRIER(NULL, 1);
830 }
831
832 /*
833 * setrunnable: change LWP state to be runnable, placing it on the run queue.
834 *
835 * Call with the process and LWP locked. Will return with the LWP unlocked.
836 */
837 void
838 setrunnable(struct lwp *l)
839 {
840 struct proc *p = l->l_proc;
841 struct cpu_info *ci;
842 kmutex_t *oldlock;
843
844 KASSERT((l->l_flag & LW_IDLE) == 0);
845 KASSERT(mutex_owned(p->p_lock));
846 KASSERT(lwp_locked(l, NULL));
847 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
848
849 switch (l->l_stat) {
850 case LSSTOP:
851 /*
852 * If we're being traced (possibly because someone attached us
853 * while we were stopped), check for a signal from the debugger.
854 */
855 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
856 signotify(l);
857 p->p_nrlwps++;
858 break;
859 case LSSUSPENDED:
860 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
861 l->l_flag &= ~LW_WSUSPEND;
862 p->p_nrlwps++;
863 cv_broadcast(&p->p_lwpcv);
864 break;
865 case LSSLEEP:
866 KASSERT(l->l_wchan != NULL);
867 break;
868 case LSIDL:
869 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
870 break;
871 default:
872 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
873 }
874
875 /*
876 * If the LWP was sleeping, start it again.
877 */
878 if (l->l_wchan != NULL) {
879 l->l_stat = LSSLEEP;
880 /* lwp_unsleep() will release the lock. */
881 lwp_unsleep(l, true);
882 return;
883 }
884
885 /*
886 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
887 * about to call mi_switch(), in which case it will yield.
888 */
889 if ((l->l_pflag & LP_RUNNING) != 0) {
890 l->l_stat = LSONPROC;
891 l->l_slptime = 0;
892 lwp_unlock(l);
893 return;
894 }
895
896 /*
897 * Look for a CPU to run.
898 * Set the LWP runnable.
899 */
900 ci = sched_takecpu(l);
901 l->l_cpu = ci;
902 spc_lock(ci);
903 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
904 sched_setrunnable(l);
905 l->l_stat = LSRUN;
906 l->l_slptime = 0;
907 sched_enqueue(l);
908 sched_resched_lwp(l, true);
909 /* SPC & LWP now unlocked. */
910 mutex_spin_exit(oldlock);
911 }
912
913 /*
914 * suspendsched:
915 *
916 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
917 */
918 void
919 suspendsched(void)
920 {
921 CPU_INFO_ITERATOR cii;
922 struct cpu_info *ci;
923 struct lwp *l;
924 struct proc *p;
925
926 /*
927 * We do this by process in order not to violate the locking rules.
928 */
929 mutex_enter(proc_lock);
930 PROCLIST_FOREACH(p, &allproc) {
931 mutex_enter(p->p_lock);
932 if ((p->p_flag & PK_SYSTEM) != 0) {
933 mutex_exit(p->p_lock);
934 continue;
935 }
936
937 if (p->p_stat != SSTOP) {
938 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
939 p->p_pptr->p_nstopchild++;
940 p->p_waited = 0;
941 }
942 p->p_stat = SSTOP;
943 }
944
945 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
946 if (l == curlwp)
947 continue;
948
949 lwp_lock(l);
950
951 /*
952 * Set L_WREBOOT so that the LWP will suspend itself
953 * when it tries to return to user mode. We want to
954 * try and get to get as many LWPs as possible to
955 * the user / kernel boundary, so that they will
956 * release any locks that they hold.
957 */
958 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
959
960 if (l->l_stat == LSSLEEP &&
961 (l->l_flag & LW_SINTR) != 0) {
962 /* setrunnable() will release the lock. */
963 setrunnable(l);
964 continue;
965 }
966
967 lwp_unlock(l);
968 }
969
970 mutex_exit(p->p_lock);
971 }
972 mutex_exit(proc_lock);
973
974 /*
975 * Kick all CPUs to make them preempt any LWPs running in user mode.
976 * They'll trap into the kernel and suspend themselves in userret().
977 *
978 * Unusually, we don't hold any other scheduler object locked, which
979 * would keep preemption off for sched_resched_cpu(), so disable it
980 * explicitly.
981 */
982 kpreempt_disable();
983 for (CPU_INFO_FOREACH(cii, ci)) {
984 spc_lock(ci);
985 sched_resched_cpu(ci, PRI_KERNEL, true);
986 /* spc now unlocked */
987 }
988 kpreempt_enable();
989 }
990
991 /*
992 * sched_unsleep:
993 *
994 * The is called when the LWP has not been awoken normally but instead
995 * interrupted: for example, if the sleep timed out. Because of this,
996 * it's not a valid action for running or idle LWPs.
997 */
998 static void
999 sched_unsleep(struct lwp *l, bool cleanup)
1000 {
1001
1002 lwp_unlock(l);
1003 panic("sched_unsleep");
1004 }
1005
1006 static void
1007 sched_changepri(struct lwp *l, pri_t pri)
1008 {
1009 struct schedstate_percpu *spc;
1010 struct cpu_info *ci;
1011
1012 KASSERT(lwp_locked(l, NULL));
1013
1014 ci = l->l_cpu;
1015 spc = &ci->ci_schedstate;
1016
1017 if (l->l_stat == LSRUN) {
1018 KASSERT(lwp_locked(l, spc->spc_mutex));
1019 sched_dequeue(l);
1020 l->l_priority = pri;
1021 sched_enqueue(l);
1022 sched_resched_lwp(l, false);
1023 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1024 /* On priority drop, only evict realtime LWPs. */
1025 KASSERT(lwp_locked(l, spc->spc_lwplock));
1026 l->l_priority = pri;
1027 spc_lock(ci);
1028 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1029 /* spc now unlocked */
1030 } else {
1031 l->l_priority = pri;
1032 }
1033 }
1034
1035 static void
1036 sched_lendpri(struct lwp *l, pri_t pri)
1037 {
1038 struct schedstate_percpu *spc;
1039 struct cpu_info *ci;
1040
1041 KASSERT(lwp_locked(l, NULL));
1042
1043 ci = l->l_cpu;
1044 spc = &ci->ci_schedstate;
1045
1046 if (l->l_stat == LSRUN) {
1047 KASSERT(lwp_locked(l, spc->spc_mutex));
1048 sched_dequeue(l);
1049 l->l_inheritedprio = pri;
1050 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1051 sched_enqueue(l);
1052 sched_resched_lwp(l, false);
1053 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1054 /* On priority drop, only evict realtime LWPs. */
1055 KASSERT(lwp_locked(l, spc->spc_lwplock));
1056 l->l_inheritedprio = pri;
1057 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1058 spc_lock(ci);
1059 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1060 /* spc now unlocked */
1061 } else {
1062 l->l_inheritedprio = pri;
1063 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1064 }
1065 }
1066
1067 struct lwp *
1068 syncobj_noowner(wchan_t wchan)
1069 {
1070
1071 return NULL;
1072 }
1073
1074 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1075 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1076
1077 /*
1078 * Constants for averages over 1, 5 and 15 minutes when sampling at
1079 * 5 second intervals.
1080 */
1081 static const fixpt_t cexp[ ] = {
1082 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1083 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1084 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1085 };
1086
1087 /*
1088 * sched_pstats:
1089 *
1090 * => Update process statistics and check CPU resource allocation.
1091 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1092 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1093 */
1094 void
1095 sched_pstats(void)
1096 {
1097 extern struct loadavg averunnable;
1098 struct loadavg *avg = &averunnable;
1099 const int clkhz = (stathz != 0 ? stathz : hz);
1100 static bool backwards = false;
1101 static u_int lavg_count = 0;
1102 struct proc *p;
1103 int nrun;
1104
1105 sched_pstats_ticks++;
1106 if (++lavg_count >= 5) {
1107 lavg_count = 0;
1108 nrun = 0;
1109 }
1110 mutex_enter(proc_lock);
1111 PROCLIST_FOREACH(p, &allproc) {
1112 struct lwp *l;
1113 struct rlimit *rlim;
1114 time_t runtm;
1115 int sig;
1116
1117 /* Increment sleep time (if sleeping), ignore overflow. */
1118 mutex_enter(p->p_lock);
1119 runtm = p->p_rtime.sec;
1120 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1121 fixpt_t lpctcpu;
1122 u_int lcpticks;
1123
1124 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1125 continue;
1126 lwp_lock(l);
1127 runtm += l->l_rtime.sec;
1128 l->l_swtime++;
1129 sched_lwp_stats(l);
1130
1131 /* For load average calculation. */
1132 if (__predict_false(lavg_count == 0) &&
1133 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1134 switch (l->l_stat) {
1135 case LSSLEEP:
1136 if (l->l_slptime > 1) {
1137 break;
1138 }
1139 /* FALLTHROUGH */
1140 case LSRUN:
1141 case LSONPROC:
1142 case LSIDL:
1143 nrun++;
1144 }
1145 }
1146 lwp_unlock(l);
1147
1148 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1149 if (l->l_slptime != 0)
1150 continue;
1151
1152 lpctcpu = l->l_pctcpu;
1153 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1154 lpctcpu += ((FSCALE - ccpu) *
1155 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1156 l->l_pctcpu = lpctcpu;
1157 }
1158 /* Calculating p_pctcpu only for ps(1) */
1159 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1160
1161 if (__predict_false(runtm < 0)) {
1162 if (!backwards) {
1163 backwards = true;
1164 printf("WARNING: negative runtime; "
1165 "monotonic clock has gone backwards\n");
1166 }
1167 mutex_exit(p->p_lock);
1168 continue;
1169 }
1170
1171 /*
1172 * Check if the process exceeds its CPU resource allocation.
1173 * If over the hard limit, kill it with SIGKILL.
1174 * If over the soft limit, send SIGXCPU and raise
1175 * the soft limit a little.
1176 */
1177 rlim = &p->p_rlimit[RLIMIT_CPU];
1178 sig = 0;
1179 if (__predict_false(runtm >= rlim->rlim_cur)) {
1180 if (runtm >= rlim->rlim_max) {
1181 sig = SIGKILL;
1182 log(LOG_NOTICE,
1183 "pid %d, command %s, is killed: %s\n",
1184 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1185 uprintf("pid %d, command %s, is killed: %s\n",
1186 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1187 } else {
1188 sig = SIGXCPU;
1189 if (rlim->rlim_cur < rlim->rlim_max)
1190 rlim->rlim_cur += 5;
1191 }
1192 }
1193 mutex_exit(p->p_lock);
1194 if (__predict_false(sig)) {
1195 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1196 psignal(p, sig);
1197 }
1198 }
1199
1200 /* Load average calculation. */
1201 if (__predict_false(lavg_count == 0)) {
1202 int i;
1203 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1204 for (i = 0; i < __arraycount(cexp); i++) {
1205 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1206 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1207 }
1208 }
1209
1210 /* Lightning bolt. */
1211 cv_broadcast(&lbolt);
1212
1213 mutex_exit(proc_lock);
1214 }
1215