kern_synch.c revision 1.332 1 /* $NetBSD: kern_synch.c,v 1.332 2019/12/16 20:59:39 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.332 2019/12/16 20:59:39 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107
108 syncobj_t sleep_syncobj = {
109 .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 .sobj_unsleep = sleepq_unsleep,
111 .sobj_changepri = sleepq_changepri,
112 .sobj_lendpri = sleepq_lendpri,
113 .sobj_owner = syncobj_noowner,
114 };
115
116 syncobj_t sched_syncobj = {
117 .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 .sobj_unsleep = sched_unsleep,
119 .sobj_changepri = sched_changepri,
120 .sobj_lendpri = sched_lendpri,
121 .sobj_owner = syncobj_noowner,
122 };
123
124 /* "Lightning bolt": once a second sleep address. */
125 kcondvar_t lbolt __cacheline_aligned;
126
127 u_int sched_pstats_ticks __cacheline_aligned;
128
129 /* Preemption event counters. */
130 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133
134 void
135 synch_init(void)
136 {
137
138 cv_init(&lbolt, "lbolt");
139
140 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 "kpreempt", "defer: critical section");
142 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 "kpreempt", "defer: kernel_lock");
144 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 "kpreempt", "immediate");
146 }
147
148 /*
149 * OBSOLETE INTERFACE
150 *
151 * General sleep call. Suspends the current LWP until a wakeup is
152 * performed on the specified identifier. The LWP will then be made
153 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 * means no timeout). If pri includes PCATCH flag, signals are checked
155 * before and after sleeping, else signals are not checked. Returns 0 if
156 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 * signal needs to be delivered, ERESTART is returned if the current system
158 * call should be restarted if possible, and EINTR is returned if the system
159 * call should be interrupted by the signal (return EINTR).
160 */
161 int
162 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 {
164 struct lwp *l = curlwp;
165 sleepq_t *sq;
166 kmutex_t *mp;
167
168 KASSERT((l->l_pflag & LP_INTR) == 0);
169 KASSERT(ident != &lbolt);
170
171 if (sleepq_dontsleep(l)) {
172 (void)sleepq_abort(NULL, 0);
173 return 0;
174 }
175
176 l->l_kpriority = true;
177 sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 sleepq_enter(sq, l, mp);
179 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 return sleepq_block(timo, priority & PCATCH);
181 }
182
183 int
184 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 kmutex_t *mtx)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 int error;
191
192 KASSERT((l->l_pflag & LP_INTR) == 0);
193 KASSERT(ident != &lbolt);
194
195 if (sleepq_dontsleep(l)) {
196 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 return 0;
198 }
199
200 l->l_kpriority = true;
201 sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 sleepq_enter(sq, l, mp);
203 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 kmutex_t *mp;
221 sleepq_t *sq;
222 int error;
223
224 KASSERT(!(timo == 0 && intr == false));
225
226 if (sleepq_dontsleep(l))
227 return sleepq_abort(NULL, 0);
228
229 if (mtx != NULL)
230 mutex_exit(mtx);
231 l->l_kpriority = true;
232 sq = sleeptab_lookup(&sleeptab, l, &mp);
233 sleepq_enter(sq, l, mp);
234 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 error = sleepq_block(timo, intr);
236 if (mtx != NULL)
237 mutex_enter(mtx);
238
239 return error;
240 }
241
242 /*
243 * OBSOLETE INTERFACE
244 *
245 * Make all LWPs sleeping on the specified identifier runnable.
246 */
247 void
248 wakeup(wchan_t ident)
249 {
250 sleepq_t *sq;
251 kmutex_t *mp;
252
253 if (__predict_false(cold))
254 return;
255
256 sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 sleepq_wake(sq, ident, (u_int)-1, mp);
258 }
259
260 /*
261 * General yield call. Puts the current LWP back on its run queue and
262 * performs a voluntary context switch. Should only be called when the
263 * current LWP explicitly requests it (eg sched_yield(2)).
264 */
265 void
266 yield(void)
267 {
268 struct lwp *l = curlwp;
269
270 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 lwp_lock(l);
272
273 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 KASSERT(l->l_stat == LSONPROC);
275
276 /* Voluntary - ditch kpriority boost. */
277 l->l_kpriority = false;
278 spc_lock(l->l_cpu);
279 mi_switch(l);
280 KERNEL_LOCK(l->l_biglocks, l);
281 }
282
283 /*
284 * General preemption call. Puts the current LWP back on its run queue
285 * and performs an involuntary context switch.
286 */
287 void
288 preempt(void)
289 {
290 struct lwp *l = curlwp;
291
292 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
293 lwp_lock(l);
294
295 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 KASSERT(l->l_stat == LSONPROC);
297
298 /* Involuntary - keep kpriority boost. */
299 l->l_pflag |= LP_PREEMPTING;
300 spc_lock(l->l_cpu);
301 mi_switch(l);
302 KERNEL_LOCK(l->l_biglocks, l);
303 }
304
305 /*
306 * Handle a request made by another agent to preempt the current LWP
307 * in-kernel. Usually called when l_dopreempt may be non-zero.
308 *
309 * Character addresses for lockstat only.
310 */
311 static char kpreempt_is_disabled;
312 static char kernel_lock_held;
313 static char is_softint_lwp;
314 static char spl_is_raised;
315
316 bool
317 kpreempt(uintptr_t where)
318 {
319 uintptr_t failed;
320 lwp_t *l;
321 int s, dop, lsflag;
322
323 l = curlwp;
324 failed = 0;
325 while ((dop = l->l_dopreempt) != 0) {
326 if (l->l_stat != LSONPROC) {
327 /*
328 * About to block (or die), let it happen.
329 * Doesn't really count as "preemption has
330 * been blocked", since we're going to
331 * context switch.
332 */
333 atomic_swap_uint(&l->l_dopreempt, 0);
334 return true;
335 }
336 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
337 /* Can't preempt idle loop, don't count as failure. */
338 atomic_swap_uint(&l->l_dopreempt, 0);
339 return true;
340 }
341 if (__predict_false(l->l_nopreempt != 0)) {
342 /* LWP holds preemption disabled, explicitly. */
343 if ((dop & DOPREEMPT_COUNTED) == 0) {
344 kpreempt_ev_crit.ev_count++;
345 }
346 failed = (uintptr_t)&kpreempt_is_disabled;
347 break;
348 }
349 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
350 /* Can't preempt soft interrupts yet. */
351 atomic_swap_uint(&l->l_dopreempt, 0);
352 failed = (uintptr_t)&is_softint_lwp;
353 break;
354 }
355 s = splsched();
356 if (__predict_false(l->l_blcnt != 0 ||
357 curcpu()->ci_biglock_wanted != NULL)) {
358 /* Hold or want kernel_lock, code is not MT safe. */
359 splx(s);
360 if ((dop & DOPREEMPT_COUNTED) == 0) {
361 kpreempt_ev_klock.ev_count++;
362 }
363 failed = (uintptr_t)&kernel_lock_held;
364 break;
365 }
366 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
367 /*
368 * It may be that the IPL is too high.
369 * kpreempt_enter() can schedule an
370 * interrupt to retry later.
371 */
372 splx(s);
373 failed = (uintptr_t)&spl_is_raised;
374 break;
375 }
376 /* Do it! */
377 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
378 kpreempt_ev_immed.ev_count++;
379 }
380 lwp_lock(l);
381 /* Involuntary - keep kpriority boost. */
382 l->l_pflag |= LP_PREEMPTING;
383 spc_lock(l->l_cpu);
384 mi_switch(l);
385 l->l_nopreempt++;
386 splx(s);
387
388 /* Take care of any MD cleanup. */
389 cpu_kpreempt_exit(where);
390 l->l_nopreempt--;
391 }
392
393 if (__predict_true(!failed)) {
394 return false;
395 }
396
397 /* Record preemption failure for reporting via lockstat. */
398 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
399 lsflag = 0;
400 LOCKSTAT_ENTER(lsflag);
401 if (__predict_false(lsflag)) {
402 if (where == 0) {
403 where = (uintptr_t)__builtin_return_address(0);
404 }
405 /* Preemption is on, might recurse, so make it atomic. */
406 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
407 (void *)where) == NULL) {
408 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
409 l->l_pfaillock = failed;
410 }
411 }
412 LOCKSTAT_EXIT(lsflag);
413 return true;
414 }
415
416 /*
417 * Return true if preemption is explicitly disabled.
418 */
419 bool
420 kpreempt_disabled(void)
421 {
422 const lwp_t *l = curlwp;
423
424 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
425 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
426 cpu_kpreempt_disabled();
427 }
428
429 /*
430 * Disable kernel preemption.
431 */
432 void
433 kpreempt_disable(void)
434 {
435
436 KPREEMPT_DISABLE(curlwp);
437 }
438
439 /*
440 * Reenable kernel preemption.
441 */
442 void
443 kpreempt_enable(void)
444 {
445
446 KPREEMPT_ENABLE(curlwp);
447 }
448
449 /*
450 * Compute the amount of time during which the current lwp was running.
451 *
452 * - update l_rtime unless it's an idle lwp.
453 */
454
455 void
456 updatertime(lwp_t *l, const struct bintime *now)
457 {
458
459 if (__predict_false(l->l_flag & LW_IDLE))
460 return;
461
462 /* rtime += now - stime */
463 bintime_add(&l->l_rtime, now);
464 bintime_sub(&l->l_rtime, &l->l_stime);
465 }
466
467 /*
468 * Select next LWP from the current CPU to run..
469 */
470 static inline lwp_t *
471 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
472 {
473 lwp_t *newl;
474
475 /*
476 * Let sched_nextlwp() select the LWP to run the CPU next.
477 * If no LWP is runnable, select the idle LWP.
478 *
479 * Note that spc_lwplock might not necessary be held, and
480 * new thread would be unlocked after setting the LWP-lock.
481 */
482 newl = sched_nextlwp();
483 if (newl != NULL) {
484 sched_dequeue(newl);
485 KASSERT(lwp_locked(newl, spc->spc_mutex));
486 KASSERT(newl->l_cpu == ci);
487 newl->l_stat = LSONPROC;
488 newl->l_pflag |= LP_RUNNING;
489 lwp_setlock(newl, spc->spc_lwplock);
490 } else {
491 newl = ci->ci_data.cpu_idlelwp;
492 newl->l_stat = LSONPROC;
493 newl->l_pflag |= LP_RUNNING;
494 }
495
496 /*
497 * Only clear want_resched if there are no pending (slow) software
498 * interrupts. We can do this without an atomic, because no new
499 * LWPs can appear in the queue due to our hold on spc_mutex, and
500 * the update to ci_want_resched will become globally visible before
501 * the release of spc_mutex becomes globally visible.
502 */
503 ci->ci_want_resched = ci->ci_data.cpu_softints;
504 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
505 spc->spc_curpriority = lwp_eprio(newl);
506
507 return newl;
508 }
509
510 /*
511 * The machine independent parts of context switch.
512 *
513 * NOTE: do not use l->l_cpu in this routine. The caller may have enqueued
514 * itself onto another CPU's run queue, so l->l_cpu may point elsewhere.
515 */
516 void
517 mi_switch(lwp_t *l)
518 {
519 struct cpu_info *ci;
520 struct schedstate_percpu *spc;
521 struct lwp *newl;
522 int oldspl;
523 struct bintime bt;
524 bool returning;
525
526 KASSERT(lwp_locked(l, NULL));
527 KASSERT(kpreempt_disabled());
528 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
529
530 kstack_check_magic(l);
531
532 binuptime(&bt);
533
534 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
535 KASSERT((l->l_pflag & LP_RUNNING) != 0);
536 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
537 ci = curcpu();
538 spc = &ci->ci_schedstate;
539 returning = false;
540 newl = NULL;
541
542 /*
543 * If we have been asked to switch to a specific LWP, then there
544 * is no need to inspect the run queues. If a soft interrupt is
545 * blocking, then return to the interrupted thread without adjusting
546 * VM context or its start time: neither have been changed in order
547 * to take the interrupt.
548 */
549 if (l->l_switchto != NULL) {
550 if ((l->l_pflag & LP_INTR) != 0) {
551 returning = true;
552 softint_block(l);
553 if ((l->l_pflag & LP_TIMEINTR) != 0)
554 updatertime(l, &bt);
555 }
556 newl = l->l_switchto;
557 l->l_switchto = NULL;
558 }
559 #ifndef __HAVE_FAST_SOFTINTS
560 else if (ci->ci_data.cpu_softints != 0) {
561 /* There are pending soft interrupts, so pick one. */
562 newl = softint_picklwp();
563 newl->l_stat = LSONPROC;
564 newl->l_pflag |= LP_RUNNING;
565 }
566 #endif /* !__HAVE_FAST_SOFTINTS */
567
568 /*
569 * If on the CPU and we have gotten this far, then we must yield.
570 */
571 if (l->l_stat == LSONPROC && l != newl) {
572 KASSERT(lwp_locked(l, spc->spc_lwplock));
573 KASSERT((l->l_flag & LW_IDLE) == 0);
574 l->l_stat = LSRUN;
575 lwp_setlock(l, spc->spc_mutex);
576 sched_enqueue(l);
577 /*
578 * Handle migration. Note that "migrating LWP" may
579 * be reset here, if interrupt/preemption happens
580 * early in idle LWP.
581 */
582 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
583 KASSERT((l->l_pflag & LP_INTR) == 0);
584 spc->spc_migrating = l;
585 }
586 }
587
588 /* Pick new LWP to run. */
589 if (newl == NULL) {
590 newl = nextlwp(ci, spc);
591 }
592
593 /* Items that must be updated with the CPU locked. */
594 if (!returning) {
595 /* Count time spent in current system call */
596 SYSCALL_TIME_SLEEP(l);
597
598 updatertime(l, &bt);
599
600 /* Update the new LWP's start time. */
601 newl->l_stime = bt;
602
603 /*
604 * ci_curlwp changes when a fast soft interrupt occurs.
605 * We use ci_onproc to keep track of which kernel or
606 * user thread is running 'underneath' the software
607 * interrupt. This is important for time accounting,
608 * itimers and forcing user threads to preempt (aston).
609 */
610 ci->ci_onproc = newl;
611 }
612
613 /*
614 * Preemption related tasks. Must be done holding spc_mutex. Clear
615 * l_dopreempt without an atomic - it's only ever set non-zero by
616 * sched_resched_cpu() which also holds spc_mutex, and only ever
617 * cleared by the LWP itself (us) with atomics when not under lock.
618 */
619 l->l_dopreempt = 0;
620 if (__predict_false(l->l_pfailaddr != 0)) {
621 LOCKSTAT_FLAG(lsflag);
622 LOCKSTAT_ENTER(lsflag);
623 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
624 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
625 1, l->l_pfailtime, l->l_pfailaddr);
626 LOCKSTAT_EXIT(lsflag);
627 l->l_pfailtime = 0;
628 l->l_pfaillock = 0;
629 l->l_pfailaddr = 0;
630 }
631
632 if (l != newl) {
633 struct lwp *prevlwp;
634
635 /* Release all locks, but leave the current LWP locked */
636 if (l->l_mutex == spc->spc_mutex) {
637 /*
638 * Drop spc_lwplock, if the current LWP has been moved
639 * to the run queue (it is now locked by spc_mutex).
640 */
641 mutex_spin_exit(spc->spc_lwplock);
642 } else {
643 /*
644 * Otherwise, drop the spc_mutex, we are done with the
645 * run queues.
646 */
647 mutex_spin_exit(spc->spc_mutex);
648 }
649
650 /* We're down to only one lock, so do debug checks. */
651 LOCKDEBUG_BARRIER(l->l_mutex, 1);
652
653 /*
654 * Mark that context switch is going to be performed
655 * for this LWP, to protect it from being switched
656 * to on another CPU.
657 */
658 KASSERT(l->l_ctxswtch == 0);
659 l->l_ctxswtch = 1;
660 l->l_ncsw++;
661 if ((l->l_pflag & LP_PREEMPTING) != 0)
662 l->l_nivcsw++;
663 KASSERT((l->l_pflag & LP_RUNNING) != 0);
664 l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
665
666 /*
667 * Increase the count of spin-mutexes before the release
668 * of the last lock - we must remain at IPL_SCHED during
669 * the context switch.
670 */
671 KASSERTMSG(ci->ci_mtx_count == -1,
672 "%s: cpu%u: ci_mtx_count (%d) != -1 "
673 "(block with spin-mutex held)",
674 __func__, cpu_index(ci), ci->ci_mtx_count);
675 oldspl = MUTEX_SPIN_OLDSPL(ci);
676 ci->ci_mtx_count--;
677 lwp_unlock(l);
678
679 /* Count the context switch on this CPU. */
680 ci->ci_data.cpu_nswtch++;
681
682 /* Update status for lwpctl, if present. */
683 if (l->l_lwpctl != NULL)
684 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
685
686 /*
687 * Save old VM context, unless a soft interrupt
688 * handler is blocking.
689 */
690 if (!returning)
691 pmap_deactivate(l);
692
693 /*
694 * We may need to spin-wait if 'newl' is still
695 * context switching on another CPU.
696 */
697 if (__predict_false(newl->l_ctxswtch != 0)) {
698 u_int count;
699 count = SPINLOCK_BACKOFF_MIN;
700 while (newl->l_ctxswtch)
701 SPINLOCK_BACKOFF(count);
702 }
703 membar_enter();
704
705 /*
706 * If DTrace has set the active vtime enum to anything
707 * other than INACTIVE (0), then it should have set the
708 * function to call.
709 */
710 if (__predict_false(dtrace_vtime_active)) {
711 (*dtrace_vtime_switch_func)(newl);
712 }
713
714 /*
715 * We must ensure not to come here from inside a read section.
716 */
717 KASSERT(pserialize_not_in_read_section());
718
719 /* Switch to the new LWP.. */
720 #ifdef MULTIPROCESSOR
721 KASSERT(curlwp == ci->ci_curlwp);
722 #endif
723 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
724 prevlwp = cpu_switchto(l, newl, returning);
725 ci = curcpu();
726 #ifdef MULTIPROCESSOR
727 KASSERT(curlwp == ci->ci_curlwp);
728 #endif
729 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
730 l, curlwp, prevlwp);
731
732 /*
733 * Switched away - we have new curlwp.
734 * Restore VM context and IPL.
735 */
736 pmap_activate(l);
737 pcu_switchpoint(l);
738
739 if (prevlwp != NULL) {
740 /* Normalize the count of the spin-mutexes */
741 ci->ci_mtx_count++;
742 /* Unmark the state of context switch */
743 membar_exit();
744 prevlwp->l_ctxswtch = 0;
745 }
746
747 /* Update status for lwpctl, if present. */
748 if (l->l_lwpctl != NULL) {
749 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
750 l->l_lwpctl->lc_pctr++;
751 }
752
753 /*
754 * Note that, unless the caller disabled preemption, we can
755 * be preempted at any time after this splx().
756 */
757 KASSERT(l->l_cpu == ci);
758 splx(oldspl);
759 } else {
760 /* Nothing to do - just unlock and return. */
761 mutex_spin_exit(spc->spc_mutex);
762 l->l_pflag &= ~LP_PREEMPTING;
763 /* We're down to only one lock, so do debug checks. */
764 LOCKDEBUG_BARRIER(l->l_mutex, 1);
765 lwp_unlock(l);
766 }
767
768 KASSERT(l == curlwp);
769 KASSERT(l->l_stat == LSONPROC);
770
771 SYSCALL_TIME_WAKEUP(l);
772 LOCKDEBUG_BARRIER(NULL, 1);
773 }
774
775 /*
776 * The machine independent parts of context switch to oblivion.
777 * Does not return. Call with the LWP unlocked.
778 */
779 void
780 lwp_exit_switchaway(lwp_t *l)
781 {
782 struct cpu_info *ci;
783 struct lwp *newl;
784 struct bintime bt;
785
786 ci = l->l_cpu;
787
788 KASSERT(kpreempt_disabled());
789 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
790 KASSERT(ci == curcpu());
791 LOCKDEBUG_BARRIER(NULL, 0);
792
793 kstack_check_magic(l);
794
795 /* Count time spent in current system call */
796 SYSCALL_TIME_SLEEP(l);
797 binuptime(&bt);
798 updatertime(l, &bt);
799
800 /* Must stay at IPL_SCHED even after releasing run queue lock. */
801 (void)splsched();
802
803 /*
804 * Let sched_nextlwp() select the LWP to run the CPU next.
805 * If no LWP is runnable, select the idle LWP.
806 *
807 * Note that spc_lwplock might not necessary be held, and
808 * new thread would be unlocked after setting the LWP-lock.
809 */
810 spc_lock(ci);
811 #ifndef __HAVE_FAST_SOFTINTS
812 if (ci->ci_data.cpu_softints != 0) {
813 /* There are pending soft interrupts, so pick one. */
814 newl = softint_picklwp();
815 newl->l_stat = LSONPROC;
816 newl->l_pflag |= LP_RUNNING;
817 } else
818 #endif /* !__HAVE_FAST_SOFTINTS */
819 {
820 newl = nextlwp(ci, &ci->ci_schedstate);
821 }
822
823 /* Update the new LWP's start time. */
824 newl->l_stime = bt;
825 l->l_pflag &= ~LP_RUNNING;
826
827 /*
828 * ci_curlwp changes when a fast soft interrupt occurs.
829 * We use ci_onproc to keep track of which kernel or
830 * user thread is running 'underneath' the software
831 * interrupt. This is important for time accounting,
832 * itimers and forcing user threads to preempt (aston).
833 */
834 ci->ci_onproc = newl;
835
836 /* Unlock the run queue. */
837 spc_unlock(ci);
838
839 /* Count the context switch on this CPU. */
840 ci->ci_data.cpu_nswtch++;
841
842 /* Update status for lwpctl, if present. */
843 if (l->l_lwpctl != NULL)
844 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
845
846 /*
847 * We may need to spin-wait if 'newl' is still
848 * context switching on another CPU.
849 */
850 if (__predict_false(newl->l_ctxswtch != 0)) {
851 u_int count;
852 count = SPINLOCK_BACKOFF_MIN;
853 while (newl->l_ctxswtch)
854 SPINLOCK_BACKOFF(count);
855 }
856 membar_enter();
857
858 /*
859 * If DTrace has set the active vtime enum to anything
860 * other than INACTIVE (0), then it should have set the
861 * function to call.
862 */
863 if (__predict_false(dtrace_vtime_active)) {
864 (*dtrace_vtime_switch_func)(newl);
865 }
866
867 /* Switch to the new LWP.. */
868 (void)cpu_switchto(NULL, newl, false);
869
870 for (;;) continue; /* XXX: convince gcc about "noreturn" */
871 /* NOTREACHED */
872 }
873
874 /*
875 * setrunnable: change LWP state to be runnable, placing it on the run queue.
876 *
877 * Call with the process and LWP locked. Will return with the LWP unlocked.
878 */
879 void
880 setrunnable(struct lwp *l)
881 {
882 struct proc *p = l->l_proc;
883 struct cpu_info *ci;
884 kmutex_t *oldlock;
885
886 KASSERT((l->l_flag & LW_IDLE) == 0);
887 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
888 KASSERT(mutex_owned(p->p_lock));
889 KASSERT(lwp_locked(l, NULL));
890 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
891
892 switch (l->l_stat) {
893 case LSSTOP:
894 /*
895 * If we're being traced (possibly because someone attached us
896 * while we were stopped), check for a signal from the debugger.
897 */
898 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
899 signotify(l);
900 p->p_nrlwps++;
901 break;
902 case LSSUSPENDED:
903 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
904 l->l_flag &= ~LW_WSUSPEND;
905 p->p_nrlwps++;
906 cv_broadcast(&p->p_lwpcv);
907 break;
908 case LSSLEEP:
909 KASSERT(l->l_wchan != NULL);
910 break;
911 case LSIDL:
912 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
913 break;
914 default:
915 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
916 }
917
918 /*
919 * If the LWP was sleeping, start it again.
920 */
921 if (l->l_wchan != NULL) {
922 l->l_stat = LSSLEEP;
923 /* lwp_unsleep() will release the lock. */
924 lwp_unsleep(l, true);
925 return;
926 }
927
928 /*
929 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
930 * about to call mi_switch(), in which case it will yield.
931 */
932 if ((l->l_pflag & LP_RUNNING) != 0) {
933 l->l_stat = LSONPROC;
934 l->l_slptime = 0;
935 lwp_unlock(l);
936 return;
937 }
938
939 /*
940 * Look for a CPU to run.
941 * Set the LWP runnable.
942 */
943 ci = sched_takecpu(l);
944 l->l_cpu = ci;
945 spc_lock(ci);
946 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
947 sched_setrunnable(l);
948 l->l_stat = LSRUN;
949 l->l_slptime = 0;
950 sched_enqueue(l);
951 sched_resched_lwp(l, true);
952 /* SPC & LWP now unlocked. */
953 mutex_spin_exit(oldlock);
954 }
955
956 /*
957 * suspendsched:
958 *
959 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
960 */
961 void
962 suspendsched(void)
963 {
964 CPU_INFO_ITERATOR cii;
965 struct cpu_info *ci;
966 struct lwp *l;
967 struct proc *p;
968
969 /*
970 * We do this by process in order not to violate the locking rules.
971 */
972 mutex_enter(proc_lock);
973 PROCLIST_FOREACH(p, &allproc) {
974 mutex_enter(p->p_lock);
975 if ((p->p_flag & PK_SYSTEM) != 0) {
976 mutex_exit(p->p_lock);
977 continue;
978 }
979
980 if (p->p_stat != SSTOP) {
981 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
982 p->p_pptr->p_nstopchild++;
983 p->p_waited = 0;
984 }
985 p->p_stat = SSTOP;
986 }
987
988 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
989 if (l == curlwp)
990 continue;
991
992 lwp_lock(l);
993
994 /*
995 * Set L_WREBOOT so that the LWP will suspend itself
996 * when it tries to return to user mode. We want to
997 * try and get to get as many LWPs as possible to
998 * the user / kernel boundary, so that they will
999 * release any locks that they hold.
1000 */
1001 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1002
1003 if (l->l_stat == LSSLEEP &&
1004 (l->l_flag & LW_SINTR) != 0) {
1005 /* setrunnable() will release the lock. */
1006 setrunnable(l);
1007 continue;
1008 }
1009
1010 lwp_unlock(l);
1011 }
1012
1013 mutex_exit(p->p_lock);
1014 }
1015 mutex_exit(proc_lock);
1016
1017 /*
1018 * Kick all CPUs to make them preempt any LWPs running in user mode.
1019 * They'll trap into the kernel and suspend themselves in userret().
1020 *
1021 * Unusually, we don't hold any other scheduler object locked, which
1022 * would keep preemption off for sched_resched_cpu(), so disable it
1023 * explicitly.
1024 */
1025 kpreempt_disable();
1026 for (CPU_INFO_FOREACH(cii, ci)) {
1027 spc_lock(ci);
1028 sched_resched_cpu(ci, PRI_KERNEL, true);
1029 /* spc now unlocked */
1030 }
1031 kpreempt_enable();
1032 }
1033
1034 /*
1035 * sched_unsleep:
1036 *
1037 * The is called when the LWP has not been awoken normally but instead
1038 * interrupted: for example, if the sleep timed out. Because of this,
1039 * it's not a valid action for running or idle LWPs.
1040 */
1041 static void
1042 sched_unsleep(struct lwp *l, bool cleanup)
1043 {
1044
1045 lwp_unlock(l);
1046 panic("sched_unsleep");
1047 }
1048
1049 static void
1050 sched_changepri(struct lwp *l, pri_t pri)
1051 {
1052 struct schedstate_percpu *spc;
1053 struct cpu_info *ci;
1054
1055 KASSERT(lwp_locked(l, NULL));
1056
1057 ci = l->l_cpu;
1058 spc = &ci->ci_schedstate;
1059
1060 if (l->l_stat == LSRUN) {
1061 KASSERT(lwp_locked(l, spc->spc_mutex));
1062 sched_dequeue(l);
1063 l->l_priority = pri;
1064 sched_enqueue(l);
1065 sched_resched_lwp(l, false);
1066 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1067 /* On priority drop, only evict realtime LWPs. */
1068 KASSERT(lwp_locked(l, spc->spc_lwplock));
1069 l->l_priority = pri;
1070 spc_lock(ci);
1071 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1072 /* spc now unlocked */
1073 } else {
1074 l->l_priority = pri;
1075 }
1076 }
1077
1078 static void
1079 sched_lendpri(struct lwp *l, pri_t pri)
1080 {
1081 struct schedstate_percpu *spc;
1082 struct cpu_info *ci;
1083
1084 KASSERT(lwp_locked(l, NULL));
1085
1086 ci = l->l_cpu;
1087 spc = &ci->ci_schedstate;
1088
1089 if (l->l_stat == LSRUN) {
1090 KASSERT(lwp_locked(l, spc->spc_mutex));
1091 sched_dequeue(l);
1092 l->l_inheritedprio = pri;
1093 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1094 sched_enqueue(l);
1095 sched_resched_lwp(l, false);
1096 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1097 /* On priority drop, only evict realtime LWPs. */
1098 KASSERT(lwp_locked(l, spc->spc_lwplock));
1099 l->l_inheritedprio = pri;
1100 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1101 spc_lock(ci);
1102 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1103 /* spc now unlocked */
1104 } else {
1105 l->l_inheritedprio = pri;
1106 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1107 }
1108 }
1109
1110 struct lwp *
1111 syncobj_noowner(wchan_t wchan)
1112 {
1113
1114 return NULL;
1115 }
1116
1117 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1118 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1119
1120 /*
1121 * Constants for averages over 1, 5 and 15 minutes when sampling at
1122 * 5 second intervals.
1123 */
1124 static const fixpt_t cexp[ ] = {
1125 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1126 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1127 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1128 };
1129
1130 /*
1131 * sched_pstats:
1132 *
1133 * => Update process statistics and check CPU resource allocation.
1134 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1135 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1136 */
1137 void
1138 sched_pstats(void)
1139 {
1140 extern struct loadavg averunnable;
1141 struct loadavg *avg = &averunnable;
1142 const int clkhz = (stathz != 0 ? stathz : hz);
1143 static bool backwards = false;
1144 static u_int lavg_count = 0;
1145 struct proc *p;
1146 int nrun;
1147
1148 sched_pstats_ticks++;
1149 if (++lavg_count >= 5) {
1150 lavg_count = 0;
1151 nrun = 0;
1152 }
1153 mutex_enter(proc_lock);
1154 PROCLIST_FOREACH(p, &allproc) {
1155 struct lwp *l;
1156 struct rlimit *rlim;
1157 time_t runtm;
1158 int sig;
1159
1160 /* Increment sleep time (if sleeping), ignore overflow. */
1161 mutex_enter(p->p_lock);
1162 runtm = p->p_rtime.sec;
1163 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1164 fixpt_t lpctcpu;
1165 u_int lcpticks;
1166
1167 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1168 continue;
1169 lwp_lock(l);
1170 runtm += l->l_rtime.sec;
1171 l->l_swtime++;
1172 sched_lwp_stats(l);
1173
1174 /* For load average calculation. */
1175 if (__predict_false(lavg_count == 0) &&
1176 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1177 switch (l->l_stat) {
1178 case LSSLEEP:
1179 if (l->l_slptime > 1) {
1180 break;
1181 }
1182 /* FALLTHROUGH */
1183 case LSRUN:
1184 case LSONPROC:
1185 case LSIDL:
1186 nrun++;
1187 }
1188 }
1189 lwp_unlock(l);
1190
1191 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1192 if (l->l_slptime != 0)
1193 continue;
1194
1195 lpctcpu = l->l_pctcpu;
1196 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1197 lpctcpu += ((FSCALE - ccpu) *
1198 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1199 l->l_pctcpu = lpctcpu;
1200 }
1201 /* Calculating p_pctcpu only for ps(1) */
1202 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1203
1204 if (__predict_false(runtm < 0)) {
1205 if (!backwards) {
1206 backwards = true;
1207 printf("WARNING: negative runtime; "
1208 "monotonic clock has gone backwards\n");
1209 }
1210 mutex_exit(p->p_lock);
1211 continue;
1212 }
1213
1214 /*
1215 * Check if the process exceeds its CPU resource allocation.
1216 * If over the hard limit, kill it with SIGKILL.
1217 * If over the soft limit, send SIGXCPU and raise
1218 * the soft limit a little.
1219 */
1220 rlim = &p->p_rlimit[RLIMIT_CPU];
1221 sig = 0;
1222 if (__predict_false(runtm >= rlim->rlim_cur)) {
1223 if (runtm >= rlim->rlim_max) {
1224 sig = SIGKILL;
1225 log(LOG_NOTICE,
1226 "pid %d, command %s, is killed: %s\n",
1227 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1228 uprintf("pid %d, command %s, is killed: %s\n",
1229 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1230 } else {
1231 sig = SIGXCPU;
1232 if (rlim->rlim_cur < rlim->rlim_max)
1233 rlim->rlim_cur += 5;
1234 }
1235 }
1236 mutex_exit(p->p_lock);
1237 if (__predict_false(sig)) {
1238 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1239 psignal(p, sig);
1240 }
1241 }
1242
1243 /* Load average calculation. */
1244 if (__predict_false(lavg_count == 0)) {
1245 int i;
1246 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1247 for (i = 0; i < __arraycount(cexp); i++) {
1248 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1249 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1250 }
1251 }
1252
1253 /* Lightning bolt. */
1254 cv_broadcast(&lbolt);
1255
1256 mutex_exit(proc_lock);
1257 }
1258