kern_synch.c revision 1.320 1 /* $NetBSD: kern_synch.c,v 1.320 2018/11/28 19:36:43 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.320 2018/11/28 19:36:43 mlelstv Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107 static void resched_cpu(struct lwp *);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 /* "Lightning bolt": once a second sleep address. */
126 kcondvar_t lbolt __cacheline_aligned;
127
128 u_int sched_pstats_ticks __cacheline_aligned;
129
130 /* Preemption event counters. */
131 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
132 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
133 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
134
135 void
136 synch_init(void)
137 {
138
139 cv_init(&lbolt, "lbolt");
140
141 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
142 "kpreempt", "defer: critical section");
143 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
144 "kpreempt", "defer: kernel_lock");
145 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
146 "kpreempt", "immediate");
147 }
148
149 /*
150 * OBSOLETE INTERFACE
151 *
152 * General sleep call. Suspends the current LWP until a wakeup is
153 * performed on the specified identifier. The LWP will then be made
154 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
155 * means no timeout). If pri includes PCATCH flag, signals are checked
156 * before and after sleeping, else signals are not checked. Returns 0 if
157 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
158 * signal needs to be delivered, ERESTART is returned if the current system
159 * call should be restarted if possible, and EINTR is returned if the system
160 * call should be interrupted by the signal (return EINTR).
161 */
162 int
163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
164 {
165 struct lwp *l = curlwp;
166 sleepq_t *sq;
167 kmutex_t *mp;
168
169 KASSERT((l->l_pflag & LP_INTR) == 0);
170 KASSERT(ident != &lbolt);
171
172 if (sleepq_dontsleep(l)) {
173 (void)sleepq_abort(NULL, 0);
174 return 0;
175 }
176
177 l->l_kpriority = true;
178 sq = sleeptab_lookup(&sleeptab, ident, &mp);
179 sleepq_enter(sq, l, mp);
180 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 return sleepq_block(timo, priority & PCATCH);
182 }
183
184 int
185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
186 kmutex_t *mtx)
187 {
188 struct lwp *l = curlwp;
189 sleepq_t *sq;
190 kmutex_t *mp;
191 int error;
192
193 KASSERT((l->l_pflag & LP_INTR) == 0);
194 KASSERT(ident != &lbolt);
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 l->l_kpriority = true;
202 sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 sleepq_enter(sq, l, mp);
204 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 mutex_exit(mtx);
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if ((priority & PNORELOCK) == 0)
209 mutex_enter(mtx);
210
211 return error;
212 }
213
214 /*
215 * General sleep call for situations where a wake-up is not expected.
216 */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 kmutex_t *mp;
222 sleepq_t *sq;
223 int error;
224
225 KASSERT(!(timo == 0 && intr == false));
226
227 if (sleepq_dontsleep(l))
228 return sleepq_abort(NULL, 0);
229
230 if (mtx != NULL)
231 mutex_exit(mtx);
232 l->l_kpriority = true;
233 sq = sleeptab_lookup(&sleeptab, l, &mp);
234 sleepq_enter(sq, l, mp);
235 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
236 error = sleepq_block(timo, intr);
237 if (mtx != NULL)
238 mutex_enter(mtx);
239
240 return error;
241 }
242
243 /*
244 * OBSOLETE INTERFACE
245 *
246 * Make all LWPs sleeping on the specified identifier runnable.
247 */
248 void
249 wakeup(wchan_t ident)
250 {
251 sleepq_t *sq;
252 kmutex_t *mp;
253
254 if (__predict_false(cold))
255 return;
256
257 sq = sleeptab_lookup(&sleeptab, ident, &mp);
258 sleepq_wake(sq, ident, (u_int)-1, mp);
259 }
260
261 /*
262 * General yield call. Puts the current LWP back on its run queue and
263 * performs a voluntary context switch. Should only be called when the
264 * current LWP explicitly requests it (eg sched_yield(2)).
265 */
266 void
267 yield(void)
268 {
269 struct lwp *l = curlwp;
270
271 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
272 lwp_lock(l);
273 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 KASSERT(l->l_stat == LSONPROC);
275 l->l_kpriority = false;
276 (void)mi_switch(l);
277 KERNEL_LOCK(l->l_biglocks, l);
278 }
279
280 /*
281 * General preemption call. Puts the current LWP back on its run queue
282 * and performs an involuntary context switch.
283 */
284 void
285 preempt(void)
286 {
287 struct lwp *l = curlwp;
288
289 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 lwp_lock(l);
291 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
292 KASSERT(l->l_stat == LSONPROC);
293 l->l_kpriority = false;
294 l->l_nivcsw++;
295 (void)mi_switch(l);
296 KERNEL_LOCK(l->l_biglocks, l);
297 }
298
299 /*
300 * Handle a request made by another agent to preempt the current LWP
301 * in-kernel. Usually called when l_dopreempt may be non-zero.
302 *
303 * Character addresses for lockstat only.
304 */
305 static char in_critical_section;
306 static char kernel_lock_held;
307 static char is_softint;
308 static char cpu_kpreempt_enter_fail;
309
310 bool
311 kpreempt(uintptr_t where)
312 {
313 uintptr_t failed;
314 lwp_t *l;
315 int s, dop, lsflag;
316
317 l = curlwp;
318 failed = 0;
319 while ((dop = l->l_dopreempt) != 0) {
320 if (l->l_stat != LSONPROC) {
321 /*
322 * About to block (or die), let it happen.
323 * Doesn't really count as "preemption has
324 * been blocked", since we're going to
325 * context switch.
326 */
327 l->l_dopreempt = 0;
328 return true;
329 }
330 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
331 /* Can't preempt idle loop, don't count as failure. */
332 l->l_dopreempt = 0;
333 return true;
334 }
335 if (__predict_false(l->l_nopreempt != 0)) {
336 /* LWP holds preemption disabled, explicitly. */
337 if ((dop & DOPREEMPT_COUNTED) == 0) {
338 kpreempt_ev_crit.ev_count++;
339 }
340 failed = (uintptr_t)&in_critical_section;
341 break;
342 }
343 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
344 /* Can't preempt soft interrupts yet. */
345 l->l_dopreempt = 0;
346 failed = (uintptr_t)&is_softint;
347 break;
348 }
349 s = splsched();
350 if (__predict_false(l->l_blcnt != 0 ||
351 curcpu()->ci_biglock_wanted != NULL)) {
352 /* Hold or want kernel_lock, code is not MT safe. */
353 splx(s);
354 if ((dop & DOPREEMPT_COUNTED) == 0) {
355 kpreempt_ev_klock.ev_count++;
356 }
357 failed = (uintptr_t)&kernel_lock_held;
358 break;
359 }
360 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
361 /*
362 * It may be that the IPL is too high.
363 * kpreempt_enter() can schedule an
364 * interrupt to retry later.
365 */
366 splx(s);
367 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
368 break;
369 }
370 /* Do it! */
371 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
372 kpreempt_ev_immed.ev_count++;
373 }
374 lwp_lock(l);
375 mi_switch(l);
376 l->l_nopreempt++;
377 splx(s);
378
379 /* Take care of any MD cleanup. */
380 cpu_kpreempt_exit(where);
381 l->l_nopreempt--;
382 }
383
384 if (__predict_true(!failed)) {
385 return false;
386 }
387
388 /* Record preemption failure for reporting via lockstat. */
389 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
390 lsflag = 0;
391 LOCKSTAT_ENTER(lsflag);
392 if (__predict_false(lsflag)) {
393 if (where == 0) {
394 where = (uintptr_t)__builtin_return_address(0);
395 }
396 /* Preemption is on, might recurse, so make it atomic. */
397 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
398 (void *)where) == NULL) {
399 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
400 l->l_pfaillock = failed;
401 }
402 }
403 LOCKSTAT_EXIT(lsflag);
404 return true;
405 }
406
407 /*
408 * Return true if preemption is explicitly disabled.
409 */
410 bool
411 kpreempt_disabled(void)
412 {
413 const lwp_t *l = curlwp;
414
415 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
416 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
417 }
418
419 /*
420 * Disable kernel preemption.
421 */
422 void
423 kpreempt_disable(void)
424 {
425
426 KPREEMPT_DISABLE(curlwp);
427 }
428
429 /*
430 * Reenable kernel preemption.
431 */
432 void
433 kpreempt_enable(void)
434 {
435
436 KPREEMPT_ENABLE(curlwp);
437 }
438
439 /*
440 * Compute the amount of time during which the current lwp was running.
441 *
442 * - update l_rtime unless it's an idle lwp.
443 */
444
445 void
446 updatertime(lwp_t *l, const struct bintime *now)
447 {
448
449 if (__predict_false(l->l_flag & LW_IDLE))
450 return;
451
452 /* rtime += now - stime */
453 bintime_add(&l->l_rtime, now);
454 bintime_sub(&l->l_rtime, &l->l_stime);
455 }
456
457 /*
458 * Select next LWP from the current CPU to run..
459 */
460 static inline lwp_t *
461 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
462 {
463 lwp_t *newl;
464
465 /*
466 * Let sched_nextlwp() select the LWP to run the CPU next.
467 * If no LWP is runnable, select the idle LWP.
468 *
469 * Note that spc_lwplock might not necessary be held, and
470 * new thread would be unlocked after setting the LWP-lock.
471 */
472 newl = sched_nextlwp();
473 if (newl != NULL) {
474 sched_dequeue(newl);
475 KASSERT(lwp_locked(newl, spc->spc_mutex));
476 KASSERT(newl->l_cpu == ci);
477 newl->l_stat = LSONPROC;
478 newl->l_pflag |= LP_RUNNING;
479 lwp_setlock(newl, spc->spc_lwplock);
480 } else {
481 newl = ci->ci_data.cpu_idlelwp;
482 newl->l_stat = LSONPROC;
483 newl->l_pflag |= LP_RUNNING;
484 }
485
486 /*
487 * Only clear want_resched if there are no pending (slow)
488 * software interrupts.
489 */
490 ci->ci_want_resched = ci->ci_data.cpu_softints;
491 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
492 spc->spc_curpriority = lwp_eprio(newl);
493
494 return newl;
495 }
496
497 /*
498 * The machine independent parts of context switch.
499 *
500 * Returns 1 if another LWP was actually run.
501 */
502 int
503 mi_switch(lwp_t *l)
504 {
505 struct cpu_info *ci;
506 struct schedstate_percpu *spc;
507 struct lwp *newl;
508 int retval, oldspl;
509 struct bintime bt;
510 bool returning;
511
512 KASSERT(lwp_locked(l, NULL));
513 KASSERT(kpreempt_disabled());
514 LOCKDEBUG_BARRIER(l->l_mutex, 1);
515
516 kstack_check_magic(l);
517
518 binuptime(&bt);
519
520 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
521 KASSERT((l->l_pflag & LP_RUNNING) != 0);
522 KASSERT(l->l_cpu == curcpu());
523 ci = l->l_cpu;
524 spc = &ci->ci_schedstate;
525 returning = false;
526 newl = NULL;
527
528 /*
529 * If we have been asked to switch to a specific LWP, then there
530 * is no need to inspect the run queues. If a soft interrupt is
531 * blocking, then return to the interrupted thread without adjusting
532 * VM context or its start time: neither have been changed in order
533 * to take the interrupt.
534 */
535 if (l->l_switchto != NULL) {
536 if ((l->l_pflag & LP_INTR) != 0) {
537 returning = true;
538 softint_block(l);
539 if ((l->l_pflag & LP_TIMEINTR) != 0)
540 updatertime(l, &bt);
541 }
542 newl = l->l_switchto;
543 l->l_switchto = NULL;
544 }
545 #ifndef __HAVE_FAST_SOFTINTS
546 else if (ci->ci_data.cpu_softints != 0) {
547 /* There are pending soft interrupts, so pick one. */
548 newl = softint_picklwp();
549 newl->l_stat = LSONPROC;
550 newl->l_pflag |= LP_RUNNING;
551 }
552 #endif /* !__HAVE_FAST_SOFTINTS */
553
554 /* Count time spent in current system call */
555 if (!returning) {
556 SYSCALL_TIME_SLEEP(l);
557
558 updatertime(l, &bt);
559 }
560
561 /* Lock the runqueue */
562 KASSERT(l->l_stat != LSRUN);
563 mutex_spin_enter(spc->spc_mutex);
564
565 /*
566 * If on the CPU and we have gotten this far, then we must yield.
567 */
568 if (l->l_stat == LSONPROC && l != newl) {
569 KASSERT(lwp_locked(l, spc->spc_lwplock));
570 if ((l->l_flag & LW_IDLE) == 0) {
571 l->l_stat = LSRUN;
572 lwp_setlock(l, spc->spc_mutex);
573 sched_enqueue(l, true);
574 /*
575 * Handle migration. Note that "migrating LWP" may
576 * be reset here, if interrupt/preemption happens
577 * early in idle LWP.
578 */
579 if (l->l_target_cpu != NULL &&
580 (l->l_pflag & LP_BOUND) == 0) {
581 KASSERT((l->l_pflag & LP_INTR) == 0);
582 spc->spc_migrating = l;
583 }
584 } else
585 l->l_stat = LSIDL;
586 }
587
588 /* Pick new LWP to run. */
589 if (newl == NULL) {
590 newl = nextlwp(ci, spc);
591 }
592
593 /* Items that must be updated with the CPU locked. */
594 if (!returning) {
595 /* Update the new LWP's start time. */
596 newl->l_stime = bt;
597
598 /*
599 * ci_curlwp changes when a fast soft interrupt occurs.
600 * We use cpu_onproc to keep track of which kernel or
601 * user thread is running 'underneath' the software
602 * interrupt. This is important for time accounting,
603 * itimers and forcing user threads to preempt (aston).
604 */
605 ci->ci_data.cpu_onproc = newl;
606 }
607
608 /*
609 * Preemption related tasks. Must be done with the current
610 * CPU locked.
611 */
612 cpu_did_resched(l);
613 l->l_dopreempt = 0;
614 if (__predict_false(l->l_pfailaddr != 0)) {
615 LOCKSTAT_FLAG(lsflag);
616 LOCKSTAT_ENTER(lsflag);
617 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
618 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
619 1, l->l_pfailtime, l->l_pfailaddr);
620 LOCKSTAT_EXIT(lsflag);
621 l->l_pfailtime = 0;
622 l->l_pfaillock = 0;
623 l->l_pfailaddr = 0;
624 }
625
626 if (l != newl) {
627 struct lwp *prevlwp;
628
629 /* Release all locks, but leave the current LWP locked */
630 if (l->l_mutex == spc->spc_mutex) {
631 /*
632 * Drop spc_lwplock, if the current LWP has been moved
633 * to the run queue (it is now locked by spc_mutex).
634 */
635 mutex_spin_exit(spc->spc_lwplock);
636 } else {
637 /*
638 * Otherwise, drop the spc_mutex, we are done with the
639 * run queues.
640 */
641 mutex_spin_exit(spc->spc_mutex);
642 }
643
644 /*
645 * Mark that context switch is going to be performed
646 * for this LWP, to protect it from being switched
647 * to on another CPU.
648 */
649 KASSERT(l->l_ctxswtch == 0);
650 l->l_ctxswtch = 1;
651 l->l_ncsw++;
652 KASSERT((l->l_pflag & LP_RUNNING) != 0);
653 l->l_pflag &= ~LP_RUNNING;
654
655 /*
656 * Increase the count of spin-mutexes before the release
657 * of the last lock - we must remain at IPL_SCHED during
658 * the context switch.
659 */
660 KASSERTMSG(ci->ci_mtx_count == -1,
661 "%s: cpu%u: ci_mtx_count (%d) != -1 "
662 "(block with spin-mutex held)",
663 __func__, cpu_index(ci), ci->ci_mtx_count);
664 oldspl = MUTEX_SPIN_OLDSPL(ci);
665 ci->ci_mtx_count--;
666 lwp_unlock(l);
667
668 /* Count the context switch on this CPU. */
669 ci->ci_data.cpu_nswtch++;
670
671 /* Update status for lwpctl, if present. */
672 if (l->l_lwpctl != NULL)
673 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
674
675 /*
676 * Save old VM context, unless a soft interrupt
677 * handler is blocking.
678 */
679 if (!returning)
680 pmap_deactivate(l);
681
682 /*
683 * We may need to spin-wait if 'newl' is still
684 * context switching on another CPU.
685 */
686 if (__predict_false(newl->l_ctxswtch != 0)) {
687 u_int count;
688 count = SPINLOCK_BACKOFF_MIN;
689 while (newl->l_ctxswtch)
690 SPINLOCK_BACKOFF(count);
691 }
692
693 /*
694 * If DTrace has set the active vtime enum to anything
695 * other than INACTIVE (0), then it should have set the
696 * function to call.
697 */
698 if (__predict_false(dtrace_vtime_active)) {
699 (*dtrace_vtime_switch_func)(newl);
700 }
701
702 /*
703 * We must ensure not to come here from inside a read section.
704 */
705 KASSERT(pserialize_not_in_read_section());
706
707 /* Switch to the new LWP.. */
708 #ifdef MULTIPROCESSOR
709 KASSERT(curlwp == ci->ci_curlwp);
710 #endif
711 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
712 prevlwp = cpu_switchto(l, newl, returning);
713 ci = curcpu();
714 #ifdef MULTIPROCESSOR
715 KASSERT(curlwp == ci->ci_curlwp);
716 #endif
717 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
718 l, curlwp, prevlwp);
719
720 /*
721 * Switched away - we have new curlwp.
722 * Restore VM context and IPL.
723 */
724 pmap_activate(l);
725 pcu_switchpoint(l);
726
727 if (prevlwp != NULL) {
728 /* Normalize the count of the spin-mutexes */
729 ci->ci_mtx_count++;
730 /* Unmark the state of context switch */
731 membar_exit();
732 prevlwp->l_ctxswtch = 0;
733 }
734
735 /* Update status for lwpctl, if present. */
736 if (l->l_lwpctl != NULL) {
737 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
738 l->l_lwpctl->lc_pctr++;
739 }
740
741 /* Note trip through cpu_switchto(). */
742 pserialize_switchpoint();
743
744 KASSERT(l->l_cpu == ci);
745 splx(oldspl);
746 /*
747 * note that, unless the caller disabled preemption,
748 * we can be preempted at any time after the above splx() call.
749 */
750 retval = 1;
751 } else {
752 /* Nothing to do - just unlock and return. */
753 pserialize_switchpoint();
754 mutex_spin_exit(spc->spc_mutex);
755 lwp_unlock(l);
756 retval = 0;
757 }
758
759 KASSERT(l == curlwp);
760 KASSERT(l->l_stat == LSONPROC);
761
762 SYSCALL_TIME_WAKEUP(l);
763 LOCKDEBUG_BARRIER(NULL, 1);
764
765 return retval;
766 }
767
768 /*
769 * The machine independent parts of context switch to oblivion.
770 * Does not return. Call with the LWP unlocked.
771 */
772 void
773 lwp_exit_switchaway(lwp_t *l)
774 {
775 struct cpu_info *ci;
776 struct lwp *newl;
777 struct bintime bt;
778
779 ci = l->l_cpu;
780
781 KASSERT(kpreempt_disabled());
782 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
783 KASSERT(ci == curcpu());
784 LOCKDEBUG_BARRIER(NULL, 0);
785
786 kstack_check_magic(l);
787
788 /* Count time spent in current system call */
789 SYSCALL_TIME_SLEEP(l);
790 binuptime(&bt);
791 updatertime(l, &bt);
792
793 /* Must stay at IPL_SCHED even after releasing run queue lock. */
794 (void)splsched();
795
796 /*
797 * Let sched_nextlwp() select the LWP to run the CPU next.
798 * If no LWP is runnable, select the idle LWP.
799 *
800 * Note that spc_lwplock might not necessary be held, and
801 * new thread would be unlocked after setting the LWP-lock.
802 */
803 spc_lock(ci);
804 #ifndef __HAVE_FAST_SOFTINTS
805 if (ci->ci_data.cpu_softints != 0) {
806 /* There are pending soft interrupts, so pick one. */
807 newl = softint_picklwp();
808 newl->l_stat = LSONPROC;
809 newl->l_pflag |= LP_RUNNING;
810 } else
811 #endif /* !__HAVE_FAST_SOFTINTS */
812 {
813 newl = nextlwp(ci, &ci->ci_schedstate);
814 }
815
816 /* Update the new LWP's start time. */
817 newl->l_stime = bt;
818 l->l_pflag &= ~LP_RUNNING;
819
820 /*
821 * ci_curlwp changes when a fast soft interrupt occurs.
822 * We use cpu_onproc to keep track of which kernel or
823 * user thread is running 'underneath' the software
824 * interrupt. This is important for time accounting,
825 * itimers and forcing user threads to preempt (aston).
826 */
827 ci->ci_data.cpu_onproc = newl;
828
829 /*
830 * Preemption related tasks. Must be done with the current
831 * CPU locked.
832 */
833 cpu_did_resched(l);
834
835 /* Unlock the run queue. */
836 spc_unlock(ci);
837
838 /* Count the context switch on this CPU. */
839 ci->ci_data.cpu_nswtch++;
840
841 /* Update status for lwpctl, if present. */
842 if (l->l_lwpctl != NULL)
843 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
844
845 /*
846 * We may need to spin-wait if 'newl' is still
847 * context switching on another CPU.
848 */
849 if (__predict_false(newl->l_ctxswtch != 0)) {
850 u_int count;
851 count = SPINLOCK_BACKOFF_MIN;
852 while (newl->l_ctxswtch)
853 SPINLOCK_BACKOFF(count);
854 }
855
856 /*
857 * If DTrace has set the active vtime enum to anything
858 * other than INACTIVE (0), then it should have set the
859 * function to call.
860 */
861 if (__predict_false(dtrace_vtime_active)) {
862 (*dtrace_vtime_switch_func)(newl);
863 }
864
865 /* Switch to the new LWP.. */
866 (void)cpu_switchto(NULL, newl, false);
867
868 for (;;) continue; /* XXX: convince gcc about "noreturn" */
869 /* NOTREACHED */
870 }
871
872 /*
873 * setrunnable: change LWP state to be runnable, placing it on the run queue.
874 *
875 * Call with the process and LWP locked. Will return with the LWP unlocked.
876 */
877 void
878 setrunnable(struct lwp *l)
879 {
880 struct proc *p = l->l_proc;
881 struct cpu_info *ci;
882
883 KASSERT((l->l_flag & LW_IDLE) == 0);
884 KASSERT(mutex_owned(p->p_lock));
885 KASSERT(lwp_locked(l, NULL));
886 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
887
888 switch (l->l_stat) {
889 case LSSTOP:
890 /*
891 * If we're being traced (possibly because someone attached us
892 * while we were stopped), check for a signal from the debugger.
893 */
894 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
895 signotify(l);
896 p->p_nrlwps++;
897 break;
898 case LSSUSPENDED:
899 l->l_flag &= ~LW_WSUSPEND;
900 p->p_nrlwps++;
901 cv_broadcast(&p->p_lwpcv);
902 break;
903 case LSSLEEP:
904 KASSERT(l->l_wchan != NULL);
905 break;
906 default:
907 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
908 }
909
910 /*
911 * If the LWP was sleeping, start it again.
912 */
913 if (l->l_wchan != NULL) {
914 l->l_stat = LSSLEEP;
915 /* lwp_unsleep() will release the lock. */
916 lwp_unsleep(l, true);
917 return;
918 }
919
920 /*
921 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
922 * about to call mi_switch(), in which case it will yield.
923 */
924 if ((l->l_pflag & LP_RUNNING) != 0) {
925 l->l_stat = LSONPROC;
926 l->l_slptime = 0;
927 lwp_unlock(l);
928 return;
929 }
930
931 /*
932 * Look for a CPU to run.
933 * Set the LWP runnable.
934 */
935 ci = sched_takecpu(l);
936 l->l_cpu = ci;
937 spc_lock(ci);
938 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
939 sched_setrunnable(l);
940 l->l_stat = LSRUN;
941 l->l_slptime = 0;
942
943 sched_enqueue(l, false);
944 resched_cpu(l);
945 lwp_unlock(l);
946 }
947
948 /*
949 * suspendsched:
950 *
951 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
952 */
953 void
954 suspendsched(void)
955 {
956 CPU_INFO_ITERATOR cii;
957 struct cpu_info *ci;
958 struct lwp *l;
959 struct proc *p;
960
961 /*
962 * We do this by process in order not to violate the locking rules.
963 */
964 mutex_enter(proc_lock);
965 PROCLIST_FOREACH(p, &allproc) {
966 mutex_enter(p->p_lock);
967 if ((p->p_flag & PK_SYSTEM) != 0) {
968 mutex_exit(p->p_lock);
969 continue;
970 }
971
972 if (p->p_stat != SSTOP) {
973 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
974 p->p_pptr->p_nstopchild++;
975 p->p_waited = 0;
976 }
977 p->p_stat = SSTOP;
978 }
979
980 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
981 if (l == curlwp)
982 continue;
983
984 lwp_lock(l);
985
986 /*
987 * Set L_WREBOOT so that the LWP will suspend itself
988 * when it tries to return to user mode. We want to
989 * try and get to get as many LWPs as possible to
990 * the user / kernel boundary, so that they will
991 * release any locks that they hold.
992 */
993 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
994
995 if (l->l_stat == LSSLEEP &&
996 (l->l_flag & LW_SINTR) != 0) {
997 /* setrunnable() will release the lock. */
998 setrunnable(l);
999 continue;
1000 }
1001
1002 lwp_unlock(l);
1003 }
1004
1005 mutex_exit(p->p_lock);
1006 }
1007 mutex_exit(proc_lock);
1008
1009 /*
1010 * Kick all CPUs to make them preempt any LWPs running in user mode.
1011 * They'll trap into the kernel and suspend themselves in userret().
1012 */
1013 for (CPU_INFO_FOREACH(cii, ci)) {
1014 spc_lock(ci);
1015 cpu_need_resched(ci, RESCHED_IMMED);
1016 spc_unlock(ci);
1017 }
1018 }
1019
1020 /*
1021 * sched_unsleep:
1022 *
1023 * The is called when the LWP has not been awoken normally but instead
1024 * interrupted: for example, if the sleep timed out. Because of this,
1025 * it's not a valid action for running or idle LWPs.
1026 */
1027 static void
1028 sched_unsleep(struct lwp *l, bool cleanup)
1029 {
1030
1031 lwp_unlock(l);
1032 panic("sched_unsleep");
1033 }
1034
1035 static void
1036 resched_cpu(struct lwp *l)
1037 {
1038 struct cpu_info *ci = l->l_cpu;
1039
1040 KASSERT(lwp_locked(l, NULL));
1041 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1042 cpu_need_resched(ci, 0);
1043 }
1044
1045 static void
1046 sched_changepri(struct lwp *l, pri_t pri)
1047 {
1048
1049 KASSERT(lwp_locked(l, NULL));
1050
1051 if (l->l_stat == LSRUN) {
1052 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1053 sched_dequeue(l);
1054 l->l_priority = pri;
1055 sched_enqueue(l, false);
1056 } else {
1057 l->l_priority = pri;
1058 }
1059 resched_cpu(l);
1060 }
1061
1062 static void
1063 sched_lendpri(struct lwp *l, pri_t pri)
1064 {
1065
1066 KASSERT(lwp_locked(l, NULL));
1067
1068 if (l->l_stat == LSRUN) {
1069 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1070 sched_dequeue(l);
1071 l->l_inheritedprio = pri;
1072 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1073 sched_enqueue(l, false);
1074 } else {
1075 l->l_inheritedprio = pri;
1076 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1077 }
1078 resched_cpu(l);
1079 }
1080
1081 struct lwp *
1082 syncobj_noowner(wchan_t wchan)
1083 {
1084
1085 return NULL;
1086 }
1087
1088 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1089 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1090
1091 /*
1092 * Constants for averages over 1, 5 and 15 minutes when sampling at
1093 * 5 second intervals.
1094 */
1095 static const fixpt_t cexp[ ] = {
1096 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1097 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1098 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1099 };
1100
1101 /*
1102 * sched_pstats:
1103 *
1104 * => Update process statistics and check CPU resource allocation.
1105 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1106 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1107 */
1108 void
1109 sched_pstats(void)
1110 {
1111 extern struct loadavg averunnable;
1112 struct loadavg *avg = &averunnable;
1113 const int clkhz = (stathz != 0 ? stathz : hz);
1114 static bool backwards = false;
1115 static u_int lavg_count = 0;
1116 struct proc *p;
1117 int nrun;
1118
1119 sched_pstats_ticks++;
1120 if (++lavg_count >= 5) {
1121 lavg_count = 0;
1122 nrun = 0;
1123 }
1124 mutex_enter(proc_lock);
1125 PROCLIST_FOREACH(p, &allproc) {
1126 struct lwp *l;
1127 struct rlimit *rlim;
1128 time_t runtm;
1129 int sig;
1130
1131 /* Increment sleep time (if sleeping), ignore overflow. */
1132 mutex_enter(p->p_lock);
1133 runtm = p->p_rtime.sec;
1134 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1135 fixpt_t lpctcpu;
1136 u_int lcpticks;
1137
1138 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1139 continue;
1140 lwp_lock(l);
1141 runtm += l->l_rtime.sec;
1142 l->l_swtime++;
1143 sched_lwp_stats(l);
1144
1145 /* For load average calculation. */
1146 if (__predict_false(lavg_count == 0) &&
1147 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1148 switch (l->l_stat) {
1149 case LSSLEEP:
1150 if (l->l_slptime > 1) {
1151 break;
1152 }
1153 case LSRUN:
1154 case LSONPROC:
1155 case LSIDL:
1156 nrun++;
1157 }
1158 }
1159 lwp_unlock(l);
1160
1161 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1162 if (l->l_slptime != 0)
1163 continue;
1164
1165 lpctcpu = l->l_pctcpu;
1166 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1167 lpctcpu += ((FSCALE - ccpu) *
1168 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1169 l->l_pctcpu = lpctcpu;
1170 }
1171 /* Calculating p_pctcpu only for ps(1) */
1172 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1173
1174 if (__predict_false(runtm < 0)) {
1175 if (!backwards) {
1176 backwards = true;
1177 printf("WARNING: negative runtime; "
1178 "monotonic clock has gone backwards\n");
1179 }
1180 mutex_exit(p->p_lock);
1181 continue;
1182 }
1183
1184 /*
1185 * Check if the process exceeds its CPU resource allocation.
1186 * If over the hard limit, kill it with SIGKILL.
1187 * If over the soft limit, send SIGXCPU and raise
1188 * the soft limit a little.
1189 */
1190 rlim = &p->p_rlimit[RLIMIT_CPU];
1191 sig = 0;
1192 if (__predict_false(runtm >= rlim->rlim_cur)) {
1193 if (runtm >= rlim->rlim_max) {
1194 sig = SIGKILL;
1195 log(LOG_NOTICE,
1196 "pid %d, command %s, is killed: %s\n",
1197 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1198 uprintf("pid %d, command %s, is killed: %s\n",
1199 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1200 } else {
1201 sig = SIGXCPU;
1202 if (rlim->rlim_cur < rlim->rlim_max)
1203 rlim->rlim_cur += 5;
1204 }
1205 }
1206 mutex_exit(p->p_lock);
1207 if (__predict_false(sig)) {
1208 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1209 psignal(p, sig);
1210 }
1211 }
1212 mutex_exit(proc_lock);
1213
1214 /* Load average calculation. */
1215 if (__predict_false(lavg_count == 0)) {
1216 int i;
1217 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1218 for (i = 0; i < __arraycount(cexp); i++) {
1219 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1220 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1221 }
1222 }
1223
1224 /* Lightning bolt. */
1225 cv_broadcast(&lbolt);
1226 }
1227