kern_synch.c revision 1.326 1 /* $NetBSD: kern_synch.c,v 1.326 2019/11/23 19:42:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.326 2019/11/23 19:42:52 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107
108 syncobj_t sleep_syncobj = {
109 .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 .sobj_unsleep = sleepq_unsleep,
111 .sobj_changepri = sleepq_changepri,
112 .sobj_lendpri = sleepq_lendpri,
113 .sobj_owner = syncobj_noowner,
114 };
115
116 syncobj_t sched_syncobj = {
117 .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 .sobj_unsleep = sched_unsleep,
119 .sobj_changepri = sched_changepri,
120 .sobj_lendpri = sched_lendpri,
121 .sobj_owner = syncobj_noowner,
122 };
123
124 /* "Lightning bolt": once a second sleep address. */
125 kcondvar_t lbolt __cacheline_aligned;
126
127 u_int sched_pstats_ticks __cacheline_aligned;
128
129 /* Preemption event counters. */
130 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133
134 void
135 synch_init(void)
136 {
137
138 cv_init(&lbolt, "lbolt");
139
140 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 "kpreempt", "defer: critical section");
142 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 "kpreempt", "defer: kernel_lock");
144 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 "kpreempt", "immediate");
146 }
147
148 /*
149 * OBSOLETE INTERFACE
150 *
151 * General sleep call. Suspends the current LWP until a wakeup is
152 * performed on the specified identifier. The LWP will then be made
153 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 * means no timeout). If pri includes PCATCH flag, signals are checked
155 * before and after sleeping, else signals are not checked. Returns 0 if
156 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 * signal needs to be delivered, ERESTART is returned if the current system
158 * call should be restarted if possible, and EINTR is returned if the system
159 * call should be interrupted by the signal (return EINTR).
160 */
161 int
162 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 {
164 struct lwp *l = curlwp;
165 sleepq_t *sq;
166 kmutex_t *mp;
167
168 KASSERT((l->l_pflag & LP_INTR) == 0);
169 KASSERT(ident != &lbolt);
170
171 if (sleepq_dontsleep(l)) {
172 (void)sleepq_abort(NULL, 0);
173 return 0;
174 }
175
176 l->l_kpriority = true;
177 sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 sleepq_enter(sq, l, mp);
179 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 return sleepq_block(timo, priority & PCATCH);
181 }
182
183 int
184 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 kmutex_t *mtx)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 int error;
191
192 KASSERT((l->l_pflag & LP_INTR) == 0);
193 KASSERT(ident != &lbolt);
194
195 if (sleepq_dontsleep(l)) {
196 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 return 0;
198 }
199
200 l->l_kpriority = true;
201 sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 sleepq_enter(sq, l, mp);
203 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 kmutex_t *mp;
221 sleepq_t *sq;
222 int error;
223
224 KASSERT(!(timo == 0 && intr == false));
225
226 if (sleepq_dontsleep(l))
227 return sleepq_abort(NULL, 0);
228
229 if (mtx != NULL)
230 mutex_exit(mtx);
231 l->l_kpriority = true;
232 sq = sleeptab_lookup(&sleeptab, l, &mp);
233 sleepq_enter(sq, l, mp);
234 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 error = sleepq_block(timo, intr);
236 if (mtx != NULL)
237 mutex_enter(mtx);
238
239 return error;
240 }
241
242 /*
243 * OBSOLETE INTERFACE
244 *
245 * Make all LWPs sleeping on the specified identifier runnable.
246 */
247 void
248 wakeup(wchan_t ident)
249 {
250 sleepq_t *sq;
251 kmutex_t *mp;
252
253 if (__predict_false(cold))
254 return;
255
256 sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 sleepq_wake(sq, ident, (u_int)-1, mp);
258 }
259
260 /*
261 * General yield call. Puts the current LWP back on its run queue and
262 * performs a voluntary context switch. Should only be called when the
263 * current LWP explicitly requests it (eg sched_yield(2)).
264 */
265 void
266 yield(void)
267 {
268 struct lwp *l = curlwp;
269
270 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 lwp_lock(l);
272 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
273 KASSERT(l->l_stat == LSONPROC);
274 /* Voluntary - ditch kpriority boost. */
275 l->l_kpriority = false;
276 (void)mi_switch(l);
277 KERNEL_LOCK(l->l_biglocks, l);
278 }
279
280 /*
281 * General preemption call. Puts the current LWP back on its run queue
282 * and performs an involuntary context switch.
283 */
284 void
285 preempt(void)
286 {
287 struct lwp *l = curlwp;
288
289 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 lwp_lock(l);
291 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
292 KASSERT(l->l_stat == LSONPROC);
293 /* Involuntary - keep kpriority boost. */
294 l->l_pflag |= LP_PREEMPTING;
295 (void)mi_switch(l);
296 KERNEL_LOCK(l->l_biglocks, l);
297 }
298
299 /*
300 * Handle a request made by another agent to preempt the current LWP
301 * in-kernel. Usually called when l_dopreempt may be non-zero.
302 *
303 * Character addresses for lockstat only.
304 */
305 static char kpreempt_is_disabled;
306 static char kernel_lock_held;
307 static char is_softint_lwp;
308 static char spl_is_raised;
309
310 bool
311 kpreempt(uintptr_t where)
312 {
313 uintptr_t failed;
314 lwp_t *l;
315 int s, dop, lsflag;
316
317 l = curlwp;
318 failed = 0;
319 while ((dop = l->l_dopreempt) != 0) {
320 if (l->l_stat != LSONPROC) {
321 /*
322 * About to block (or die), let it happen.
323 * Doesn't really count as "preemption has
324 * been blocked", since we're going to
325 * context switch.
326 */
327 atomic_swap_uint(&l->l_dopreempt, 0);
328 return true;
329 }
330 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
331 /* Can't preempt idle loop, don't count as failure. */
332 atomic_swap_uint(&l->l_dopreempt, 0);
333 return true;
334 }
335 if (__predict_false(l->l_nopreempt != 0)) {
336 /* LWP holds preemption disabled, explicitly. */
337 if ((dop & DOPREEMPT_COUNTED) == 0) {
338 kpreempt_ev_crit.ev_count++;
339 }
340 failed = (uintptr_t)&kpreempt_is_disabled;
341 break;
342 }
343 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
344 /* Can't preempt soft interrupts yet. */
345 atomic_swap_uint(&l->l_dopreempt, 0);
346 failed = (uintptr_t)&is_softint_lwp;
347 break;
348 }
349 s = splsched();
350 if (__predict_false(l->l_blcnt != 0 ||
351 curcpu()->ci_biglock_wanted != NULL)) {
352 /* Hold or want kernel_lock, code is not MT safe. */
353 splx(s);
354 if ((dop & DOPREEMPT_COUNTED) == 0) {
355 kpreempt_ev_klock.ev_count++;
356 }
357 failed = (uintptr_t)&kernel_lock_held;
358 break;
359 }
360 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
361 /*
362 * It may be that the IPL is too high.
363 * kpreempt_enter() can schedule an
364 * interrupt to retry later.
365 */
366 splx(s);
367 failed = (uintptr_t)&spl_is_raised;
368 break;
369 }
370 /* Do it! */
371 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
372 kpreempt_ev_immed.ev_count++;
373 }
374 lwp_lock(l);
375 l->l_pflag |= LP_PREEMPTING;
376 mi_switch(l);
377 l->l_nopreempt++;
378 splx(s);
379
380 /* Take care of any MD cleanup. */
381 cpu_kpreempt_exit(where);
382 l->l_nopreempt--;
383 }
384
385 if (__predict_true(!failed)) {
386 return false;
387 }
388
389 /* Record preemption failure for reporting via lockstat. */
390 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
391 lsflag = 0;
392 LOCKSTAT_ENTER(lsflag);
393 if (__predict_false(lsflag)) {
394 if (where == 0) {
395 where = (uintptr_t)__builtin_return_address(0);
396 }
397 /* Preemption is on, might recurse, so make it atomic. */
398 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
399 (void *)where) == NULL) {
400 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
401 l->l_pfaillock = failed;
402 }
403 }
404 LOCKSTAT_EXIT(lsflag);
405 return true;
406 }
407
408 /*
409 * Return true if preemption is explicitly disabled.
410 */
411 bool
412 kpreempt_disabled(void)
413 {
414 const lwp_t *l = curlwp;
415
416 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
417 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
418 }
419
420 /*
421 * Disable kernel preemption.
422 */
423 void
424 kpreempt_disable(void)
425 {
426
427 KPREEMPT_DISABLE(curlwp);
428 }
429
430 /*
431 * Reenable kernel preemption.
432 */
433 void
434 kpreempt_enable(void)
435 {
436
437 KPREEMPT_ENABLE(curlwp);
438 }
439
440 /*
441 * Compute the amount of time during which the current lwp was running.
442 *
443 * - update l_rtime unless it's an idle lwp.
444 */
445
446 void
447 updatertime(lwp_t *l, const struct bintime *now)
448 {
449
450 if (__predict_false(l->l_flag & LW_IDLE))
451 return;
452
453 /* rtime += now - stime */
454 bintime_add(&l->l_rtime, now);
455 bintime_sub(&l->l_rtime, &l->l_stime);
456 }
457
458 /*
459 * Select next LWP from the current CPU to run..
460 */
461 static inline lwp_t *
462 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
463 {
464 lwp_t *newl;
465
466 /*
467 * Let sched_nextlwp() select the LWP to run the CPU next.
468 * If no LWP is runnable, select the idle LWP.
469 *
470 * Note that spc_lwplock might not necessary be held, and
471 * new thread would be unlocked after setting the LWP-lock.
472 */
473 newl = sched_nextlwp();
474 if (newl != NULL) {
475 sched_dequeue(newl);
476 KASSERT(lwp_locked(newl, spc->spc_mutex));
477 KASSERT(newl->l_cpu == ci);
478 newl->l_stat = LSONPROC;
479 newl->l_pflag |= LP_RUNNING;
480 lwp_setlock(newl, spc->spc_lwplock);
481 } else {
482 newl = ci->ci_data.cpu_idlelwp;
483 newl->l_stat = LSONPROC;
484 newl->l_pflag |= LP_RUNNING;
485 }
486
487 /*
488 * Only clear want_resched if there are no pending (slow) software
489 * interrupts. We can do this without an atomic, because no new
490 * LWPs can appear in the queue due to our hold on spc_mutex, and
491 * the update to ci_want_resched will become globally visible before
492 * the release of spc_mutex becomes globally visible.
493 */
494 ci->ci_want_resched = ci->ci_data.cpu_softints;
495 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
496 spc->spc_curpriority = lwp_eprio(newl);
497
498 return newl;
499 }
500
501 /*
502 * The machine independent parts of context switch.
503 *
504 * Returns 1 if another LWP was actually run.
505 */
506 int
507 mi_switch(lwp_t *l)
508 {
509 struct cpu_info *ci;
510 struct schedstate_percpu *spc;
511 struct lwp *newl;
512 int retval, oldspl;
513 struct bintime bt;
514 bool returning;
515
516 KASSERT(lwp_locked(l, NULL));
517 KASSERT(kpreempt_disabled());
518 LOCKDEBUG_BARRIER(l->l_mutex, 1);
519
520 kstack_check_magic(l);
521
522 binuptime(&bt);
523
524 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
525 KASSERT((l->l_pflag & LP_RUNNING) != 0);
526 KASSERT(l->l_cpu == curcpu());
527 ci = l->l_cpu;
528 spc = &ci->ci_schedstate;
529 returning = false;
530 newl = NULL;
531
532 /*
533 * If we have been asked to switch to a specific LWP, then there
534 * is no need to inspect the run queues. If a soft interrupt is
535 * blocking, then return to the interrupted thread without adjusting
536 * VM context or its start time: neither have been changed in order
537 * to take the interrupt.
538 */
539 if (l->l_switchto != NULL) {
540 if ((l->l_pflag & LP_INTR) != 0) {
541 returning = true;
542 softint_block(l);
543 if ((l->l_pflag & LP_TIMEINTR) != 0)
544 updatertime(l, &bt);
545 }
546 newl = l->l_switchto;
547 l->l_switchto = NULL;
548 }
549 #ifndef __HAVE_FAST_SOFTINTS
550 else if (ci->ci_data.cpu_softints != 0) {
551 /* There are pending soft interrupts, so pick one. */
552 newl = softint_picklwp();
553 newl->l_stat = LSONPROC;
554 newl->l_pflag |= LP_RUNNING;
555 }
556 #endif /* !__HAVE_FAST_SOFTINTS */
557
558 /* Lock the runqueue */
559 KASSERT(l->l_stat != LSRUN);
560 mutex_spin_enter(spc->spc_mutex);
561
562 /*
563 * If on the CPU and we have gotten this far, then we must yield.
564 */
565 if (l->l_stat == LSONPROC && l != newl) {
566 KASSERT(lwp_locked(l, spc->spc_lwplock));
567 if ((l->l_flag & LW_IDLE) == 0) {
568 l->l_stat = LSRUN;
569 lwp_setlock(l, spc->spc_mutex);
570 sched_enqueue(l);
571 /*
572 * Handle migration. Note that "migrating LWP" may
573 * be reset here, if interrupt/preemption happens
574 * early in idle LWP.
575 */
576 if (l->l_target_cpu != NULL &&
577 (l->l_pflag & LP_BOUND) == 0) {
578 KASSERT((l->l_pflag & LP_INTR) == 0);
579 spc->spc_migrating = l;
580 }
581 } else
582 l->l_stat = LSIDL;
583 }
584
585 /* Pick new LWP to run. */
586 if (newl == NULL) {
587 newl = nextlwp(ci, spc);
588 }
589
590 /* Items that must be updated with the CPU locked. */
591 if (!returning) {
592 /* Count time spent in current system call */
593 SYSCALL_TIME_SLEEP(l);
594
595 updatertime(l, &bt);
596
597 /* Update the new LWP's start time. */
598 newl->l_stime = bt;
599
600 /*
601 * ci_curlwp changes when a fast soft interrupt occurs.
602 * We use cpu_onproc to keep track of which kernel or
603 * user thread is running 'underneath' the software
604 * interrupt. This is important for time accounting,
605 * itimers and forcing user threads to preempt (aston).
606 */
607 ci->ci_data.cpu_onproc = newl;
608 }
609
610 /*
611 * Preemption related tasks. Must be done holding spc_mutex. Clear
612 * l_dopreempt without an atomic - it's only ever set non-zero by
613 * sched_resched_cpu() which also holds spc_mutex, and only ever
614 * cleared by the LWP itself (us) with atomics when not under lock.
615 */
616 l->l_dopreempt = 0;
617 if (__predict_false(l->l_pfailaddr != 0)) {
618 LOCKSTAT_FLAG(lsflag);
619 LOCKSTAT_ENTER(lsflag);
620 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
621 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
622 1, l->l_pfailtime, l->l_pfailaddr);
623 LOCKSTAT_EXIT(lsflag);
624 l->l_pfailtime = 0;
625 l->l_pfaillock = 0;
626 l->l_pfailaddr = 0;
627 }
628
629 if (l != newl) {
630 struct lwp *prevlwp;
631
632 /* Release all locks, but leave the current LWP locked */
633 if (l->l_mutex == spc->spc_mutex) {
634 /*
635 * Drop spc_lwplock, if the current LWP has been moved
636 * to the run queue (it is now locked by spc_mutex).
637 */
638 mutex_spin_exit(spc->spc_lwplock);
639 } else {
640 /*
641 * Otherwise, drop the spc_mutex, we are done with the
642 * run queues.
643 */
644 mutex_spin_exit(spc->spc_mutex);
645 }
646
647 /*
648 * Mark that context switch is going to be performed
649 * for this LWP, to protect it from being switched
650 * to on another CPU.
651 */
652 KASSERT(l->l_ctxswtch == 0);
653 l->l_ctxswtch = 1;
654 l->l_ncsw++;
655 if ((l->l_pflag & LP_PREEMPTING) != 0)
656 l->l_nivcsw++;
657 KASSERT((l->l_pflag & LP_RUNNING) != 0);
658 l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
659
660 /*
661 * Increase the count of spin-mutexes before the release
662 * of the last lock - we must remain at IPL_SCHED during
663 * the context switch.
664 */
665 KASSERTMSG(ci->ci_mtx_count == -1,
666 "%s: cpu%u: ci_mtx_count (%d) != -1 "
667 "(block with spin-mutex held)",
668 __func__, cpu_index(ci), ci->ci_mtx_count);
669 oldspl = MUTEX_SPIN_OLDSPL(ci);
670 ci->ci_mtx_count--;
671 lwp_unlock(l);
672
673 /* Count the context switch on this CPU. */
674 ci->ci_data.cpu_nswtch++;
675
676 /* Update status for lwpctl, if present. */
677 if (l->l_lwpctl != NULL)
678 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
679
680 /*
681 * Save old VM context, unless a soft interrupt
682 * handler is blocking.
683 */
684 if (!returning)
685 pmap_deactivate(l);
686
687 /*
688 * We may need to spin-wait if 'newl' is still
689 * context switching on another CPU.
690 */
691 if (__predict_false(newl->l_ctxswtch != 0)) {
692 u_int count;
693 count = SPINLOCK_BACKOFF_MIN;
694 while (newl->l_ctxswtch)
695 SPINLOCK_BACKOFF(count);
696 }
697
698 /*
699 * If DTrace has set the active vtime enum to anything
700 * other than INACTIVE (0), then it should have set the
701 * function to call.
702 */
703 if (__predict_false(dtrace_vtime_active)) {
704 (*dtrace_vtime_switch_func)(newl);
705 }
706
707 /*
708 * We must ensure not to come here from inside a read section.
709 */
710 KASSERT(pserialize_not_in_read_section());
711
712 /* Switch to the new LWP.. */
713 #ifdef MULTIPROCESSOR
714 KASSERT(curlwp == ci->ci_curlwp);
715 #endif
716 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
717 prevlwp = cpu_switchto(l, newl, returning);
718 ci = curcpu();
719 #ifdef MULTIPROCESSOR
720 KASSERT(curlwp == ci->ci_curlwp);
721 #endif
722 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
723 l, curlwp, prevlwp);
724
725 /*
726 * Switched away - we have new curlwp.
727 * Restore VM context and IPL.
728 */
729 pmap_activate(l);
730 pcu_switchpoint(l);
731
732 if (prevlwp != NULL) {
733 /* Normalize the count of the spin-mutexes */
734 ci->ci_mtx_count++;
735 /* Unmark the state of context switch */
736 membar_exit();
737 prevlwp->l_ctxswtch = 0;
738 }
739
740 /* Update status for lwpctl, if present. */
741 if (l->l_lwpctl != NULL) {
742 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
743 l->l_lwpctl->lc_pctr++;
744 }
745
746 /* Note trip through cpu_switchto(). */
747 pserialize_switchpoint();
748
749 KASSERT(l->l_cpu == ci);
750 splx(oldspl);
751 /*
752 * note that, unless the caller disabled preemption,
753 * we can be preempted at any time after the above splx() call.
754 */
755 retval = 1;
756 } else {
757 /* Nothing to do - just unlock and return. */
758 pserialize_switchpoint();
759 mutex_spin_exit(spc->spc_mutex);
760 l->l_pflag &= ~LP_PREEMPTING;
761 lwp_unlock(l);
762 retval = 0;
763 }
764
765 KASSERT(l == curlwp);
766 KASSERT(l->l_stat == LSONPROC);
767
768 SYSCALL_TIME_WAKEUP(l);
769 LOCKDEBUG_BARRIER(NULL, 1);
770
771 return retval;
772 }
773
774 /*
775 * The machine independent parts of context switch to oblivion.
776 * Does not return. Call with the LWP unlocked.
777 */
778 void
779 lwp_exit_switchaway(lwp_t *l)
780 {
781 struct cpu_info *ci;
782 struct lwp *newl;
783 struct bintime bt;
784
785 ci = l->l_cpu;
786
787 KASSERT(kpreempt_disabled());
788 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
789 KASSERT(ci == curcpu());
790 LOCKDEBUG_BARRIER(NULL, 0);
791
792 kstack_check_magic(l);
793
794 /* Count time spent in current system call */
795 SYSCALL_TIME_SLEEP(l);
796 binuptime(&bt);
797 updatertime(l, &bt);
798
799 /* Must stay at IPL_SCHED even after releasing run queue lock. */
800 (void)splsched();
801
802 /*
803 * Let sched_nextlwp() select the LWP to run the CPU next.
804 * If no LWP is runnable, select the idle LWP.
805 *
806 * Note that spc_lwplock might not necessary be held, and
807 * new thread would be unlocked after setting the LWP-lock.
808 */
809 spc_lock(ci);
810 #ifndef __HAVE_FAST_SOFTINTS
811 if (ci->ci_data.cpu_softints != 0) {
812 /* There are pending soft interrupts, so pick one. */
813 newl = softint_picklwp();
814 newl->l_stat = LSONPROC;
815 newl->l_pflag |= LP_RUNNING;
816 } else
817 #endif /* !__HAVE_FAST_SOFTINTS */
818 {
819 newl = nextlwp(ci, &ci->ci_schedstate);
820 }
821
822 /* Update the new LWP's start time. */
823 newl->l_stime = bt;
824 l->l_pflag &= ~LP_RUNNING;
825
826 /*
827 * ci_curlwp changes when a fast soft interrupt occurs.
828 * We use cpu_onproc to keep track of which kernel or
829 * user thread is running 'underneath' the software
830 * interrupt. This is important for time accounting,
831 * itimers and forcing user threads to preempt (aston).
832 */
833 ci->ci_data.cpu_onproc = newl;
834
835 /* Unlock the run queue. */
836 spc_unlock(ci);
837
838 /* Count the context switch on this CPU. */
839 ci->ci_data.cpu_nswtch++;
840
841 /* Update status for lwpctl, if present. */
842 if (l->l_lwpctl != NULL)
843 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
844
845 /*
846 * We may need to spin-wait if 'newl' is still
847 * context switching on another CPU.
848 */
849 if (__predict_false(newl->l_ctxswtch != 0)) {
850 u_int count;
851 count = SPINLOCK_BACKOFF_MIN;
852 while (newl->l_ctxswtch)
853 SPINLOCK_BACKOFF(count);
854 }
855
856 /*
857 * If DTrace has set the active vtime enum to anything
858 * other than INACTIVE (0), then it should have set the
859 * function to call.
860 */
861 if (__predict_false(dtrace_vtime_active)) {
862 (*dtrace_vtime_switch_func)(newl);
863 }
864
865 /* Switch to the new LWP.. */
866 (void)cpu_switchto(NULL, newl, false);
867
868 for (;;) continue; /* XXX: convince gcc about "noreturn" */
869 /* NOTREACHED */
870 }
871
872 /*
873 * setrunnable: change LWP state to be runnable, placing it on the run queue.
874 *
875 * Call with the process and LWP locked. Will return with the LWP unlocked.
876 */
877 void
878 setrunnable(struct lwp *l)
879 {
880 struct proc *p = l->l_proc;
881 struct cpu_info *ci;
882 kmutex_t *oldlock;
883
884 KASSERT((l->l_flag & LW_IDLE) == 0);
885 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
886 KASSERT(mutex_owned(p->p_lock));
887 KASSERT(lwp_locked(l, NULL));
888 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
889
890 switch (l->l_stat) {
891 case LSSTOP:
892 /*
893 * If we're being traced (possibly because someone attached us
894 * while we were stopped), check for a signal from the debugger.
895 */
896 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
897 signotify(l);
898 p->p_nrlwps++;
899 break;
900 case LSSUSPENDED:
901 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
902 l->l_flag &= ~LW_WSUSPEND;
903 p->p_nrlwps++;
904 cv_broadcast(&p->p_lwpcv);
905 break;
906 case LSSLEEP:
907 KASSERT(l->l_wchan != NULL);
908 break;
909 case LSIDL:
910 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
911 break;
912 default:
913 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
914 }
915
916 /*
917 * If the LWP was sleeping, start it again.
918 */
919 if (l->l_wchan != NULL) {
920 l->l_stat = LSSLEEP;
921 /* lwp_unsleep() will release the lock. */
922 lwp_unsleep(l, true);
923 return;
924 }
925
926 /*
927 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
928 * about to call mi_switch(), in which case it will yield.
929 */
930 if ((l->l_pflag & LP_RUNNING) != 0) {
931 l->l_stat = LSONPROC;
932 l->l_slptime = 0;
933 lwp_unlock(l);
934 return;
935 }
936
937 /*
938 * Look for a CPU to run.
939 * Set the LWP runnable.
940 */
941 ci = sched_takecpu(l);
942 l->l_cpu = ci;
943 spc_lock(ci);
944 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
945 sched_setrunnable(l);
946 l->l_stat = LSRUN;
947 l->l_slptime = 0;
948 sched_enqueue(l);
949 sched_resched_lwp(l, true);
950 /* SPC & LWP now unlocked. */
951 mutex_spin_exit(oldlock);
952 }
953
954 /*
955 * suspendsched:
956 *
957 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
958 */
959 void
960 suspendsched(void)
961 {
962 CPU_INFO_ITERATOR cii;
963 struct cpu_info *ci;
964 struct lwp *l;
965 struct proc *p;
966
967 /*
968 * We do this by process in order not to violate the locking rules.
969 */
970 mutex_enter(proc_lock);
971 PROCLIST_FOREACH(p, &allproc) {
972 mutex_enter(p->p_lock);
973 if ((p->p_flag & PK_SYSTEM) != 0) {
974 mutex_exit(p->p_lock);
975 continue;
976 }
977
978 if (p->p_stat != SSTOP) {
979 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
980 p->p_pptr->p_nstopchild++;
981 p->p_waited = 0;
982 }
983 p->p_stat = SSTOP;
984 }
985
986 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
987 if (l == curlwp)
988 continue;
989
990 lwp_lock(l);
991
992 /*
993 * Set L_WREBOOT so that the LWP will suspend itself
994 * when it tries to return to user mode. We want to
995 * try and get to get as many LWPs as possible to
996 * the user / kernel boundary, so that they will
997 * release any locks that they hold.
998 */
999 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1000
1001 if (l->l_stat == LSSLEEP &&
1002 (l->l_flag & LW_SINTR) != 0) {
1003 /* setrunnable() will release the lock. */
1004 setrunnable(l);
1005 continue;
1006 }
1007
1008 lwp_unlock(l);
1009 }
1010
1011 mutex_exit(p->p_lock);
1012 }
1013 mutex_exit(proc_lock);
1014
1015 /*
1016 * Kick all CPUs to make them preempt any LWPs running in user mode.
1017 * They'll trap into the kernel and suspend themselves in userret().
1018 *
1019 * Unusually, we don't hold any other scheduler object locked, which
1020 * would keep preemption off for sched_resched_cpu(), so disable it
1021 * explicitly.
1022 */
1023 kpreempt_disable();
1024 for (CPU_INFO_FOREACH(cii, ci)) {
1025 spc_lock(ci);
1026 sched_resched_cpu(ci, PRI_KERNEL, true);
1027 /* spc now unlocked */
1028 }
1029 kpreempt_enable();
1030 }
1031
1032 /*
1033 * sched_unsleep:
1034 *
1035 * The is called when the LWP has not been awoken normally but instead
1036 * interrupted: for example, if the sleep timed out. Because of this,
1037 * it's not a valid action for running or idle LWPs.
1038 */
1039 static void
1040 sched_unsleep(struct lwp *l, bool cleanup)
1041 {
1042
1043 lwp_unlock(l);
1044 panic("sched_unsleep");
1045 }
1046
1047 static void
1048 sched_changepri(struct lwp *l, pri_t pri)
1049 {
1050 struct schedstate_percpu *spc;
1051 struct cpu_info *ci;
1052
1053 KASSERT(lwp_locked(l, NULL));
1054
1055 ci = l->l_cpu;
1056 spc = &ci->ci_schedstate;
1057
1058 if (l->l_stat == LSRUN) {
1059 KASSERT(lwp_locked(l, spc->spc_mutex));
1060 sched_dequeue(l);
1061 l->l_priority = pri;
1062 sched_enqueue(l);
1063 sched_resched_lwp(l, false);
1064 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1065 /* On priority drop, only evict realtime LWPs. */
1066 KASSERT(lwp_locked(l, spc->spc_lwplock));
1067 l->l_priority = pri;
1068 spc_lock(ci);
1069 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1070 /* spc now unlocked */
1071 } else {
1072 l->l_priority = pri;
1073 }
1074 }
1075
1076 static void
1077 sched_lendpri(struct lwp *l, pri_t pri)
1078 {
1079 struct schedstate_percpu *spc;
1080 struct cpu_info *ci;
1081
1082 KASSERT(lwp_locked(l, NULL));
1083
1084 ci = l->l_cpu;
1085 spc = &ci->ci_schedstate;
1086
1087 if (l->l_stat == LSRUN) {
1088 KASSERT(lwp_locked(l, spc->spc_mutex));
1089 sched_dequeue(l);
1090 l->l_inheritedprio = pri;
1091 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1092 sched_enqueue(l);
1093 sched_resched_lwp(l, false);
1094 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1095 /* On priority drop, only evict realtime LWPs. */
1096 KASSERT(lwp_locked(l, spc->spc_lwplock));
1097 l->l_inheritedprio = pri;
1098 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1099 spc_lock(ci);
1100 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1101 /* spc now unlocked */
1102 } else {
1103 l->l_inheritedprio = pri;
1104 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1105 }
1106 }
1107
1108 struct lwp *
1109 syncobj_noowner(wchan_t wchan)
1110 {
1111
1112 return NULL;
1113 }
1114
1115 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1116 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1117
1118 /*
1119 * Constants for averages over 1, 5 and 15 minutes when sampling at
1120 * 5 second intervals.
1121 */
1122 static const fixpt_t cexp[ ] = {
1123 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1124 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1125 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1126 };
1127
1128 /*
1129 * sched_pstats:
1130 *
1131 * => Update process statistics and check CPU resource allocation.
1132 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1133 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1134 */
1135 void
1136 sched_pstats(void)
1137 {
1138 extern struct loadavg averunnable;
1139 struct loadavg *avg = &averunnable;
1140 const int clkhz = (stathz != 0 ? stathz : hz);
1141 static bool backwards = false;
1142 static u_int lavg_count = 0;
1143 struct proc *p;
1144 int nrun;
1145
1146 sched_pstats_ticks++;
1147 if (++lavg_count >= 5) {
1148 lavg_count = 0;
1149 nrun = 0;
1150 }
1151 mutex_enter(proc_lock);
1152 PROCLIST_FOREACH(p, &allproc) {
1153 struct lwp *l;
1154 struct rlimit *rlim;
1155 time_t runtm;
1156 int sig;
1157
1158 /* Increment sleep time (if sleeping), ignore overflow. */
1159 mutex_enter(p->p_lock);
1160 runtm = p->p_rtime.sec;
1161 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1162 fixpt_t lpctcpu;
1163 u_int lcpticks;
1164
1165 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1166 continue;
1167 lwp_lock(l);
1168 runtm += l->l_rtime.sec;
1169 l->l_swtime++;
1170 sched_lwp_stats(l);
1171
1172 /* For load average calculation. */
1173 if (__predict_false(lavg_count == 0) &&
1174 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1175 switch (l->l_stat) {
1176 case LSSLEEP:
1177 if (l->l_slptime > 1) {
1178 break;
1179 }
1180 /* FALLTHROUGH */
1181 case LSRUN:
1182 case LSONPROC:
1183 case LSIDL:
1184 nrun++;
1185 }
1186 }
1187 lwp_unlock(l);
1188
1189 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1190 if (l->l_slptime != 0)
1191 continue;
1192
1193 lpctcpu = l->l_pctcpu;
1194 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1195 lpctcpu += ((FSCALE - ccpu) *
1196 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1197 l->l_pctcpu = lpctcpu;
1198 }
1199 /* Calculating p_pctcpu only for ps(1) */
1200 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1201
1202 if (__predict_false(runtm < 0)) {
1203 if (!backwards) {
1204 backwards = true;
1205 printf("WARNING: negative runtime; "
1206 "monotonic clock has gone backwards\n");
1207 }
1208 mutex_exit(p->p_lock);
1209 continue;
1210 }
1211
1212 /*
1213 * Check if the process exceeds its CPU resource allocation.
1214 * If over the hard limit, kill it with SIGKILL.
1215 * If over the soft limit, send SIGXCPU and raise
1216 * the soft limit a little.
1217 */
1218 rlim = &p->p_rlimit[RLIMIT_CPU];
1219 sig = 0;
1220 if (__predict_false(runtm >= rlim->rlim_cur)) {
1221 if (runtm >= rlim->rlim_max) {
1222 sig = SIGKILL;
1223 log(LOG_NOTICE,
1224 "pid %d, command %s, is killed: %s\n",
1225 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1226 uprintf("pid %d, command %s, is killed: %s\n",
1227 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1228 } else {
1229 sig = SIGXCPU;
1230 if (rlim->rlim_cur < rlim->rlim_max)
1231 rlim->rlim_cur += 5;
1232 }
1233 }
1234 mutex_exit(p->p_lock);
1235 if (__predict_false(sig)) {
1236 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1237 psignal(p, sig);
1238 }
1239 }
1240
1241 /* Load average calculation. */
1242 if (__predict_false(lavg_count == 0)) {
1243 int i;
1244 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1245 for (i = 0; i < __arraycount(cexp); i++) {
1246 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1247 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1248 }
1249 }
1250
1251 /* Lightning bolt. */
1252 cv_broadcast(&lbolt);
1253
1254 mutex_exit(proc_lock);
1255 }
1256