Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.325
      1 /*	$NetBSD: kern_synch.c,v 1.325 2019/11/21 20:51:05 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.325 2019/11/21 20:51:05 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/sched.h>
     87 #include <sys/syscall_stats.h>
     88 #include <sys/sleepq.h>
     89 #include <sys/lockdebug.h>
     90 #include <sys/evcnt.h>
     91 #include <sys/intr.h>
     92 #include <sys/lwpctl.h>
     93 #include <sys/atomic.h>
     94 #include <sys/syslog.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #include <dev/lockstat.h>
     99 
    100 #include <sys/dtrace_bsd.h>
    101 int                             dtrace_vtime_active=0;
    102 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    103 
    104 static void	sched_unsleep(struct lwp *, bool);
    105 static void	sched_changepri(struct lwp *, pri_t);
    106 static void	sched_lendpri(struct lwp *, pri_t);
    107 static void	resched_cpu(struct lwp *);
    108 
    109 syncobj_t sleep_syncobj = {
    110 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    111 	.sobj_unsleep	= sleepq_unsleep,
    112 	.sobj_changepri	= sleepq_changepri,
    113 	.sobj_lendpri	= sleepq_lendpri,
    114 	.sobj_owner	= syncobj_noowner,
    115 };
    116 
    117 syncobj_t sched_syncobj = {
    118 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    119 	.sobj_unsleep	= sched_unsleep,
    120 	.sobj_changepri	= sched_changepri,
    121 	.sobj_lendpri	= sched_lendpri,
    122 	.sobj_owner	= syncobj_noowner,
    123 };
    124 
    125 /* "Lightning bolt": once a second sleep address. */
    126 kcondvar_t		lbolt			__cacheline_aligned;
    127 
    128 u_int			sched_pstats_ticks	__cacheline_aligned;
    129 
    130 /* Preemption event counters. */
    131 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    132 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    133 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    134 
    135 void
    136 synch_init(void)
    137 {
    138 
    139 	cv_init(&lbolt, "lbolt");
    140 
    141 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    142 	   "kpreempt", "defer: critical section");
    143 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    144 	   "kpreempt", "defer: kernel_lock");
    145 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    146 	   "kpreempt", "immediate");
    147 }
    148 
    149 /*
    150  * OBSOLETE INTERFACE
    151  *
    152  * General sleep call.  Suspends the current LWP until a wakeup is
    153  * performed on the specified identifier.  The LWP will then be made
    154  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    155  * means no timeout).  If pri includes PCATCH flag, signals are checked
    156  * before and after sleeping, else signals are not checked.  Returns 0 if
    157  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    158  * signal needs to be delivered, ERESTART is returned if the current system
    159  * call should be restarted if possible, and EINTR is returned if the system
    160  * call should be interrupted by the signal (return EINTR).
    161  */
    162 int
    163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    164 {
    165 	struct lwp *l = curlwp;
    166 	sleepq_t *sq;
    167 	kmutex_t *mp;
    168 
    169 	KASSERT((l->l_pflag & LP_INTR) == 0);
    170 	KASSERT(ident != &lbolt);
    171 
    172 	if (sleepq_dontsleep(l)) {
    173 		(void)sleepq_abort(NULL, 0);
    174 		return 0;
    175 	}
    176 
    177 	l->l_kpriority = true;
    178 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    179 	sleepq_enter(sq, l, mp);
    180 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    181 	return sleepq_block(timo, priority & PCATCH);
    182 }
    183 
    184 int
    185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    186 	kmutex_t *mtx)
    187 {
    188 	struct lwp *l = curlwp;
    189 	sleepq_t *sq;
    190 	kmutex_t *mp;
    191 	int error;
    192 
    193 	KASSERT((l->l_pflag & LP_INTR) == 0);
    194 	KASSERT(ident != &lbolt);
    195 
    196 	if (sleepq_dontsleep(l)) {
    197 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198 		return 0;
    199 	}
    200 
    201 	l->l_kpriority = true;
    202 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    203 	sleepq_enter(sq, l, mp);
    204 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    205 	mutex_exit(mtx);
    206 	error = sleepq_block(timo, priority & PCATCH);
    207 
    208 	if ((priority & PNORELOCK) == 0)
    209 		mutex_enter(mtx);
    210 
    211 	return error;
    212 }
    213 
    214 /*
    215  * General sleep call for situations where a wake-up is not expected.
    216  */
    217 int
    218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	kmutex_t *mp;
    222 	sleepq_t *sq;
    223 	int error;
    224 
    225 	KASSERT(!(timo == 0 && intr == false));
    226 
    227 	if (sleepq_dontsleep(l))
    228 		return sleepq_abort(NULL, 0);
    229 
    230 	if (mtx != NULL)
    231 		mutex_exit(mtx);
    232 	l->l_kpriority = true;
    233 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    234 	sleepq_enter(sq, l, mp);
    235 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    236 	error = sleepq_block(timo, intr);
    237 	if (mtx != NULL)
    238 		mutex_enter(mtx);
    239 
    240 	return error;
    241 }
    242 
    243 /*
    244  * OBSOLETE INTERFACE
    245  *
    246  * Make all LWPs sleeping on the specified identifier runnable.
    247  */
    248 void
    249 wakeup(wchan_t ident)
    250 {
    251 	sleepq_t *sq;
    252 	kmutex_t *mp;
    253 
    254 	if (__predict_false(cold))
    255 		return;
    256 
    257 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    258 	sleepq_wake(sq, ident, (u_int)-1, mp);
    259 }
    260 
    261 /*
    262  * General yield call.  Puts the current LWP back on its run queue and
    263  * performs a voluntary context switch.  Should only be called when the
    264  * current LWP explicitly requests it (eg sched_yield(2)).
    265  */
    266 void
    267 yield(void)
    268 {
    269 	struct lwp *l = curlwp;
    270 
    271 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    272 	lwp_lock(l);
    273 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    274 	KASSERT(l->l_stat == LSONPROC);
    275 	/* Voluntary - ditch kpriority boost. */
    276 	l->l_kpriority = false;
    277 	(void)mi_switch(l);
    278 	KERNEL_LOCK(l->l_biglocks, l);
    279 }
    280 
    281 /*
    282  * General preemption call.  Puts the current LWP back on its run queue
    283  * and performs an involuntary context switch.
    284  */
    285 void
    286 preempt(void)
    287 {
    288 	struct lwp *l = curlwp;
    289 
    290 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    291 	lwp_lock(l);
    292 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    293 	KASSERT(l->l_stat == LSONPROC);
    294 	/* Involuntary - keep kpriority boost. */
    295 	l->l_pflag |= LP_PREEMPTING;
    296 	(void)mi_switch(l);
    297 	KERNEL_LOCK(l->l_biglocks, l);
    298 }
    299 
    300 /*
    301  * Handle a request made by another agent to preempt the current LWP
    302  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    303  *
    304  * Character addresses for lockstat only.
    305  */
    306 static char	in_critical_section;
    307 static char	kernel_lock_held;
    308 static char	is_softint;
    309 static char	cpu_kpreempt_enter_fail;
    310 
    311 bool
    312 kpreempt(uintptr_t where)
    313 {
    314 	uintptr_t failed;
    315 	lwp_t *l;
    316 	int s, dop, lsflag;
    317 
    318 	l = curlwp;
    319 	failed = 0;
    320 	while ((dop = l->l_dopreempt) != 0) {
    321 		if (l->l_stat != LSONPROC) {
    322 			/*
    323 			 * About to block (or die), let it happen.
    324 			 * Doesn't really count as "preemption has
    325 			 * been blocked", since we're going to
    326 			 * context switch.
    327 			 */
    328 			atomic_swap_uint(&l->l_dopreempt, 0);
    329 			return true;
    330 		}
    331 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    332 			/* Can't preempt idle loop, don't count as failure. */
    333 			atomic_swap_uint(&l->l_dopreempt, 0);
    334 			return true;
    335 		}
    336 		if (__predict_false(l->l_nopreempt != 0)) {
    337 			/* LWP holds preemption disabled, explicitly. */
    338 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    339 				kpreempt_ev_crit.ev_count++;
    340 			}
    341 			failed = (uintptr_t)&in_critical_section;
    342 			break;
    343 		}
    344 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    345 			/* Can't preempt soft interrupts yet. */
    346 			atomic_swap_uint(&l->l_dopreempt, 0);
    347 			failed = (uintptr_t)&is_softint;
    348 			break;
    349 		}
    350 		s = splsched();
    351 		if (__predict_false(l->l_blcnt != 0 ||
    352 		    curcpu()->ci_biglock_wanted != NULL)) {
    353 			/* Hold or want kernel_lock, code is not MT safe. */
    354 			splx(s);
    355 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    356 				kpreempt_ev_klock.ev_count++;
    357 			}
    358 			failed = (uintptr_t)&kernel_lock_held;
    359 			break;
    360 		}
    361 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    362 			/*
    363 			 * It may be that the IPL is too high.
    364 			 * kpreempt_enter() can schedule an
    365 			 * interrupt to retry later.
    366 			 */
    367 			splx(s);
    368 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    369 			break;
    370 		}
    371 		/* Do it! */
    372 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    373 			kpreempt_ev_immed.ev_count++;
    374 		}
    375 		lwp_lock(l);
    376 		mi_switch(l);
    377 		l->l_nopreempt++;
    378 		splx(s);
    379 
    380 		/* Take care of any MD cleanup. */
    381 		cpu_kpreempt_exit(where);
    382 		l->l_nopreempt--;
    383 	}
    384 
    385 	if (__predict_true(!failed)) {
    386 		return false;
    387 	}
    388 
    389 	/* Record preemption failure for reporting via lockstat. */
    390 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    391 	lsflag = 0;
    392 	LOCKSTAT_ENTER(lsflag);
    393 	if (__predict_false(lsflag)) {
    394 		if (where == 0) {
    395 			where = (uintptr_t)__builtin_return_address(0);
    396 		}
    397 		/* Preemption is on, might recurse, so make it atomic. */
    398 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    399 		    (void *)where) == NULL) {
    400 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    401 			l->l_pfaillock = failed;
    402 		}
    403 	}
    404 	LOCKSTAT_EXIT(lsflag);
    405 	return true;
    406 }
    407 
    408 /*
    409  * Return true if preemption is explicitly disabled.
    410  */
    411 bool
    412 kpreempt_disabled(void)
    413 {
    414 	const lwp_t *l = curlwp;
    415 
    416 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    417 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    418 }
    419 
    420 /*
    421  * Disable kernel preemption.
    422  */
    423 void
    424 kpreempt_disable(void)
    425 {
    426 
    427 	KPREEMPT_DISABLE(curlwp);
    428 }
    429 
    430 /*
    431  * Reenable kernel preemption.
    432  */
    433 void
    434 kpreempt_enable(void)
    435 {
    436 
    437 	KPREEMPT_ENABLE(curlwp);
    438 }
    439 
    440 /*
    441  * Compute the amount of time during which the current lwp was running.
    442  *
    443  * - update l_rtime unless it's an idle lwp.
    444  */
    445 
    446 void
    447 updatertime(lwp_t *l, const struct bintime *now)
    448 {
    449 
    450 	if (__predict_false(l->l_flag & LW_IDLE))
    451 		return;
    452 
    453 	/* rtime += now - stime */
    454 	bintime_add(&l->l_rtime, now);
    455 	bintime_sub(&l->l_rtime, &l->l_stime);
    456 }
    457 
    458 /*
    459  * Select next LWP from the current CPU to run..
    460  */
    461 static inline lwp_t *
    462 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    463 {
    464 	lwp_t *newl;
    465 
    466 	/*
    467 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    468 	 * If no LWP is runnable, select the idle LWP.
    469 	 *
    470 	 * Note that spc_lwplock might not necessary be held, and
    471 	 * new thread would be unlocked after setting the LWP-lock.
    472 	 */
    473 	newl = sched_nextlwp();
    474 	if (newl != NULL) {
    475 		sched_dequeue(newl);
    476 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    477 		KASSERT(newl->l_cpu == ci);
    478 		newl->l_stat = LSONPROC;
    479 		newl->l_pflag |= LP_RUNNING;
    480 		lwp_setlock(newl, spc->spc_lwplock);
    481 	} else {
    482 		newl = ci->ci_data.cpu_idlelwp;
    483 		newl->l_stat = LSONPROC;
    484 		newl->l_pflag |= LP_RUNNING;
    485 	}
    486 
    487 	/*
    488 	 * Only clear want_resched if there are no pending (slow) software
    489 	 * interrupts.  We can do this without an atomic, because no new
    490 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    491 	 * the update to ci_want_resched will become globally visible before
    492 	 * the release of spc_mutex becomes globally visible.
    493 	 */
    494 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    495 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    496 	spc->spc_curpriority = lwp_eprio(newl);
    497 
    498 	return newl;
    499 }
    500 
    501 /*
    502  * The machine independent parts of context switch.
    503  *
    504  * Returns 1 if another LWP was actually run.
    505  */
    506 int
    507 mi_switch(lwp_t *l)
    508 {
    509 	struct cpu_info *ci;
    510 	struct schedstate_percpu *spc;
    511 	struct lwp *newl;
    512 	int retval, oldspl;
    513 	struct bintime bt;
    514 	bool returning;
    515 
    516 	KASSERT(lwp_locked(l, NULL));
    517 	KASSERT(kpreempt_disabled());
    518 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    519 
    520 	kstack_check_magic(l);
    521 
    522 	binuptime(&bt);
    523 
    524 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    525 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    526 	KASSERT(l->l_cpu == curcpu());
    527 	ci = l->l_cpu;
    528 	spc = &ci->ci_schedstate;
    529 	returning = false;
    530 	newl = NULL;
    531 
    532 	/*
    533 	 * If we have been asked to switch to a specific LWP, then there
    534 	 * is no need to inspect the run queues.  If a soft interrupt is
    535 	 * blocking, then return to the interrupted thread without adjusting
    536 	 * VM context or its start time: neither have been changed in order
    537 	 * to take the interrupt.
    538 	 */
    539 	if (l->l_switchto != NULL) {
    540 		if ((l->l_pflag & LP_INTR) != 0) {
    541 			returning = true;
    542 			softint_block(l);
    543 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    544 				updatertime(l, &bt);
    545 		}
    546 		newl = l->l_switchto;
    547 		l->l_switchto = NULL;
    548 	}
    549 #ifndef __HAVE_FAST_SOFTINTS
    550 	else if (ci->ci_data.cpu_softints != 0) {
    551 		/* There are pending soft interrupts, so pick one. */
    552 		newl = softint_picklwp();
    553 		newl->l_stat = LSONPROC;
    554 		newl->l_pflag |= LP_RUNNING;
    555 	}
    556 #endif	/* !__HAVE_FAST_SOFTINTS */
    557 
    558 	/* Count time spent in current system call */
    559 	if (!returning) {
    560 		SYSCALL_TIME_SLEEP(l);
    561 
    562 		updatertime(l, &bt);
    563 	}
    564 
    565 	/* Lock the runqueue */
    566 	KASSERT(l->l_stat != LSRUN);
    567 	mutex_spin_enter(spc->spc_mutex);
    568 
    569 	/*
    570 	 * If on the CPU and we have gotten this far, then we must yield.
    571 	 */
    572 	if (l->l_stat == LSONPROC && l != newl) {
    573 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    574 		if ((l->l_flag & LW_IDLE) == 0) {
    575 			l->l_stat = LSRUN;
    576 			lwp_setlock(l, spc->spc_mutex);
    577 			sched_enqueue(l, true);
    578 			/*
    579 			 * Handle migration.  Note that "migrating LWP" may
    580 			 * be reset here, if interrupt/preemption happens
    581 			 * early in idle LWP.
    582 			 */
    583 			if (l->l_target_cpu != NULL &&
    584 			    (l->l_pflag & LP_BOUND) == 0) {
    585 				KASSERT((l->l_pflag & LP_INTR) == 0);
    586 				spc->spc_migrating = l;
    587 			}
    588 		} else
    589 			l->l_stat = LSIDL;
    590 	}
    591 
    592 	/* Pick new LWP to run. */
    593 	if (newl == NULL) {
    594 		newl = nextlwp(ci, spc);
    595 	}
    596 
    597 	/* Items that must be updated with the CPU locked. */
    598 	if (!returning) {
    599 		/* Update the new LWP's start time. */
    600 		newl->l_stime = bt;
    601 
    602 		/*
    603 		 * ci_curlwp changes when a fast soft interrupt occurs.
    604 		 * We use cpu_onproc to keep track of which kernel or
    605 		 * user thread is running 'underneath' the software
    606 		 * interrupt.  This is important for time accounting,
    607 		 * itimers and forcing user threads to preempt (aston).
    608 		 */
    609 		ci->ci_data.cpu_onproc = newl;
    610 	}
    611 
    612 	/*
    613 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    614 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    615 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    616 	 * cleared by the LWP itself (us) with atomics when not under lock.
    617 	 */
    618 	l->l_dopreempt = 0;
    619 	if (__predict_false(l->l_pfailaddr != 0)) {
    620 		LOCKSTAT_FLAG(lsflag);
    621 		LOCKSTAT_ENTER(lsflag);
    622 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    623 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    624 		    1, l->l_pfailtime, l->l_pfailaddr);
    625 		LOCKSTAT_EXIT(lsflag);
    626 		l->l_pfailtime = 0;
    627 		l->l_pfaillock = 0;
    628 		l->l_pfailaddr = 0;
    629 	}
    630 
    631 	if (l != newl) {
    632 		struct lwp *prevlwp;
    633 
    634 		/* Release all locks, but leave the current LWP locked */
    635 		if (l->l_mutex == spc->spc_mutex) {
    636 			/*
    637 			 * Drop spc_lwplock, if the current LWP has been moved
    638 			 * to the run queue (it is now locked by spc_mutex).
    639 			 */
    640 			mutex_spin_exit(spc->spc_lwplock);
    641 		} else {
    642 			/*
    643 			 * Otherwise, drop the spc_mutex, we are done with the
    644 			 * run queues.
    645 			 */
    646 			mutex_spin_exit(spc->spc_mutex);
    647 		}
    648 
    649 		/*
    650 		 * Mark that context switch is going to be performed
    651 		 * for this LWP, to protect it from being switched
    652 		 * to on another CPU.
    653 		 */
    654 		KASSERT(l->l_ctxswtch == 0);
    655 		l->l_ctxswtch = 1;
    656 		l->l_ncsw++;
    657 		if ((l->l_pflag & LP_PREEMPTING) != 0)
    658 			l->l_nivcsw++;
    659 		l->l_pflag &= ~LP_PREEMPTING;
    660 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    661 		l->l_pflag &= ~LP_RUNNING;
    662 
    663 		/*
    664 		 * Increase the count of spin-mutexes before the release
    665 		 * of the last lock - we must remain at IPL_SCHED during
    666 		 * the context switch.
    667 		 */
    668 		KASSERTMSG(ci->ci_mtx_count == -1,
    669 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    670 		    "(block with spin-mutex held)",
    671 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    672 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    673 		ci->ci_mtx_count--;
    674 		lwp_unlock(l);
    675 
    676 		/* Count the context switch on this CPU. */
    677 		ci->ci_data.cpu_nswtch++;
    678 
    679 		/* Update status for lwpctl, if present. */
    680 		if (l->l_lwpctl != NULL)
    681 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    682 
    683 		/*
    684 		 * Save old VM context, unless a soft interrupt
    685 		 * handler is blocking.
    686 		 */
    687 		if (!returning)
    688 			pmap_deactivate(l);
    689 
    690 		/*
    691 		 * We may need to spin-wait if 'newl' is still
    692 		 * context switching on another CPU.
    693 		 */
    694 		if (__predict_false(newl->l_ctxswtch != 0)) {
    695 			u_int count;
    696 			count = SPINLOCK_BACKOFF_MIN;
    697 			while (newl->l_ctxswtch)
    698 				SPINLOCK_BACKOFF(count);
    699 		}
    700 
    701 		/*
    702 		 * If DTrace has set the active vtime enum to anything
    703 		 * other than INACTIVE (0), then it should have set the
    704 		 * function to call.
    705 		 */
    706 		if (__predict_false(dtrace_vtime_active)) {
    707 			(*dtrace_vtime_switch_func)(newl);
    708 		}
    709 
    710 		/*
    711 		 * We must ensure not to come here from inside a read section.
    712 		 */
    713 		KASSERT(pserialize_not_in_read_section());
    714 
    715 		/* Switch to the new LWP.. */
    716 #ifdef MULTIPROCESSOR
    717 		KASSERT(curlwp == ci->ci_curlwp);
    718 #endif
    719 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    720 		prevlwp = cpu_switchto(l, newl, returning);
    721 		ci = curcpu();
    722 #ifdef MULTIPROCESSOR
    723 		KASSERT(curlwp == ci->ci_curlwp);
    724 #endif
    725 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    726 		    l, curlwp, prevlwp);
    727 
    728 		/*
    729 		 * Switched away - we have new curlwp.
    730 		 * Restore VM context and IPL.
    731 		 */
    732 		pmap_activate(l);
    733 		pcu_switchpoint(l);
    734 
    735 		if (prevlwp != NULL) {
    736 			/* Normalize the count of the spin-mutexes */
    737 			ci->ci_mtx_count++;
    738 			/* Unmark the state of context switch */
    739 			membar_exit();
    740 			prevlwp->l_ctxswtch = 0;
    741 		}
    742 
    743 		/* Update status for lwpctl, if present. */
    744 		if (l->l_lwpctl != NULL) {
    745 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    746 			l->l_lwpctl->lc_pctr++;
    747 		}
    748 
    749 		/* Note trip through cpu_switchto(). */
    750 		pserialize_switchpoint();
    751 
    752 		KASSERT(l->l_cpu == ci);
    753 		splx(oldspl);
    754 		/*
    755 		 * note that, unless the caller disabled preemption,
    756 		 * we can be preempted at any time after the above splx() call.
    757 		 */
    758 		retval = 1;
    759 	} else {
    760 		/* Nothing to do - just unlock and return. */
    761 		pserialize_switchpoint();
    762 		mutex_spin_exit(spc->spc_mutex);
    763 		l->l_pflag &= ~LP_PREEMPTING;
    764 		lwp_unlock(l);
    765 		retval = 0;
    766 	}
    767 
    768 	KASSERT(l == curlwp);
    769 	KASSERT(l->l_stat == LSONPROC);
    770 
    771 	SYSCALL_TIME_WAKEUP(l);
    772 	LOCKDEBUG_BARRIER(NULL, 1);
    773 
    774 	return retval;
    775 }
    776 
    777 /*
    778  * The machine independent parts of context switch to oblivion.
    779  * Does not return.  Call with the LWP unlocked.
    780  */
    781 void
    782 lwp_exit_switchaway(lwp_t *l)
    783 {
    784 	struct cpu_info *ci;
    785 	struct lwp *newl;
    786 	struct bintime bt;
    787 
    788 	ci = l->l_cpu;
    789 
    790 	KASSERT(kpreempt_disabled());
    791 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    792 	KASSERT(ci == curcpu());
    793 	LOCKDEBUG_BARRIER(NULL, 0);
    794 
    795 	kstack_check_magic(l);
    796 
    797 	/* Count time spent in current system call */
    798 	SYSCALL_TIME_SLEEP(l);
    799 	binuptime(&bt);
    800 	updatertime(l, &bt);
    801 
    802 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    803 	(void)splsched();
    804 
    805 	/*
    806 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    807 	 * If no LWP is runnable, select the idle LWP.
    808 	 *
    809 	 * Note that spc_lwplock might not necessary be held, and
    810 	 * new thread would be unlocked after setting the LWP-lock.
    811 	 */
    812 	spc_lock(ci);
    813 #ifndef __HAVE_FAST_SOFTINTS
    814 	if (ci->ci_data.cpu_softints != 0) {
    815 		/* There are pending soft interrupts, so pick one. */
    816 		newl = softint_picklwp();
    817 		newl->l_stat = LSONPROC;
    818 		newl->l_pflag |= LP_RUNNING;
    819 	} else
    820 #endif	/* !__HAVE_FAST_SOFTINTS */
    821 	{
    822 		newl = nextlwp(ci, &ci->ci_schedstate);
    823 	}
    824 
    825 	/* Update the new LWP's start time. */
    826 	newl->l_stime = bt;
    827 	l->l_pflag &= ~LP_RUNNING;
    828 
    829 	/*
    830 	 * ci_curlwp changes when a fast soft interrupt occurs.
    831 	 * We use cpu_onproc to keep track of which kernel or
    832 	 * user thread is running 'underneath' the software
    833 	 * interrupt.  This is important for time accounting,
    834 	 * itimers and forcing user threads to preempt (aston).
    835 	 */
    836 	ci->ci_data.cpu_onproc = newl;
    837 
    838 	/* Unlock the run queue. */
    839 	spc_unlock(ci);
    840 
    841 	/* Count the context switch on this CPU. */
    842 	ci->ci_data.cpu_nswtch++;
    843 
    844 	/* Update status for lwpctl, if present. */
    845 	if (l->l_lwpctl != NULL)
    846 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    847 
    848 	/*
    849 	 * We may need to spin-wait if 'newl' is still
    850 	 * context switching on another CPU.
    851 	 */
    852 	if (__predict_false(newl->l_ctxswtch != 0)) {
    853 		u_int count;
    854 		count = SPINLOCK_BACKOFF_MIN;
    855 		while (newl->l_ctxswtch)
    856 			SPINLOCK_BACKOFF(count);
    857 	}
    858 
    859 	/*
    860 	 * If DTrace has set the active vtime enum to anything
    861 	 * other than INACTIVE (0), then it should have set the
    862 	 * function to call.
    863 	 */
    864 	if (__predict_false(dtrace_vtime_active)) {
    865 		(*dtrace_vtime_switch_func)(newl);
    866 	}
    867 
    868 	/* Switch to the new LWP.. */
    869 	(void)cpu_switchto(NULL, newl, false);
    870 
    871 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    872 	/* NOTREACHED */
    873 }
    874 
    875 /*
    876  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    877  *
    878  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    879  */
    880 void
    881 setrunnable(struct lwp *l)
    882 {
    883 	struct proc *p = l->l_proc;
    884 	struct cpu_info *ci;
    885 
    886 	KASSERT((l->l_flag & LW_IDLE) == 0);
    887 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    888 	KASSERT(mutex_owned(p->p_lock));
    889 	KASSERT(lwp_locked(l, NULL));
    890 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    891 
    892 	switch (l->l_stat) {
    893 	case LSSTOP:
    894 		/*
    895 		 * If we're being traced (possibly because someone attached us
    896 		 * while we were stopped), check for a signal from the debugger.
    897 		 */
    898 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    899 			signotify(l);
    900 		p->p_nrlwps++;
    901 		break;
    902 	case LSSUSPENDED:
    903 		l->l_flag &= ~LW_WSUSPEND;
    904 		p->p_nrlwps++;
    905 		cv_broadcast(&p->p_lwpcv);
    906 		break;
    907 	case LSSLEEP:
    908 		KASSERT(l->l_wchan != NULL);
    909 		break;
    910 	default:
    911 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    912 	}
    913 
    914 	/*
    915 	 * If the LWP was sleeping, start it again.
    916 	 */
    917 	if (l->l_wchan != NULL) {
    918 		l->l_stat = LSSLEEP;
    919 		/* lwp_unsleep() will release the lock. */
    920 		lwp_unsleep(l, true);
    921 		return;
    922 	}
    923 
    924 	/*
    925 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    926 	 * about to call mi_switch(), in which case it will yield.
    927 	 */
    928 	if ((l->l_pflag & LP_RUNNING) != 0) {
    929 		l->l_stat = LSONPROC;
    930 		l->l_slptime = 0;
    931 		lwp_unlock(l);
    932 		return;
    933 	}
    934 
    935 	/*
    936 	 * Look for a CPU to run.
    937 	 * Set the LWP runnable.
    938 	 */
    939 	ci = sched_takecpu(l);
    940 	l->l_cpu = ci;
    941 	spc_lock(ci);
    942 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    943 	sched_setrunnable(l);
    944 	l->l_stat = LSRUN;
    945 	l->l_slptime = 0;
    946 
    947 	sched_enqueue(l, false);
    948 	resched_cpu(l);
    949 	lwp_unlock(l);
    950 }
    951 
    952 /*
    953  * suspendsched:
    954  *
    955  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    956  */
    957 void
    958 suspendsched(void)
    959 {
    960 	CPU_INFO_ITERATOR cii;
    961 	struct cpu_info *ci;
    962 	struct lwp *l;
    963 	struct proc *p;
    964 
    965 	/*
    966 	 * We do this by process in order not to violate the locking rules.
    967 	 */
    968 	mutex_enter(proc_lock);
    969 	PROCLIST_FOREACH(p, &allproc) {
    970 		mutex_enter(p->p_lock);
    971 		if ((p->p_flag & PK_SYSTEM) != 0) {
    972 			mutex_exit(p->p_lock);
    973 			continue;
    974 		}
    975 
    976 		if (p->p_stat != SSTOP) {
    977 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    978 				p->p_pptr->p_nstopchild++;
    979 				p->p_waited = 0;
    980 			}
    981 			p->p_stat = SSTOP;
    982 		}
    983 
    984 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    985 			if (l == curlwp)
    986 				continue;
    987 
    988 			lwp_lock(l);
    989 
    990 			/*
    991 			 * Set L_WREBOOT so that the LWP will suspend itself
    992 			 * when it tries to return to user mode.  We want to
    993 			 * try and get to get as many LWPs as possible to
    994 			 * the user / kernel boundary, so that they will
    995 			 * release any locks that they hold.
    996 			 */
    997 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    998 
    999 			if (l->l_stat == LSSLEEP &&
   1000 			    (l->l_flag & LW_SINTR) != 0) {
   1001 				/* setrunnable() will release the lock. */
   1002 				setrunnable(l);
   1003 				continue;
   1004 			}
   1005 
   1006 			lwp_unlock(l);
   1007 		}
   1008 
   1009 		mutex_exit(p->p_lock);
   1010 	}
   1011 	mutex_exit(proc_lock);
   1012 
   1013 	/*
   1014 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1015 	 * They'll trap into the kernel and suspend themselves in userret().
   1016 	 */
   1017 	for (CPU_INFO_FOREACH(cii, ci)) {
   1018 		spc_lock(ci);
   1019 		cpu_need_resched(ci, RESCHED_IMMED);
   1020 		spc_unlock(ci);
   1021 	}
   1022 }
   1023 
   1024 /*
   1025  * sched_unsleep:
   1026  *
   1027  *	The is called when the LWP has not been awoken normally but instead
   1028  *	interrupted: for example, if the sleep timed out.  Because of this,
   1029  *	it's not a valid action for running or idle LWPs.
   1030  */
   1031 static void
   1032 sched_unsleep(struct lwp *l, bool cleanup)
   1033 {
   1034 
   1035 	lwp_unlock(l);
   1036 	panic("sched_unsleep");
   1037 }
   1038 
   1039 static void
   1040 resched_cpu(struct lwp *l)
   1041 {
   1042 	struct cpu_info *ci = l->l_cpu;
   1043 
   1044 	KASSERT(lwp_locked(l, NULL));
   1045 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1046 		cpu_need_resched(ci, 0);
   1047 }
   1048 
   1049 static void
   1050 sched_changepri(struct lwp *l, pri_t pri)
   1051 {
   1052 
   1053 	KASSERT(lwp_locked(l, NULL));
   1054 
   1055 	if (l->l_stat == LSRUN) {
   1056 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1057 		sched_dequeue(l);
   1058 		l->l_priority = pri;
   1059 		sched_enqueue(l, false);
   1060 	} else {
   1061 		l->l_priority = pri;
   1062 	}
   1063 	resched_cpu(l);
   1064 }
   1065 
   1066 static void
   1067 sched_lendpri(struct lwp *l, pri_t pri)
   1068 {
   1069 
   1070 	KASSERT(lwp_locked(l, NULL));
   1071 
   1072 	if (l->l_stat == LSRUN) {
   1073 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1074 		sched_dequeue(l);
   1075 		l->l_inheritedprio = pri;
   1076 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1077 		sched_enqueue(l, false);
   1078 	} else {
   1079 		l->l_inheritedprio = pri;
   1080 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1081 	}
   1082 	resched_cpu(l);
   1083 }
   1084 
   1085 struct lwp *
   1086 syncobj_noowner(wchan_t wchan)
   1087 {
   1088 
   1089 	return NULL;
   1090 }
   1091 
   1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1094 
   1095 /*
   1096  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1097  * 5 second intervals.
   1098  */
   1099 static const fixpt_t cexp[ ] = {
   1100 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1101 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1102 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1103 };
   1104 
   1105 /*
   1106  * sched_pstats:
   1107  *
   1108  * => Update process statistics and check CPU resource allocation.
   1109  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1110  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1111  */
   1112 void
   1113 sched_pstats(void)
   1114 {
   1115 	extern struct loadavg averunnable;
   1116 	struct loadavg *avg = &averunnable;
   1117 	const int clkhz = (stathz != 0 ? stathz : hz);
   1118 	static bool backwards = false;
   1119 	static u_int lavg_count = 0;
   1120 	struct proc *p;
   1121 	int nrun;
   1122 
   1123 	sched_pstats_ticks++;
   1124 	if (++lavg_count >= 5) {
   1125 		lavg_count = 0;
   1126 		nrun = 0;
   1127 	}
   1128 	mutex_enter(proc_lock);
   1129 	PROCLIST_FOREACH(p, &allproc) {
   1130 		struct lwp *l;
   1131 		struct rlimit *rlim;
   1132 		time_t runtm;
   1133 		int sig;
   1134 
   1135 		/* Increment sleep time (if sleeping), ignore overflow. */
   1136 		mutex_enter(p->p_lock);
   1137 		runtm = p->p_rtime.sec;
   1138 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1139 			fixpt_t lpctcpu;
   1140 			u_int lcpticks;
   1141 
   1142 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1143 				continue;
   1144 			lwp_lock(l);
   1145 			runtm += l->l_rtime.sec;
   1146 			l->l_swtime++;
   1147 			sched_lwp_stats(l);
   1148 
   1149 			/* For load average calculation. */
   1150 			if (__predict_false(lavg_count == 0) &&
   1151 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1152 				switch (l->l_stat) {
   1153 				case LSSLEEP:
   1154 					if (l->l_slptime > 1) {
   1155 						break;
   1156 					}
   1157 					/* FALLTHROUGH */
   1158 				case LSRUN:
   1159 				case LSONPROC:
   1160 				case LSIDL:
   1161 					nrun++;
   1162 				}
   1163 			}
   1164 			lwp_unlock(l);
   1165 
   1166 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1167 			if (l->l_slptime != 0)
   1168 				continue;
   1169 
   1170 			lpctcpu = l->l_pctcpu;
   1171 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1172 			lpctcpu += ((FSCALE - ccpu) *
   1173 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1174 			l->l_pctcpu = lpctcpu;
   1175 		}
   1176 		/* Calculating p_pctcpu only for ps(1) */
   1177 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1178 
   1179 		if (__predict_false(runtm < 0)) {
   1180 			if (!backwards) {
   1181 				backwards = true;
   1182 				printf("WARNING: negative runtime; "
   1183 				    "monotonic clock has gone backwards\n");
   1184 			}
   1185 			mutex_exit(p->p_lock);
   1186 			continue;
   1187 		}
   1188 
   1189 		/*
   1190 		 * Check if the process exceeds its CPU resource allocation.
   1191 		 * If over the hard limit, kill it with SIGKILL.
   1192 		 * If over the soft limit, send SIGXCPU and raise
   1193 		 * the soft limit a little.
   1194 		 */
   1195 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1196 		sig = 0;
   1197 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1198 			if (runtm >= rlim->rlim_max) {
   1199 				sig = SIGKILL;
   1200 				log(LOG_NOTICE,
   1201 				    "pid %d, command %s, is killed: %s\n",
   1202 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1203 				uprintf("pid %d, command %s, is killed: %s\n",
   1204 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1205 			} else {
   1206 				sig = SIGXCPU;
   1207 				if (rlim->rlim_cur < rlim->rlim_max)
   1208 					rlim->rlim_cur += 5;
   1209 			}
   1210 		}
   1211 		mutex_exit(p->p_lock);
   1212 		if (__predict_false(sig)) {
   1213 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1214 			psignal(p, sig);
   1215 		}
   1216 	}
   1217 
   1218 	/* Load average calculation. */
   1219 	if (__predict_false(lavg_count == 0)) {
   1220 		int i;
   1221 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1222 		for (i = 0; i < __arraycount(cexp); i++) {
   1223 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1224 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1225 		}
   1226 	}
   1227 
   1228 	/* Lightning bolt. */
   1229 	cv_broadcast(&lbolt);
   1230 
   1231 	mutex_exit(proc_lock);
   1232 }
   1233