Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.334
      1 /*	$NetBSD: kern_synch.c,v 1.334 2019/12/21 11:54:04 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.334 2019/12/21 11:54:04 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/sched.h>
     87 #include <sys/syscall_stats.h>
     88 #include <sys/sleepq.h>
     89 #include <sys/lockdebug.h>
     90 #include <sys/evcnt.h>
     91 #include <sys/intr.h>
     92 #include <sys/lwpctl.h>
     93 #include <sys/atomic.h>
     94 #include <sys/syslog.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #include <dev/lockstat.h>
     99 
    100 #include <sys/dtrace_bsd.h>
    101 int                             dtrace_vtime_active=0;
    102 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    103 
    104 static void	sched_unsleep(struct lwp *, bool);
    105 static void	sched_changepri(struct lwp *, pri_t);
    106 static void	sched_lendpri(struct lwp *, pri_t);
    107 
    108 syncobj_t sleep_syncobj = {
    109 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    110 	.sobj_unsleep	= sleepq_unsleep,
    111 	.sobj_changepri	= sleepq_changepri,
    112 	.sobj_lendpri	= sleepq_lendpri,
    113 	.sobj_owner	= syncobj_noowner,
    114 };
    115 
    116 syncobj_t sched_syncobj = {
    117 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    118 	.sobj_unsleep	= sched_unsleep,
    119 	.sobj_changepri	= sched_changepri,
    120 	.sobj_lendpri	= sched_lendpri,
    121 	.sobj_owner	= syncobj_noowner,
    122 };
    123 
    124 /* "Lightning bolt": once a second sleep address. */
    125 kcondvar_t		lbolt			__cacheline_aligned;
    126 
    127 u_int			sched_pstats_ticks	__cacheline_aligned;
    128 
    129 /* Preemption event counters. */
    130 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    131 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    132 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    133 
    134 void
    135 synch_init(void)
    136 {
    137 
    138 	cv_init(&lbolt, "lbolt");
    139 
    140 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    141 	   "kpreempt", "defer: critical section");
    142 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    143 	   "kpreempt", "defer: kernel_lock");
    144 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    145 	   "kpreempt", "immediate");
    146 }
    147 
    148 /*
    149  * OBSOLETE INTERFACE
    150  *
    151  * General sleep call.  Suspends the current LWP until a wakeup is
    152  * performed on the specified identifier.  The LWP will then be made
    153  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    154  * means no timeout).  If pri includes PCATCH flag, signals are checked
    155  * before and after sleeping, else signals are not checked.  Returns 0 if
    156  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    157  * signal needs to be delivered, ERESTART is returned if the current system
    158  * call should be restarted if possible, and EINTR is returned if the system
    159  * call should be interrupted by the signal (return EINTR).
    160  */
    161 int
    162 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    163 {
    164 	struct lwp *l = curlwp;
    165 	sleepq_t *sq;
    166 	kmutex_t *mp;
    167 
    168 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169 	KASSERT(ident != &lbolt);
    170 
    171 	if (sleepq_dontsleep(l)) {
    172 		(void)sleepq_abort(NULL, 0);
    173 		return 0;
    174 	}
    175 
    176 	l->l_kpriority = true;
    177 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    178 	sleepq_enter(sq, l, mp);
    179 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    180 	return sleepq_block(timo, priority & PCATCH);
    181 }
    182 
    183 int
    184 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    185 	kmutex_t *mtx)
    186 {
    187 	struct lwp *l = curlwp;
    188 	sleepq_t *sq;
    189 	kmutex_t *mp;
    190 	int error;
    191 
    192 	KASSERT((l->l_pflag & LP_INTR) == 0);
    193 	KASSERT(ident != &lbolt);
    194 
    195 	if (sleepq_dontsleep(l)) {
    196 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    197 		return 0;
    198 	}
    199 
    200 	l->l_kpriority = true;
    201 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    202 	sleepq_enter(sq, l, mp);
    203 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    204 	mutex_exit(mtx);
    205 	error = sleepq_block(timo, priority & PCATCH);
    206 
    207 	if ((priority & PNORELOCK) == 0)
    208 		mutex_enter(mtx);
    209 
    210 	return error;
    211 }
    212 
    213 /*
    214  * General sleep call for situations where a wake-up is not expected.
    215  */
    216 int
    217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	kmutex_t *mp;
    221 	sleepq_t *sq;
    222 	int error;
    223 
    224 	KASSERT(!(timo == 0 && intr == false));
    225 
    226 	if (sleepq_dontsleep(l))
    227 		return sleepq_abort(NULL, 0);
    228 
    229 	if (mtx != NULL)
    230 		mutex_exit(mtx);
    231 	l->l_kpriority = true;
    232 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    233 	sleepq_enter(sq, l, mp);
    234 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    235 	error = sleepq_block(timo, intr);
    236 	if (mtx != NULL)
    237 		mutex_enter(mtx);
    238 
    239 	return error;
    240 }
    241 
    242 /*
    243  * OBSOLETE INTERFACE
    244  *
    245  * Make all LWPs sleeping on the specified identifier runnable.
    246  */
    247 void
    248 wakeup(wchan_t ident)
    249 {
    250 	sleepq_t *sq;
    251 	kmutex_t *mp;
    252 
    253 	if (__predict_false(cold))
    254 		return;
    255 
    256 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    257 	sleepq_wake(sq, ident, (u_int)-1, mp);
    258 }
    259 
    260 /*
    261  * General yield call.  Puts the current LWP back on its run queue and
    262  * performs a voluntary context switch.  Should only be called when the
    263  * current LWP explicitly requests it (eg sched_yield(2)).
    264  */
    265 void
    266 yield(void)
    267 {
    268 	struct lwp *l = curlwp;
    269 
    270 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    271 	lwp_lock(l);
    272 
    273 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    274 	KASSERT(l->l_stat == LSONPROC);
    275 
    276 	/* Voluntary - ditch kpriority boost. */
    277 	l->l_kpriority = false;
    278 	spc_lock(l->l_cpu);
    279 	mi_switch(l);
    280 	KERNEL_LOCK(l->l_biglocks, l);
    281 }
    282 
    283 /*
    284  * General preemption call.  Puts the current LWP back on its run queue
    285  * and performs an involuntary context switch.
    286  */
    287 void
    288 preempt(void)
    289 {
    290 	struct lwp *l = curlwp;
    291 
    292 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    293 	lwp_lock(l);
    294 
    295 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    296 	KASSERT(l->l_stat == LSONPROC);
    297 
    298 	/* Involuntary - keep kpriority boost. */
    299 	l->l_pflag |= LP_PREEMPTING;
    300 	spc_lock(l->l_cpu);
    301 	mi_switch(l);
    302 	KERNEL_LOCK(l->l_biglocks, l);
    303 }
    304 
    305 /*
    306  * Handle a request made by another agent to preempt the current LWP
    307  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    308  *
    309  * Character addresses for lockstat only.
    310  */
    311 static char	kpreempt_is_disabled;
    312 static char	kernel_lock_held;
    313 static char	is_softint_lwp;
    314 static char	spl_is_raised;
    315 
    316 bool
    317 kpreempt(uintptr_t where)
    318 {
    319 	uintptr_t failed;
    320 	lwp_t *l;
    321 	int s, dop, lsflag;
    322 
    323 	l = curlwp;
    324 	failed = 0;
    325 	while ((dop = l->l_dopreempt) != 0) {
    326 		if (l->l_stat != LSONPROC) {
    327 			/*
    328 			 * About to block (or die), let it happen.
    329 			 * Doesn't really count as "preemption has
    330 			 * been blocked", since we're going to
    331 			 * context switch.
    332 			 */
    333 			atomic_swap_uint(&l->l_dopreempt, 0);
    334 			return true;
    335 		}
    336 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    337 			/* Can't preempt idle loop, don't count as failure. */
    338 			atomic_swap_uint(&l->l_dopreempt, 0);
    339 			return true;
    340 		}
    341 		if (__predict_false(l->l_nopreempt != 0)) {
    342 			/* LWP holds preemption disabled, explicitly. */
    343 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    344 				kpreempt_ev_crit.ev_count++;
    345 			}
    346 			failed = (uintptr_t)&kpreempt_is_disabled;
    347 			break;
    348 		}
    349 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    350 			/* Can't preempt soft interrupts yet. */
    351 			atomic_swap_uint(&l->l_dopreempt, 0);
    352 			failed = (uintptr_t)&is_softint_lwp;
    353 			break;
    354 		}
    355 		s = splsched();
    356 		if (__predict_false(l->l_blcnt != 0 ||
    357 		    curcpu()->ci_biglock_wanted != NULL)) {
    358 			/* Hold or want kernel_lock, code is not MT safe. */
    359 			splx(s);
    360 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    361 				kpreempt_ev_klock.ev_count++;
    362 			}
    363 			failed = (uintptr_t)&kernel_lock_held;
    364 			break;
    365 		}
    366 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    367 			/*
    368 			 * It may be that the IPL is too high.
    369 			 * kpreempt_enter() can schedule an
    370 			 * interrupt to retry later.
    371 			 */
    372 			splx(s);
    373 			failed = (uintptr_t)&spl_is_raised;
    374 			break;
    375 		}
    376 		/* Do it! */
    377 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    378 			kpreempt_ev_immed.ev_count++;
    379 		}
    380 		lwp_lock(l);
    381 		/* Involuntary - keep kpriority boost. */
    382 		l->l_pflag |= LP_PREEMPTING;
    383 		spc_lock(l->l_cpu);
    384 		mi_switch(l);
    385 		l->l_nopreempt++;
    386 		splx(s);
    387 
    388 		/* Take care of any MD cleanup. */
    389 		cpu_kpreempt_exit(where);
    390 		l->l_nopreempt--;
    391 	}
    392 
    393 	if (__predict_true(!failed)) {
    394 		return false;
    395 	}
    396 
    397 	/* Record preemption failure for reporting via lockstat. */
    398 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    399 	lsflag = 0;
    400 	LOCKSTAT_ENTER(lsflag);
    401 	if (__predict_false(lsflag)) {
    402 		if (where == 0) {
    403 			where = (uintptr_t)__builtin_return_address(0);
    404 		}
    405 		/* Preemption is on, might recurse, so make it atomic. */
    406 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    407 		    (void *)where) == NULL) {
    408 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    409 			l->l_pfaillock = failed;
    410 		}
    411 	}
    412 	LOCKSTAT_EXIT(lsflag);
    413 	return true;
    414 }
    415 
    416 /*
    417  * Return true if preemption is explicitly disabled.
    418  */
    419 bool
    420 kpreempt_disabled(void)
    421 {
    422 	const lwp_t *l = curlwp;
    423 
    424 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    425 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    426 	    cpu_kpreempt_disabled();
    427 }
    428 
    429 /*
    430  * Disable kernel preemption.
    431  */
    432 void
    433 kpreempt_disable(void)
    434 {
    435 
    436 	KPREEMPT_DISABLE(curlwp);
    437 }
    438 
    439 /*
    440  * Reenable kernel preemption.
    441  */
    442 void
    443 kpreempt_enable(void)
    444 {
    445 
    446 	KPREEMPT_ENABLE(curlwp);
    447 }
    448 
    449 /*
    450  * Compute the amount of time during which the current lwp was running.
    451  *
    452  * - update l_rtime unless it's an idle lwp.
    453  */
    454 
    455 void
    456 updatertime(lwp_t *l, const struct bintime *now)
    457 {
    458 
    459 	if (__predict_false(l->l_flag & LW_IDLE))
    460 		return;
    461 
    462 	/* rtime += now - stime */
    463 	bintime_add(&l->l_rtime, now);
    464 	bintime_sub(&l->l_rtime, &l->l_stime);
    465 }
    466 
    467 /*
    468  * Select next LWP from the current CPU to run..
    469  */
    470 static inline lwp_t *
    471 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    472 {
    473 	lwp_t *newl;
    474 
    475 	/*
    476 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    477 	 * If no LWP is runnable, select the idle LWP.
    478 	 *
    479 	 * Note that spc_lwplock might not necessary be held, and
    480 	 * new thread would be unlocked after setting the LWP-lock.
    481 	 */
    482 	newl = sched_nextlwp();
    483 	if (newl != NULL) {
    484 		sched_dequeue(newl);
    485 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    486 		KASSERT(newl->l_cpu == ci);
    487 		newl->l_stat = LSONPROC;
    488 		newl->l_pflag |= LP_RUNNING;
    489 		lwp_setlock(newl, spc->spc_lwplock);
    490 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    491 	} else {
    492 		newl = ci->ci_data.cpu_idlelwp;
    493 		newl->l_stat = LSONPROC;
    494 		newl->l_pflag |= LP_RUNNING;
    495 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    496 		    SPCF_IDLE;
    497 	}
    498 
    499 	/*
    500 	 * Only clear want_resched if there are no pending (slow) software
    501 	 * interrupts.  We can do this without an atomic, because no new
    502 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    503 	 * the update to ci_want_resched will become globally visible before
    504 	 * the release of spc_mutex becomes globally visible.
    505 	 */
    506 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    507 	spc->spc_curpriority = lwp_eprio(newl);
    508 
    509 	return newl;
    510 }
    511 
    512 /*
    513  * The machine independent parts of context switch.
    514  *
    515  * NOTE: do not use l->l_cpu in this routine.  The caller may have enqueued
    516  * itself onto another CPU's run queue, so l->l_cpu may point elsewhere.
    517  */
    518 void
    519 mi_switch(lwp_t *l)
    520 {
    521 	struct cpu_info *ci;
    522 	struct schedstate_percpu *spc;
    523 	struct lwp *newl;
    524 	int oldspl;
    525 	struct bintime bt;
    526 	bool returning;
    527 
    528 	KASSERT(lwp_locked(l, NULL));
    529 	KASSERT(kpreempt_disabled());
    530 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    531 
    532 	kstack_check_magic(l);
    533 
    534 	binuptime(&bt);
    535 
    536 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    537 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    538 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    539 	ci = curcpu();
    540 	spc = &ci->ci_schedstate;
    541 	returning = false;
    542 	newl = NULL;
    543 
    544 	/*
    545 	 * If we have been asked to switch to a specific LWP, then there
    546 	 * is no need to inspect the run queues.  If a soft interrupt is
    547 	 * blocking, then return to the interrupted thread without adjusting
    548 	 * VM context or its start time: neither have been changed in order
    549 	 * to take the interrupt.
    550 	 */
    551 	if (l->l_switchto != NULL) {
    552 		if ((l->l_pflag & LP_INTR) != 0) {
    553 			returning = true;
    554 			softint_block(l);
    555 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    556 				updatertime(l, &bt);
    557 		}
    558 		newl = l->l_switchto;
    559 		l->l_switchto = NULL;
    560 	}
    561 #ifndef __HAVE_FAST_SOFTINTS
    562 	else if (ci->ci_data.cpu_softints != 0) {
    563 		/* There are pending soft interrupts, so pick one. */
    564 		newl = softint_picklwp();
    565 		newl->l_stat = LSONPROC;
    566 		newl->l_pflag |= LP_RUNNING;
    567 	}
    568 #endif	/* !__HAVE_FAST_SOFTINTS */
    569 
    570 	/*
    571 	 * If on the CPU and we have gotten this far, then we must yield.
    572 	 */
    573 	if (l->l_stat == LSONPROC && l != newl) {
    574 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    575 		KASSERT((l->l_flag & LW_IDLE) == 0);
    576 		l->l_stat = LSRUN;
    577 		lwp_setlock(l, spc->spc_mutex);
    578 		sched_enqueue(l);
    579 		/*
    580 		 * Handle migration.  Note that "migrating LWP" may
    581 		 * be reset here, if interrupt/preemption happens
    582 		 * early in idle LWP.
    583 		 */
    584 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    585 			KASSERT((l->l_pflag & LP_INTR) == 0);
    586 			spc->spc_migrating = l;
    587 		}
    588 	}
    589 
    590 	/* Pick new LWP to run. */
    591 	if (newl == NULL) {
    592 		newl = nextlwp(ci, spc);
    593 	}
    594 
    595 	/* Items that must be updated with the CPU locked. */
    596 	if (!returning) {
    597 		/* Count time spent in current system call */
    598 		SYSCALL_TIME_SLEEP(l);
    599 
    600 		updatertime(l, &bt);
    601 
    602 		/* Update the new LWP's start time. */
    603 		newl->l_stime = bt;
    604 
    605 		/*
    606 		 * ci_curlwp changes when a fast soft interrupt occurs.
    607 		 * We use ci_onproc to keep track of which kernel or
    608 		 * user thread is running 'underneath' the software
    609 		 * interrupt.  This is important for time accounting,
    610 		 * itimers and forcing user threads to preempt (aston).
    611 		 */
    612 		ci->ci_onproc = newl;
    613 	}
    614 
    615 	/*
    616 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    617 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    618 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    619 	 * cleared by the LWP itself (us) with atomics when not under lock.
    620 	 */
    621 	l->l_dopreempt = 0;
    622 	if (__predict_false(l->l_pfailaddr != 0)) {
    623 		LOCKSTAT_FLAG(lsflag);
    624 		LOCKSTAT_ENTER(lsflag);
    625 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    626 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    627 		    1, l->l_pfailtime, l->l_pfailaddr);
    628 		LOCKSTAT_EXIT(lsflag);
    629 		l->l_pfailtime = 0;
    630 		l->l_pfaillock = 0;
    631 		l->l_pfailaddr = 0;
    632 	}
    633 
    634 	if (l != newl) {
    635 		struct lwp *prevlwp;
    636 
    637 		/* Release all locks, but leave the current LWP locked */
    638 		if (l->l_mutex == spc->spc_mutex) {
    639 			/*
    640 			 * Drop spc_lwplock, if the current LWP has been moved
    641 			 * to the run queue (it is now locked by spc_mutex).
    642 			 */
    643 			mutex_spin_exit(spc->spc_lwplock);
    644 		} else {
    645 			/*
    646 			 * Otherwise, drop the spc_mutex, we are done with the
    647 			 * run queues.
    648 			 */
    649 			mutex_spin_exit(spc->spc_mutex);
    650 		}
    651 
    652 		/* We're down to only one lock, so do debug checks. */
    653 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    654 
    655 		/*
    656 		 * Mark that context switch is going to be performed
    657 		 * for this LWP, to protect it from being switched
    658 		 * to on another CPU.
    659 		 */
    660 		KASSERT(l->l_ctxswtch == 0);
    661 		l->l_ctxswtch = 1;
    662 		l->l_ncsw++;
    663 		if ((l->l_pflag & LP_PREEMPTING) != 0)
    664 			l->l_nivcsw++;
    665 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    666 		l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
    667 
    668 		/*
    669 		 * Increase the count of spin-mutexes before the release
    670 		 * of the last lock - we must remain at IPL_SCHED during
    671 		 * the context switch.
    672 		 */
    673 		KASSERTMSG(ci->ci_mtx_count == -1,
    674 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    675 		    "(block with spin-mutex held)",
    676 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    677 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    678 		ci->ci_mtx_count--;
    679 		lwp_unlock(l);
    680 
    681 		/* Count the context switch on this CPU. */
    682 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    683 
    684 		/* Update status for lwpctl, if present. */
    685 		if (l->l_lwpctl != NULL)
    686 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    687 
    688 		/*
    689 		 * Save old VM context, unless a soft interrupt
    690 		 * handler is blocking.
    691 		 */
    692 		if (!returning)
    693 			pmap_deactivate(l);
    694 
    695 		/*
    696 		 * We may need to spin-wait if 'newl' is still
    697 		 * context switching on another CPU.
    698 		 */
    699 		if (__predict_false(newl->l_ctxswtch != 0)) {
    700 			u_int count;
    701 			count = SPINLOCK_BACKOFF_MIN;
    702 			while (newl->l_ctxswtch)
    703 				SPINLOCK_BACKOFF(count);
    704 		}
    705 		membar_enter();
    706 
    707 		/*
    708 		 * If DTrace has set the active vtime enum to anything
    709 		 * other than INACTIVE (0), then it should have set the
    710 		 * function to call.
    711 		 */
    712 		if (__predict_false(dtrace_vtime_active)) {
    713 			(*dtrace_vtime_switch_func)(newl);
    714 		}
    715 
    716 		/*
    717 		 * We must ensure not to come here from inside a read section.
    718 		 */
    719 		KASSERT(pserialize_not_in_read_section());
    720 
    721 		/* Switch to the new LWP.. */
    722 #ifdef MULTIPROCESSOR
    723 		KASSERT(curlwp == ci->ci_curlwp);
    724 #endif
    725 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    726 		prevlwp = cpu_switchto(l, newl, returning);
    727 		ci = curcpu();
    728 #ifdef MULTIPROCESSOR
    729 		KASSERT(curlwp == ci->ci_curlwp);
    730 #endif
    731 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    732 		    l, curlwp, prevlwp);
    733 
    734 		/*
    735 		 * Switched away - we have new curlwp.
    736 		 * Restore VM context and IPL.
    737 		 */
    738 		pmap_activate(l);
    739 		pcu_switchpoint(l);
    740 
    741 		if (prevlwp != NULL) {
    742 			/* Normalize the count of the spin-mutexes */
    743 			ci->ci_mtx_count++;
    744 			/* Unmark the state of context switch */
    745 			membar_exit();
    746 			prevlwp->l_ctxswtch = 0;
    747 		}
    748 
    749 		/* Update status for lwpctl, if present. */
    750 		if (l->l_lwpctl != NULL) {
    751 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    752 			l->l_lwpctl->lc_pctr++;
    753 		}
    754 
    755 		/*
    756 		 * Note that, unless the caller disabled preemption, we can
    757 		 * be preempted at any time after this splx().
    758 		 */
    759 		KASSERT(l->l_cpu == ci);
    760 		splx(oldspl);
    761 	} else {
    762 		/* Nothing to do - just unlock and return. */
    763 		mutex_spin_exit(spc->spc_mutex);
    764 		l->l_pflag &= ~LP_PREEMPTING;
    765 		/* We're down to only one lock, so do debug checks. */
    766 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    767 		lwp_unlock(l);
    768 	}
    769 
    770 	KASSERT(l == curlwp);
    771 	KASSERT(l->l_stat == LSONPROC);
    772 
    773 	SYSCALL_TIME_WAKEUP(l);
    774 	LOCKDEBUG_BARRIER(NULL, 1);
    775 }
    776 
    777 /*
    778  * The machine independent parts of context switch to oblivion.
    779  * Does not return.  Call with the LWP unlocked.
    780  */
    781 void
    782 lwp_exit_switchaway(lwp_t *l)
    783 {
    784 	struct cpu_info *ci;
    785 	struct lwp *newl;
    786 	struct bintime bt;
    787 
    788 	ci = l->l_cpu;
    789 
    790 	KASSERT(kpreempt_disabled());
    791 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    792 	KASSERT(ci == curcpu());
    793 	LOCKDEBUG_BARRIER(NULL, 0);
    794 
    795 	kstack_check_magic(l);
    796 
    797 	/* Count time spent in current system call */
    798 	SYSCALL_TIME_SLEEP(l);
    799 	binuptime(&bt);
    800 	updatertime(l, &bt);
    801 
    802 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    803 	(void)splsched();
    804 
    805 	/*
    806 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    807 	 * If no LWP is runnable, select the idle LWP.
    808 	 *
    809 	 * Note that spc_lwplock might not necessary be held, and
    810 	 * new thread would be unlocked after setting the LWP-lock.
    811 	 */
    812 	spc_lock(ci);
    813 #ifndef __HAVE_FAST_SOFTINTS
    814 	if (ci->ci_data.cpu_softints != 0) {
    815 		/* There are pending soft interrupts, so pick one. */
    816 		newl = softint_picklwp();
    817 		newl->l_stat = LSONPROC;
    818 		newl->l_pflag |= LP_RUNNING;
    819 	} else
    820 #endif	/* !__HAVE_FAST_SOFTINTS */
    821 	{
    822 		newl = nextlwp(ci, &ci->ci_schedstate);
    823 	}
    824 
    825 	/* Update the new LWP's start time. */
    826 	newl->l_stime = bt;
    827 	l->l_pflag &= ~LP_RUNNING;
    828 
    829 	/*
    830 	 * ci_curlwp changes when a fast soft interrupt occurs.
    831 	 * We use ci_onproc to keep track of which kernel or
    832 	 * user thread is running 'underneath' the software
    833 	 * interrupt.  This is important for time accounting,
    834 	 * itimers and forcing user threads to preempt (aston).
    835 	 */
    836 	ci->ci_onproc = newl;
    837 
    838 	/* Unlock the run queue. */
    839 	spc_unlock(ci);
    840 
    841 	/* Count the context switch on this CPU. */
    842 	CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    843 
    844 	/* Update status for lwpctl, if present. */
    845 	if (l->l_lwpctl != NULL)
    846 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    847 
    848 	/*
    849 	 * We may need to spin-wait if 'newl' is still
    850 	 * context switching on another CPU.
    851 	 */
    852 	if (__predict_false(newl->l_ctxswtch != 0)) {
    853 		u_int count;
    854 		count = SPINLOCK_BACKOFF_MIN;
    855 		while (newl->l_ctxswtch)
    856 			SPINLOCK_BACKOFF(count);
    857 	}
    858 	membar_enter();
    859 
    860 	/*
    861 	 * If DTrace has set the active vtime enum to anything
    862 	 * other than INACTIVE (0), then it should have set the
    863 	 * function to call.
    864 	 */
    865 	if (__predict_false(dtrace_vtime_active)) {
    866 		(*dtrace_vtime_switch_func)(newl);
    867 	}
    868 
    869 	/* Switch to the new LWP.. */
    870 	(void)cpu_switchto(NULL, newl, false);
    871 
    872 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    873 	/* NOTREACHED */
    874 }
    875 
    876 /*
    877  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    878  *
    879  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    880  */
    881 void
    882 setrunnable(struct lwp *l)
    883 {
    884 	struct proc *p = l->l_proc;
    885 	struct cpu_info *ci;
    886 	kmutex_t *oldlock;
    887 
    888 	KASSERT((l->l_flag & LW_IDLE) == 0);
    889 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    890 	KASSERT(mutex_owned(p->p_lock));
    891 	KASSERT(lwp_locked(l, NULL));
    892 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    893 
    894 	switch (l->l_stat) {
    895 	case LSSTOP:
    896 		/*
    897 		 * If we're being traced (possibly because someone attached us
    898 		 * while we were stopped), check for a signal from the debugger.
    899 		 */
    900 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    901 			signotify(l);
    902 		p->p_nrlwps++;
    903 		break;
    904 	case LSSUSPENDED:
    905 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    906 		l->l_flag &= ~LW_WSUSPEND;
    907 		p->p_nrlwps++;
    908 		cv_broadcast(&p->p_lwpcv);
    909 		break;
    910 	case LSSLEEP:
    911 		KASSERT(l->l_wchan != NULL);
    912 		break;
    913 	case LSIDL:
    914 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    915 		break;
    916 	default:
    917 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    918 	}
    919 
    920 	/*
    921 	 * If the LWP was sleeping, start it again.
    922 	 */
    923 	if (l->l_wchan != NULL) {
    924 		l->l_stat = LSSLEEP;
    925 		/* lwp_unsleep() will release the lock. */
    926 		lwp_unsleep(l, true);
    927 		return;
    928 	}
    929 
    930 	/*
    931 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    932 	 * about to call mi_switch(), in which case it will yield.
    933 	 */
    934 	if ((l->l_pflag & LP_RUNNING) != 0) {
    935 		l->l_stat = LSONPROC;
    936 		l->l_slptime = 0;
    937 		lwp_unlock(l);
    938 		return;
    939 	}
    940 
    941 	/*
    942 	 * Look for a CPU to run.
    943 	 * Set the LWP runnable.
    944 	 */
    945 	ci = sched_takecpu(l);
    946 	l->l_cpu = ci;
    947 	spc_lock(ci);
    948 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    949 	sched_setrunnable(l);
    950 	l->l_stat = LSRUN;
    951 	l->l_slptime = 0;
    952 	sched_enqueue(l);
    953 	sched_resched_lwp(l, true);
    954 	/* SPC & LWP now unlocked. */
    955 	mutex_spin_exit(oldlock);
    956 }
    957 
    958 /*
    959  * suspendsched:
    960  *
    961  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    962  */
    963 void
    964 suspendsched(void)
    965 {
    966 	CPU_INFO_ITERATOR cii;
    967 	struct cpu_info *ci;
    968 	struct lwp *l;
    969 	struct proc *p;
    970 
    971 	/*
    972 	 * We do this by process in order not to violate the locking rules.
    973 	 */
    974 	mutex_enter(proc_lock);
    975 	PROCLIST_FOREACH(p, &allproc) {
    976 		mutex_enter(p->p_lock);
    977 		if ((p->p_flag & PK_SYSTEM) != 0) {
    978 			mutex_exit(p->p_lock);
    979 			continue;
    980 		}
    981 
    982 		if (p->p_stat != SSTOP) {
    983 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    984 				p->p_pptr->p_nstopchild++;
    985 				p->p_waited = 0;
    986 			}
    987 			p->p_stat = SSTOP;
    988 		}
    989 
    990 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    991 			if (l == curlwp)
    992 				continue;
    993 
    994 			lwp_lock(l);
    995 
    996 			/*
    997 			 * Set L_WREBOOT so that the LWP will suspend itself
    998 			 * when it tries to return to user mode.  We want to
    999 			 * try and get to get as many LWPs as possible to
   1000 			 * the user / kernel boundary, so that they will
   1001 			 * release any locks that they hold.
   1002 			 */
   1003 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1004 
   1005 			if (l->l_stat == LSSLEEP &&
   1006 			    (l->l_flag & LW_SINTR) != 0) {
   1007 				/* setrunnable() will release the lock. */
   1008 				setrunnable(l);
   1009 				continue;
   1010 			}
   1011 
   1012 			lwp_unlock(l);
   1013 		}
   1014 
   1015 		mutex_exit(p->p_lock);
   1016 	}
   1017 	mutex_exit(proc_lock);
   1018 
   1019 	/*
   1020 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1021 	 * They'll trap into the kernel and suspend themselves in userret().
   1022 	 *
   1023 	 * Unusually, we don't hold any other scheduler object locked, which
   1024 	 * would keep preemption off for sched_resched_cpu(), so disable it
   1025 	 * explicitly.
   1026 	 */
   1027 	kpreempt_disable();
   1028 	for (CPU_INFO_FOREACH(cii, ci)) {
   1029 		spc_lock(ci);
   1030 		sched_resched_cpu(ci, PRI_KERNEL, true);
   1031 		/* spc now unlocked */
   1032 	}
   1033 	kpreempt_enable();
   1034 }
   1035 
   1036 /*
   1037  * sched_unsleep:
   1038  *
   1039  *	The is called when the LWP has not been awoken normally but instead
   1040  *	interrupted: for example, if the sleep timed out.  Because of this,
   1041  *	it's not a valid action for running or idle LWPs.
   1042  */
   1043 static void
   1044 sched_unsleep(struct lwp *l, bool cleanup)
   1045 {
   1046 
   1047 	lwp_unlock(l);
   1048 	panic("sched_unsleep");
   1049 }
   1050 
   1051 static void
   1052 sched_changepri(struct lwp *l, pri_t pri)
   1053 {
   1054 	struct schedstate_percpu *spc;
   1055 	struct cpu_info *ci;
   1056 
   1057 	KASSERT(lwp_locked(l, NULL));
   1058 
   1059 	ci = l->l_cpu;
   1060 	spc = &ci->ci_schedstate;
   1061 
   1062 	if (l->l_stat == LSRUN) {
   1063 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1064 		sched_dequeue(l);
   1065 		l->l_priority = pri;
   1066 		sched_enqueue(l);
   1067 		sched_resched_lwp(l, false);
   1068 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1069 		/* On priority drop, only evict realtime LWPs. */
   1070 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1071 		l->l_priority = pri;
   1072 		spc_lock(ci);
   1073 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1074 		/* spc now unlocked */
   1075 	} else {
   1076 		l->l_priority = pri;
   1077 	}
   1078 }
   1079 
   1080 static void
   1081 sched_lendpri(struct lwp *l, pri_t pri)
   1082 {
   1083 	struct schedstate_percpu *spc;
   1084 	struct cpu_info *ci;
   1085 
   1086 	KASSERT(lwp_locked(l, NULL));
   1087 
   1088 	ci = l->l_cpu;
   1089 	spc = &ci->ci_schedstate;
   1090 
   1091 	if (l->l_stat == LSRUN) {
   1092 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1093 		sched_dequeue(l);
   1094 		l->l_inheritedprio = pri;
   1095 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1096 		sched_enqueue(l);
   1097 		sched_resched_lwp(l, false);
   1098 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1099 		/* On priority drop, only evict realtime LWPs. */
   1100 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1101 		l->l_inheritedprio = pri;
   1102 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1103 		spc_lock(ci);
   1104 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1105 		/* spc now unlocked */
   1106 	} else {
   1107 		l->l_inheritedprio = pri;
   1108 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1109 	}
   1110 }
   1111 
   1112 struct lwp *
   1113 syncobj_noowner(wchan_t wchan)
   1114 {
   1115 
   1116 	return NULL;
   1117 }
   1118 
   1119 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1120 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1121 
   1122 /*
   1123  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1124  * 5 second intervals.
   1125  */
   1126 static const fixpt_t cexp[ ] = {
   1127 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1128 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1129 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1130 };
   1131 
   1132 /*
   1133  * sched_pstats:
   1134  *
   1135  * => Update process statistics and check CPU resource allocation.
   1136  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1137  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1138  */
   1139 void
   1140 sched_pstats(void)
   1141 {
   1142 	extern struct loadavg averunnable;
   1143 	struct loadavg *avg = &averunnable;
   1144 	const int clkhz = (stathz != 0 ? stathz : hz);
   1145 	static bool backwards = false;
   1146 	static u_int lavg_count = 0;
   1147 	struct proc *p;
   1148 	int nrun;
   1149 
   1150 	sched_pstats_ticks++;
   1151 	if (++lavg_count >= 5) {
   1152 		lavg_count = 0;
   1153 		nrun = 0;
   1154 	}
   1155 	mutex_enter(proc_lock);
   1156 	PROCLIST_FOREACH(p, &allproc) {
   1157 		struct lwp *l;
   1158 		struct rlimit *rlim;
   1159 		time_t runtm;
   1160 		int sig;
   1161 
   1162 		/* Increment sleep time (if sleeping), ignore overflow. */
   1163 		mutex_enter(p->p_lock);
   1164 		runtm = p->p_rtime.sec;
   1165 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1166 			fixpt_t lpctcpu;
   1167 			u_int lcpticks;
   1168 
   1169 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1170 				continue;
   1171 			lwp_lock(l);
   1172 			runtm += l->l_rtime.sec;
   1173 			l->l_swtime++;
   1174 			sched_lwp_stats(l);
   1175 
   1176 			/* For load average calculation. */
   1177 			if (__predict_false(lavg_count == 0) &&
   1178 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1179 				switch (l->l_stat) {
   1180 				case LSSLEEP:
   1181 					if (l->l_slptime > 1) {
   1182 						break;
   1183 					}
   1184 					/* FALLTHROUGH */
   1185 				case LSRUN:
   1186 				case LSONPROC:
   1187 				case LSIDL:
   1188 					nrun++;
   1189 				}
   1190 			}
   1191 			lwp_unlock(l);
   1192 
   1193 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1194 			if (l->l_slptime != 0)
   1195 				continue;
   1196 
   1197 			lpctcpu = l->l_pctcpu;
   1198 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1199 			lpctcpu += ((FSCALE - ccpu) *
   1200 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1201 			l->l_pctcpu = lpctcpu;
   1202 		}
   1203 		/* Calculating p_pctcpu only for ps(1) */
   1204 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1205 
   1206 		if (__predict_false(runtm < 0)) {
   1207 			if (!backwards) {
   1208 				backwards = true;
   1209 				printf("WARNING: negative runtime; "
   1210 				    "monotonic clock has gone backwards\n");
   1211 			}
   1212 			mutex_exit(p->p_lock);
   1213 			continue;
   1214 		}
   1215 
   1216 		/*
   1217 		 * Check if the process exceeds its CPU resource allocation.
   1218 		 * If over the hard limit, kill it with SIGKILL.
   1219 		 * If over the soft limit, send SIGXCPU and raise
   1220 		 * the soft limit a little.
   1221 		 */
   1222 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1223 		sig = 0;
   1224 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1225 			if (runtm >= rlim->rlim_max) {
   1226 				sig = SIGKILL;
   1227 				log(LOG_NOTICE,
   1228 				    "pid %d, command %s, is killed: %s\n",
   1229 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1230 				uprintf("pid %d, command %s, is killed: %s\n",
   1231 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1232 			} else {
   1233 				sig = SIGXCPU;
   1234 				if (rlim->rlim_cur < rlim->rlim_max)
   1235 					rlim->rlim_cur += 5;
   1236 			}
   1237 		}
   1238 		mutex_exit(p->p_lock);
   1239 		if (__predict_false(sig)) {
   1240 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1241 			psignal(p, sig);
   1242 		}
   1243 	}
   1244 
   1245 	/* Load average calculation. */
   1246 	if (__predict_false(lavg_count == 0)) {
   1247 		int i;
   1248 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1249 		for (i = 0; i < __arraycount(cexp); i++) {
   1250 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1251 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1252 		}
   1253 	}
   1254 
   1255 	/* Lightning bolt. */
   1256 	cv_broadcast(&lbolt);
   1257 
   1258 	mutex_exit(proc_lock);
   1259 }
   1260