kern_synch.c revision 1.325 1 /* $NetBSD: kern_synch.c,v 1.325 2019/11/21 20:51:05 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.325 2019/11/21 20:51:05 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107 static void resched_cpu(struct lwp *);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 /* "Lightning bolt": once a second sleep address. */
126 kcondvar_t lbolt __cacheline_aligned;
127
128 u_int sched_pstats_ticks __cacheline_aligned;
129
130 /* Preemption event counters. */
131 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
132 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
133 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
134
135 void
136 synch_init(void)
137 {
138
139 cv_init(&lbolt, "lbolt");
140
141 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
142 "kpreempt", "defer: critical section");
143 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
144 "kpreempt", "defer: kernel_lock");
145 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
146 "kpreempt", "immediate");
147 }
148
149 /*
150 * OBSOLETE INTERFACE
151 *
152 * General sleep call. Suspends the current LWP until a wakeup is
153 * performed on the specified identifier. The LWP will then be made
154 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
155 * means no timeout). If pri includes PCATCH flag, signals are checked
156 * before and after sleeping, else signals are not checked. Returns 0 if
157 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
158 * signal needs to be delivered, ERESTART is returned if the current system
159 * call should be restarted if possible, and EINTR is returned if the system
160 * call should be interrupted by the signal (return EINTR).
161 */
162 int
163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
164 {
165 struct lwp *l = curlwp;
166 sleepq_t *sq;
167 kmutex_t *mp;
168
169 KASSERT((l->l_pflag & LP_INTR) == 0);
170 KASSERT(ident != &lbolt);
171
172 if (sleepq_dontsleep(l)) {
173 (void)sleepq_abort(NULL, 0);
174 return 0;
175 }
176
177 l->l_kpriority = true;
178 sq = sleeptab_lookup(&sleeptab, ident, &mp);
179 sleepq_enter(sq, l, mp);
180 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 return sleepq_block(timo, priority & PCATCH);
182 }
183
184 int
185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
186 kmutex_t *mtx)
187 {
188 struct lwp *l = curlwp;
189 sleepq_t *sq;
190 kmutex_t *mp;
191 int error;
192
193 KASSERT((l->l_pflag & LP_INTR) == 0);
194 KASSERT(ident != &lbolt);
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 l->l_kpriority = true;
202 sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 sleepq_enter(sq, l, mp);
204 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 mutex_exit(mtx);
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if ((priority & PNORELOCK) == 0)
209 mutex_enter(mtx);
210
211 return error;
212 }
213
214 /*
215 * General sleep call for situations where a wake-up is not expected.
216 */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 kmutex_t *mp;
222 sleepq_t *sq;
223 int error;
224
225 KASSERT(!(timo == 0 && intr == false));
226
227 if (sleepq_dontsleep(l))
228 return sleepq_abort(NULL, 0);
229
230 if (mtx != NULL)
231 mutex_exit(mtx);
232 l->l_kpriority = true;
233 sq = sleeptab_lookup(&sleeptab, l, &mp);
234 sleepq_enter(sq, l, mp);
235 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
236 error = sleepq_block(timo, intr);
237 if (mtx != NULL)
238 mutex_enter(mtx);
239
240 return error;
241 }
242
243 /*
244 * OBSOLETE INTERFACE
245 *
246 * Make all LWPs sleeping on the specified identifier runnable.
247 */
248 void
249 wakeup(wchan_t ident)
250 {
251 sleepq_t *sq;
252 kmutex_t *mp;
253
254 if (__predict_false(cold))
255 return;
256
257 sq = sleeptab_lookup(&sleeptab, ident, &mp);
258 sleepq_wake(sq, ident, (u_int)-1, mp);
259 }
260
261 /*
262 * General yield call. Puts the current LWP back on its run queue and
263 * performs a voluntary context switch. Should only be called when the
264 * current LWP explicitly requests it (eg sched_yield(2)).
265 */
266 void
267 yield(void)
268 {
269 struct lwp *l = curlwp;
270
271 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
272 lwp_lock(l);
273 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 KASSERT(l->l_stat == LSONPROC);
275 /* Voluntary - ditch kpriority boost. */
276 l->l_kpriority = false;
277 (void)mi_switch(l);
278 KERNEL_LOCK(l->l_biglocks, l);
279 }
280
281 /*
282 * General preemption call. Puts the current LWP back on its run queue
283 * and performs an involuntary context switch.
284 */
285 void
286 preempt(void)
287 {
288 struct lwp *l = curlwp;
289
290 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
291 lwp_lock(l);
292 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
293 KASSERT(l->l_stat == LSONPROC);
294 /* Involuntary - keep kpriority boost. */
295 l->l_pflag |= LP_PREEMPTING;
296 (void)mi_switch(l);
297 KERNEL_LOCK(l->l_biglocks, l);
298 }
299
300 /*
301 * Handle a request made by another agent to preempt the current LWP
302 * in-kernel. Usually called when l_dopreempt may be non-zero.
303 *
304 * Character addresses for lockstat only.
305 */
306 static char in_critical_section;
307 static char kernel_lock_held;
308 static char is_softint;
309 static char cpu_kpreempt_enter_fail;
310
311 bool
312 kpreempt(uintptr_t where)
313 {
314 uintptr_t failed;
315 lwp_t *l;
316 int s, dop, lsflag;
317
318 l = curlwp;
319 failed = 0;
320 while ((dop = l->l_dopreempt) != 0) {
321 if (l->l_stat != LSONPROC) {
322 /*
323 * About to block (or die), let it happen.
324 * Doesn't really count as "preemption has
325 * been blocked", since we're going to
326 * context switch.
327 */
328 atomic_swap_uint(&l->l_dopreempt, 0);
329 return true;
330 }
331 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
332 /* Can't preempt idle loop, don't count as failure. */
333 atomic_swap_uint(&l->l_dopreempt, 0);
334 return true;
335 }
336 if (__predict_false(l->l_nopreempt != 0)) {
337 /* LWP holds preemption disabled, explicitly. */
338 if ((dop & DOPREEMPT_COUNTED) == 0) {
339 kpreempt_ev_crit.ev_count++;
340 }
341 failed = (uintptr_t)&in_critical_section;
342 break;
343 }
344 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
345 /* Can't preempt soft interrupts yet. */
346 atomic_swap_uint(&l->l_dopreempt, 0);
347 failed = (uintptr_t)&is_softint;
348 break;
349 }
350 s = splsched();
351 if (__predict_false(l->l_blcnt != 0 ||
352 curcpu()->ci_biglock_wanted != NULL)) {
353 /* Hold or want kernel_lock, code is not MT safe. */
354 splx(s);
355 if ((dop & DOPREEMPT_COUNTED) == 0) {
356 kpreempt_ev_klock.ev_count++;
357 }
358 failed = (uintptr_t)&kernel_lock_held;
359 break;
360 }
361 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
362 /*
363 * It may be that the IPL is too high.
364 * kpreempt_enter() can schedule an
365 * interrupt to retry later.
366 */
367 splx(s);
368 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
369 break;
370 }
371 /* Do it! */
372 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
373 kpreempt_ev_immed.ev_count++;
374 }
375 lwp_lock(l);
376 mi_switch(l);
377 l->l_nopreempt++;
378 splx(s);
379
380 /* Take care of any MD cleanup. */
381 cpu_kpreempt_exit(where);
382 l->l_nopreempt--;
383 }
384
385 if (__predict_true(!failed)) {
386 return false;
387 }
388
389 /* Record preemption failure for reporting via lockstat. */
390 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
391 lsflag = 0;
392 LOCKSTAT_ENTER(lsflag);
393 if (__predict_false(lsflag)) {
394 if (where == 0) {
395 where = (uintptr_t)__builtin_return_address(0);
396 }
397 /* Preemption is on, might recurse, so make it atomic. */
398 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
399 (void *)where) == NULL) {
400 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
401 l->l_pfaillock = failed;
402 }
403 }
404 LOCKSTAT_EXIT(lsflag);
405 return true;
406 }
407
408 /*
409 * Return true if preemption is explicitly disabled.
410 */
411 bool
412 kpreempt_disabled(void)
413 {
414 const lwp_t *l = curlwp;
415
416 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
417 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
418 }
419
420 /*
421 * Disable kernel preemption.
422 */
423 void
424 kpreempt_disable(void)
425 {
426
427 KPREEMPT_DISABLE(curlwp);
428 }
429
430 /*
431 * Reenable kernel preemption.
432 */
433 void
434 kpreempt_enable(void)
435 {
436
437 KPREEMPT_ENABLE(curlwp);
438 }
439
440 /*
441 * Compute the amount of time during which the current lwp was running.
442 *
443 * - update l_rtime unless it's an idle lwp.
444 */
445
446 void
447 updatertime(lwp_t *l, const struct bintime *now)
448 {
449
450 if (__predict_false(l->l_flag & LW_IDLE))
451 return;
452
453 /* rtime += now - stime */
454 bintime_add(&l->l_rtime, now);
455 bintime_sub(&l->l_rtime, &l->l_stime);
456 }
457
458 /*
459 * Select next LWP from the current CPU to run..
460 */
461 static inline lwp_t *
462 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
463 {
464 lwp_t *newl;
465
466 /*
467 * Let sched_nextlwp() select the LWP to run the CPU next.
468 * If no LWP is runnable, select the idle LWP.
469 *
470 * Note that spc_lwplock might not necessary be held, and
471 * new thread would be unlocked after setting the LWP-lock.
472 */
473 newl = sched_nextlwp();
474 if (newl != NULL) {
475 sched_dequeue(newl);
476 KASSERT(lwp_locked(newl, spc->spc_mutex));
477 KASSERT(newl->l_cpu == ci);
478 newl->l_stat = LSONPROC;
479 newl->l_pflag |= LP_RUNNING;
480 lwp_setlock(newl, spc->spc_lwplock);
481 } else {
482 newl = ci->ci_data.cpu_idlelwp;
483 newl->l_stat = LSONPROC;
484 newl->l_pflag |= LP_RUNNING;
485 }
486
487 /*
488 * Only clear want_resched if there are no pending (slow) software
489 * interrupts. We can do this without an atomic, because no new
490 * LWPs can appear in the queue due to our hold on spc_mutex, and
491 * the update to ci_want_resched will become globally visible before
492 * the release of spc_mutex becomes globally visible.
493 */
494 ci->ci_want_resched = ci->ci_data.cpu_softints;
495 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
496 spc->spc_curpriority = lwp_eprio(newl);
497
498 return newl;
499 }
500
501 /*
502 * The machine independent parts of context switch.
503 *
504 * Returns 1 if another LWP was actually run.
505 */
506 int
507 mi_switch(lwp_t *l)
508 {
509 struct cpu_info *ci;
510 struct schedstate_percpu *spc;
511 struct lwp *newl;
512 int retval, oldspl;
513 struct bintime bt;
514 bool returning;
515
516 KASSERT(lwp_locked(l, NULL));
517 KASSERT(kpreempt_disabled());
518 LOCKDEBUG_BARRIER(l->l_mutex, 1);
519
520 kstack_check_magic(l);
521
522 binuptime(&bt);
523
524 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
525 KASSERT((l->l_pflag & LP_RUNNING) != 0);
526 KASSERT(l->l_cpu == curcpu());
527 ci = l->l_cpu;
528 spc = &ci->ci_schedstate;
529 returning = false;
530 newl = NULL;
531
532 /*
533 * If we have been asked to switch to a specific LWP, then there
534 * is no need to inspect the run queues. If a soft interrupt is
535 * blocking, then return to the interrupted thread without adjusting
536 * VM context or its start time: neither have been changed in order
537 * to take the interrupt.
538 */
539 if (l->l_switchto != NULL) {
540 if ((l->l_pflag & LP_INTR) != 0) {
541 returning = true;
542 softint_block(l);
543 if ((l->l_pflag & LP_TIMEINTR) != 0)
544 updatertime(l, &bt);
545 }
546 newl = l->l_switchto;
547 l->l_switchto = NULL;
548 }
549 #ifndef __HAVE_FAST_SOFTINTS
550 else if (ci->ci_data.cpu_softints != 0) {
551 /* There are pending soft interrupts, so pick one. */
552 newl = softint_picklwp();
553 newl->l_stat = LSONPROC;
554 newl->l_pflag |= LP_RUNNING;
555 }
556 #endif /* !__HAVE_FAST_SOFTINTS */
557
558 /* Count time spent in current system call */
559 if (!returning) {
560 SYSCALL_TIME_SLEEP(l);
561
562 updatertime(l, &bt);
563 }
564
565 /* Lock the runqueue */
566 KASSERT(l->l_stat != LSRUN);
567 mutex_spin_enter(spc->spc_mutex);
568
569 /*
570 * If on the CPU and we have gotten this far, then we must yield.
571 */
572 if (l->l_stat == LSONPROC && l != newl) {
573 KASSERT(lwp_locked(l, spc->spc_lwplock));
574 if ((l->l_flag & LW_IDLE) == 0) {
575 l->l_stat = LSRUN;
576 lwp_setlock(l, spc->spc_mutex);
577 sched_enqueue(l, true);
578 /*
579 * Handle migration. Note that "migrating LWP" may
580 * be reset here, if interrupt/preemption happens
581 * early in idle LWP.
582 */
583 if (l->l_target_cpu != NULL &&
584 (l->l_pflag & LP_BOUND) == 0) {
585 KASSERT((l->l_pflag & LP_INTR) == 0);
586 spc->spc_migrating = l;
587 }
588 } else
589 l->l_stat = LSIDL;
590 }
591
592 /* Pick new LWP to run. */
593 if (newl == NULL) {
594 newl = nextlwp(ci, spc);
595 }
596
597 /* Items that must be updated with the CPU locked. */
598 if (!returning) {
599 /* Update the new LWP's start time. */
600 newl->l_stime = bt;
601
602 /*
603 * ci_curlwp changes when a fast soft interrupt occurs.
604 * We use cpu_onproc to keep track of which kernel or
605 * user thread is running 'underneath' the software
606 * interrupt. This is important for time accounting,
607 * itimers and forcing user threads to preempt (aston).
608 */
609 ci->ci_data.cpu_onproc = newl;
610 }
611
612 /*
613 * Preemption related tasks. Must be done holding spc_mutex. Clear
614 * l_dopreempt without an atomic - it's only ever set non-zero by
615 * sched_resched_cpu() which also holds spc_mutex, and only ever
616 * cleared by the LWP itself (us) with atomics when not under lock.
617 */
618 l->l_dopreempt = 0;
619 if (__predict_false(l->l_pfailaddr != 0)) {
620 LOCKSTAT_FLAG(lsflag);
621 LOCKSTAT_ENTER(lsflag);
622 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
623 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
624 1, l->l_pfailtime, l->l_pfailaddr);
625 LOCKSTAT_EXIT(lsflag);
626 l->l_pfailtime = 0;
627 l->l_pfaillock = 0;
628 l->l_pfailaddr = 0;
629 }
630
631 if (l != newl) {
632 struct lwp *prevlwp;
633
634 /* Release all locks, but leave the current LWP locked */
635 if (l->l_mutex == spc->spc_mutex) {
636 /*
637 * Drop spc_lwplock, if the current LWP has been moved
638 * to the run queue (it is now locked by spc_mutex).
639 */
640 mutex_spin_exit(spc->spc_lwplock);
641 } else {
642 /*
643 * Otherwise, drop the spc_mutex, we are done with the
644 * run queues.
645 */
646 mutex_spin_exit(spc->spc_mutex);
647 }
648
649 /*
650 * Mark that context switch is going to be performed
651 * for this LWP, to protect it from being switched
652 * to on another CPU.
653 */
654 KASSERT(l->l_ctxswtch == 0);
655 l->l_ctxswtch = 1;
656 l->l_ncsw++;
657 if ((l->l_pflag & LP_PREEMPTING) != 0)
658 l->l_nivcsw++;
659 l->l_pflag &= ~LP_PREEMPTING;
660 KASSERT((l->l_pflag & LP_RUNNING) != 0);
661 l->l_pflag &= ~LP_RUNNING;
662
663 /*
664 * Increase the count of spin-mutexes before the release
665 * of the last lock - we must remain at IPL_SCHED during
666 * the context switch.
667 */
668 KASSERTMSG(ci->ci_mtx_count == -1,
669 "%s: cpu%u: ci_mtx_count (%d) != -1 "
670 "(block with spin-mutex held)",
671 __func__, cpu_index(ci), ci->ci_mtx_count);
672 oldspl = MUTEX_SPIN_OLDSPL(ci);
673 ci->ci_mtx_count--;
674 lwp_unlock(l);
675
676 /* Count the context switch on this CPU. */
677 ci->ci_data.cpu_nswtch++;
678
679 /* Update status for lwpctl, if present. */
680 if (l->l_lwpctl != NULL)
681 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
682
683 /*
684 * Save old VM context, unless a soft interrupt
685 * handler is blocking.
686 */
687 if (!returning)
688 pmap_deactivate(l);
689
690 /*
691 * We may need to spin-wait if 'newl' is still
692 * context switching on another CPU.
693 */
694 if (__predict_false(newl->l_ctxswtch != 0)) {
695 u_int count;
696 count = SPINLOCK_BACKOFF_MIN;
697 while (newl->l_ctxswtch)
698 SPINLOCK_BACKOFF(count);
699 }
700
701 /*
702 * If DTrace has set the active vtime enum to anything
703 * other than INACTIVE (0), then it should have set the
704 * function to call.
705 */
706 if (__predict_false(dtrace_vtime_active)) {
707 (*dtrace_vtime_switch_func)(newl);
708 }
709
710 /*
711 * We must ensure not to come here from inside a read section.
712 */
713 KASSERT(pserialize_not_in_read_section());
714
715 /* Switch to the new LWP.. */
716 #ifdef MULTIPROCESSOR
717 KASSERT(curlwp == ci->ci_curlwp);
718 #endif
719 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
720 prevlwp = cpu_switchto(l, newl, returning);
721 ci = curcpu();
722 #ifdef MULTIPROCESSOR
723 KASSERT(curlwp == ci->ci_curlwp);
724 #endif
725 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
726 l, curlwp, prevlwp);
727
728 /*
729 * Switched away - we have new curlwp.
730 * Restore VM context and IPL.
731 */
732 pmap_activate(l);
733 pcu_switchpoint(l);
734
735 if (prevlwp != NULL) {
736 /* Normalize the count of the spin-mutexes */
737 ci->ci_mtx_count++;
738 /* Unmark the state of context switch */
739 membar_exit();
740 prevlwp->l_ctxswtch = 0;
741 }
742
743 /* Update status for lwpctl, if present. */
744 if (l->l_lwpctl != NULL) {
745 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
746 l->l_lwpctl->lc_pctr++;
747 }
748
749 /* Note trip through cpu_switchto(). */
750 pserialize_switchpoint();
751
752 KASSERT(l->l_cpu == ci);
753 splx(oldspl);
754 /*
755 * note that, unless the caller disabled preemption,
756 * we can be preempted at any time after the above splx() call.
757 */
758 retval = 1;
759 } else {
760 /* Nothing to do - just unlock and return. */
761 pserialize_switchpoint();
762 mutex_spin_exit(spc->spc_mutex);
763 l->l_pflag &= ~LP_PREEMPTING;
764 lwp_unlock(l);
765 retval = 0;
766 }
767
768 KASSERT(l == curlwp);
769 KASSERT(l->l_stat == LSONPROC);
770
771 SYSCALL_TIME_WAKEUP(l);
772 LOCKDEBUG_BARRIER(NULL, 1);
773
774 return retval;
775 }
776
777 /*
778 * The machine independent parts of context switch to oblivion.
779 * Does not return. Call with the LWP unlocked.
780 */
781 void
782 lwp_exit_switchaway(lwp_t *l)
783 {
784 struct cpu_info *ci;
785 struct lwp *newl;
786 struct bintime bt;
787
788 ci = l->l_cpu;
789
790 KASSERT(kpreempt_disabled());
791 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
792 KASSERT(ci == curcpu());
793 LOCKDEBUG_BARRIER(NULL, 0);
794
795 kstack_check_magic(l);
796
797 /* Count time spent in current system call */
798 SYSCALL_TIME_SLEEP(l);
799 binuptime(&bt);
800 updatertime(l, &bt);
801
802 /* Must stay at IPL_SCHED even after releasing run queue lock. */
803 (void)splsched();
804
805 /*
806 * Let sched_nextlwp() select the LWP to run the CPU next.
807 * If no LWP is runnable, select the idle LWP.
808 *
809 * Note that spc_lwplock might not necessary be held, and
810 * new thread would be unlocked after setting the LWP-lock.
811 */
812 spc_lock(ci);
813 #ifndef __HAVE_FAST_SOFTINTS
814 if (ci->ci_data.cpu_softints != 0) {
815 /* There are pending soft interrupts, so pick one. */
816 newl = softint_picklwp();
817 newl->l_stat = LSONPROC;
818 newl->l_pflag |= LP_RUNNING;
819 } else
820 #endif /* !__HAVE_FAST_SOFTINTS */
821 {
822 newl = nextlwp(ci, &ci->ci_schedstate);
823 }
824
825 /* Update the new LWP's start time. */
826 newl->l_stime = bt;
827 l->l_pflag &= ~LP_RUNNING;
828
829 /*
830 * ci_curlwp changes when a fast soft interrupt occurs.
831 * We use cpu_onproc to keep track of which kernel or
832 * user thread is running 'underneath' the software
833 * interrupt. This is important for time accounting,
834 * itimers and forcing user threads to preempt (aston).
835 */
836 ci->ci_data.cpu_onproc = newl;
837
838 /* Unlock the run queue. */
839 spc_unlock(ci);
840
841 /* Count the context switch on this CPU. */
842 ci->ci_data.cpu_nswtch++;
843
844 /* Update status for lwpctl, if present. */
845 if (l->l_lwpctl != NULL)
846 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
847
848 /*
849 * We may need to spin-wait if 'newl' is still
850 * context switching on another CPU.
851 */
852 if (__predict_false(newl->l_ctxswtch != 0)) {
853 u_int count;
854 count = SPINLOCK_BACKOFF_MIN;
855 while (newl->l_ctxswtch)
856 SPINLOCK_BACKOFF(count);
857 }
858
859 /*
860 * If DTrace has set the active vtime enum to anything
861 * other than INACTIVE (0), then it should have set the
862 * function to call.
863 */
864 if (__predict_false(dtrace_vtime_active)) {
865 (*dtrace_vtime_switch_func)(newl);
866 }
867
868 /* Switch to the new LWP.. */
869 (void)cpu_switchto(NULL, newl, false);
870
871 for (;;) continue; /* XXX: convince gcc about "noreturn" */
872 /* NOTREACHED */
873 }
874
875 /*
876 * setrunnable: change LWP state to be runnable, placing it on the run queue.
877 *
878 * Call with the process and LWP locked. Will return with the LWP unlocked.
879 */
880 void
881 setrunnable(struct lwp *l)
882 {
883 struct proc *p = l->l_proc;
884 struct cpu_info *ci;
885
886 KASSERT((l->l_flag & LW_IDLE) == 0);
887 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
888 KASSERT(mutex_owned(p->p_lock));
889 KASSERT(lwp_locked(l, NULL));
890 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
891
892 switch (l->l_stat) {
893 case LSSTOP:
894 /*
895 * If we're being traced (possibly because someone attached us
896 * while we were stopped), check for a signal from the debugger.
897 */
898 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
899 signotify(l);
900 p->p_nrlwps++;
901 break;
902 case LSSUSPENDED:
903 l->l_flag &= ~LW_WSUSPEND;
904 p->p_nrlwps++;
905 cv_broadcast(&p->p_lwpcv);
906 break;
907 case LSSLEEP:
908 KASSERT(l->l_wchan != NULL);
909 break;
910 default:
911 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
912 }
913
914 /*
915 * If the LWP was sleeping, start it again.
916 */
917 if (l->l_wchan != NULL) {
918 l->l_stat = LSSLEEP;
919 /* lwp_unsleep() will release the lock. */
920 lwp_unsleep(l, true);
921 return;
922 }
923
924 /*
925 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
926 * about to call mi_switch(), in which case it will yield.
927 */
928 if ((l->l_pflag & LP_RUNNING) != 0) {
929 l->l_stat = LSONPROC;
930 l->l_slptime = 0;
931 lwp_unlock(l);
932 return;
933 }
934
935 /*
936 * Look for a CPU to run.
937 * Set the LWP runnable.
938 */
939 ci = sched_takecpu(l);
940 l->l_cpu = ci;
941 spc_lock(ci);
942 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
943 sched_setrunnable(l);
944 l->l_stat = LSRUN;
945 l->l_slptime = 0;
946
947 sched_enqueue(l, false);
948 resched_cpu(l);
949 lwp_unlock(l);
950 }
951
952 /*
953 * suspendsched:
954 *
955 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
956 */
957 void
958 suspendsched(void)
959 {
960 CPU_INFO_ITERATOR cii;
961 struct cpu_info *ci;
962 struct lwp *l;
963 struct proc *p;
964
965 /*
966 * We do this by process in order not to violate the locking rules.
967 */
968 mutex_enter(proc_lock);
969 PROCLIST_FOREACH(p, &allproc) {
970 mutex_enter(p->p_lock);
971 if ((p->p_flag & PK_SYSTEM) != 0) {
972 mutex_exit(p->p_lock);
973 continue;
974 }
975
976 if (p->p_stat != SSTOP) {
977 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
978 p->p_pptr->p_nstopchild++;
979 p->p_waited = 0;
980 }
981 p->p_stat = SSTOP;
982 }
983
984 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
985 if (l == curlwp)
986 continue;
987
988 lwp_lock(l);
989
990 /*
991 * Set L_WREBOOT so that the LWP will suspend itself
992 * when it tries to return to user mode. We want to
993 * try and get to get as many LWPs as possible to
994 * the user / kernel boundary, so that they will
995 * release any locks that they hold.
996 */
997 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
998
999 if (l->l_stat == LSSLEEP &&
1000 (l->l_flag & LW_SINTR) != 0) {
1001 /* setrunnable() will release the lock. */
1002 setrunnable(l);
1003 continue;
1004 }
1005
1006 lwp_unlock(l);
1007 }
1008
1009 mutex_exit(p->p_lock);
1010 }
1011 mutex_exit(proc_lock);
1012
1013 /*
1014 * Kick all CPUs to make them preempt any LWPs running in user mode.
1015 * They'll trap into the kernel and suspend themselves in userret().
1016 */
1017 for (CPU_INFO_FOREACH(cii, ci)) {
1018 spc_lock(ci);
1019 cpu_need_resched(ci, RESCHED_IMMED);
1020 spc_unlock(ci);
1021 }
1022 }
1023
1024 /*
1025 * sched_unsleep:
1026 *
1027 * The is called when the LWP has not been awoken normally but instead
1028 * interrupted: for example, if the sleep timed out. Because of this,
1029 * it's not a valid action for running or idle LWPs.
1030 */
1031 static void
1032 sched_unsleep(struct lwp *l, bool cleanup)
1033 {
1034
1035 lwp_unlock(l);
1036 panic("sched_unsleep");
1037 }
1038
1039 static void
1040 resched_cpu(struct lwp *l)
1041 {
1042 struct cpu_info *ci = l->l_cpu;
1043
1044 KASSERT(lwp_locked(l, NULL));
1045 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1046 cpu_need_resched(ci, 0);
1047 }
1048
1049 static void
1050 sched_changepri(struct lwp *l, pri_t pri)
1051 {
1052
1053 KASSERT(lwp_locked(l, NULL));
1054
1055 if (l->l_stat == LSRUN) {
1056 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1057 sched_dequeue(l);
1058 l->l_priority = pri;
1059 sched_enqueue(l, false);
1060 } else {
1061 l->l_priority = pri;
1062 }
1063 resched_cpu(l);
1064 }
1065
1066 static void
1067 sched_lendpri(struct lwp *l, pri_t pri)
1068 {
1069
1070 KASSERT(lwp_locked(l, NULL));
1071
1072 if (l->l_stat == LSRUN) {
1073 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1074 sched_dequeue(l);
1075 l->l_inheritedprio = pri;
1076 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1077 sched_enqueue(l, false);
1078 } else {
1079 l->l_inheritedprio = pri;
1080 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1081 }
1082 resched_cpu(l);
1083 }
1084
1085 struct lwp *
1086 syncobj_noowner(wchan_t wchan)
1087 {
1088
1089 return NULL;
1090 }
1091
1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1094
1095 /*
1096 * Constants for averages over 1, 5 and 15 minutes when sampling at
1097 * 5 second intervals.
1098 */
1099 static const fixpt_t cexp[ ] = {
1100 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1101 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1102 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1103 };
1104
1105 /*
1106 * sched_pstats:
1107 *
1108 * => Update process statistics and check CPU resource allocation.
1109 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1110 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1111 */
1112 void
1113 sched_pstats(void)
1114 {
1115 extern struct loadavg averunnable;
1116 struct loadavg *avg = &averunnable;
1117 const int clkhz = (stathz != 0 ? stathz : hz);
1118 static bool backwards = false;
1119 static u_int lavg_count = 0;
1120 struct proc *p;
1121 int nrun;
1122
1123 sched_pstats_ticks++;
1124 if (++lavg_count >= 5) {
1125 lavg_count = 0;
1126 nrun = 0;
1127 }
1128 mutex_enter(proc_lock);
1129 PROCLIST_FOREACH(p, &allproc) {
1130 struct lwp *l;
1131 struct rlimit *rlim;
1132 time_t runtm;
1133 int sig;
1134
1135 /* Increment sleep time (if sleeping), ignore overflow. */
1136 mutex_enter(p->p_lock);
1137 runtm = p->p_rtime.sec;
1138 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1139 fixpt_t lpctcpu;
1140 u_int lcpticks;
1141
1142 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1143 continue;
1144 lwp_lock(l);
1145 runtm += l->l_rtime.sec;
1146 l->l_swtime++;
1147 sched_lwp_stats(l);
1148
1149 /* For load average calculation. */
1150 if (__predict_false(lavg_count == 0) &&
1151 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1152 switch (l->l_stat) {
1153 case LSSLEEP:
1154 if (l->l_slptime > 1) {
1155 break;
1156 }
1157 /* FALLTHROUGH */
1158 case LSRUN:
1159 case LSONPROC:
1160 case LSIDL:
1161 nrun++;
1162 }
1163 }
1164 lwp_unlock(l);
1165
1166 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1167 if (l->l_slptime != 0)
1168 continue;
1169
1170 lpctcpu = l->l_pctcpu;
1171 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1172 lpctcpu += ((FSCALE - ccpu) *
1173 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1174 l->l_pctcpu = lpctcpu;
1175 }
1176 /* Calculating p_pctcpu only for ps(1) */
1177 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1178
1179 if (__predict_false(runtm < 0)) {
1180 if (!backwards) {
1181 backwards = true;
1182 printf("WARNING: negative runtime; "
1183 "monotonic clock has gone backwards\n");
1184 }
1185 mutex_exit(p->p_lock);
1186 continue;
1187 }
1188
1189 /*
1190 * Check if the process exceeds its CPU resource allocation.
1191 * If over the hard limit, kill it with SIGKILL.
1192 * If over the soft limit, send SIGXCPU and raise
1193 * the soft limit a little.
1194 */
1195 rlim = &p->p_rlimit[RLIMIT_CPU];
1196 sig = 0;
1197 if (__predict_false(runtm >= rlim->rlim_cur)) {
1198 if (runtm >= rlim->rlim_max) {
1199 sig = SIGKILL;
1200 log(LOG_NOTICE,
1201 "pid %d, command %s, is killed: %s\n",
1202 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1203 uprintf("pid %d, command %s, is killed: %s\n",
1204 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1205 } else {
1206 sig = SIGXCPU;
1207 if (rlim->rlim_cur < rlim->rlim_max)
1208 rlim->rlim_cur += 5;
1209 }
1210 }
1211 mutex_exit(p->p_lock);
1212 if (__predict_false(sig)) {
1213 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1214 psignal(p, sig);
1215 }
1216 }
1217
1218 /* Load average calculation. */
1219 if (__predict_false(lavg_count == 0)) {
1220 int i;
1221 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1222 for (i = 0; i < __arraycount(cexp); i++) {
1223 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1224 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1225 }
1226 }
1227
1228 /* Lightning bolt. */
1229 cv_broadcast(&lbolt);
1230
1231 mutex_exit(proc_lock);
1232 }
1233