kern_synch.c revision 1.334 1 /* $NetBSD: kern_synch.c,v 1.334 2019/12/21 11:54:04 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.334 2019/12/21 11:54:04 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107
108 syncobj_t sleep_syncobj = {
109 .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 .sobj_unsleep = sleepq_unsleep,
111 .sobj_changepri = sleepq_changepri,
112 .sobj_lendpri = sleepq_lendpri,
113 .sobj_owner = syncobj_noowner,
114 };
115
116 syncobj_t sched_syncobj = {
117 .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 .sobj_unsleep = sched_unsleep,
119 .sobj_changepri = sched_changepri,
120 .sobj_lendpri = sched_lendpri,
121 .sobj_owner = syncobj_noowner,
122 };
123
124 /* "Lightning bolt": once a second sleep address. */
125 kcondvar_t lbolt __cacheline_aligned;
126
127 u_int sched_pstats_ticks __cacheline_aligned;
128
129 /* Preemption event counters. */
130 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133
134 void
135 synch_init(void)
136 {
137
138 cv_init(&lbolt, "lbolt");
139
140 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 "kpreempt", "defer: critical section");
142 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 "kpreempt", "defer: kernel_lock");
144 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 "kpreempt", "immediate");
146 }
147
148 /*
149 * OBSOLETE INTERFACE
150 *
151 * General sleep call. Suspends the current LWP until a wakeup is
152 * performed on the specified identifier. The LWP will then be made
153 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 * means no timeout). If pri includes PCATCH flag, signals are checked
155 * before and after sleeping, else signals are not checked. Returns 0 if
156 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 * signal needs to be delivered, ERESTART is returned if the current system
158 * call should be restarted if possible, and EINTR is returned if the system
159 * call should be interrupted by the signal (return EINTR).
160 */
161 int
162 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 {
164 struct lwp *l = curlwp;
165 sleepq_t *sq;
166 kmutex_t *mp;
167
168 KASSERT((l->l_pflag & LP_INTR) == 0);
169 KASSERT(ident != &lbolt);
170
171 if (sleepq_dontsleep(l)) {
172 (void)sleepq_abort(NULL, 0);
173 return 0;
174 }
175
176 l->l_kpriority = true;
177 sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 sleepq_enter(sq, l, mp);
179 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 return sleepq_block(timo, priority & PCATCH);
181 }
182
183 int
184 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 kmutex_t *mtx)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 int error;
191
192 KASSERT((l->l_pflag & LP_INTR) == 0);
193 KASSERT(ident != &lbolt);
194
195 if (sleepq_dontsleep(l)) {
196 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 return 0;
198 }
199
200 l->l_kpriority = true;
201 sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 sleepq_enter(sq, l, mp);
203 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 kmutex_t *mp;
221 sleepq_t *sq;
222 int error;
223
224 KASSERT(!(timo == 0 && intr == false));
225
226 if (sleepq_dontsleep(l))
227 return sleepq_abort(NULL, 0);
228
229 if (mtx != NULL)
230 mutex_exit(mtx);
231 l->l_kpriority = true;
232 sq = sleeptab_lookup(&sleeptab, l, &mp);
233 sleepq_enter(sq, l, mp);
234 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 error = sleepq_block(timo, intr);
236 if (mtx != NULL)
237 mutex_enter(mtx);
238
239 return error;
240 }
241
242 /*
243 * OBSOLETE INTERFACE
244 *
245 * Make all LWPs sleeping on the specified identifier runnable.
246 */
247 void
248 wakeup(wchan_t ident)
249 {
250 sleepq_t *sq;
251 kmutex_t *mp;
252
253 if (__predict_false(cold))
254 return;
255
256 sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 sleepq_wake(sq, ident, (u_int)-1, mp);
258 }
259
260 /*
261 * General yield call. Puts the current LWP back on its run queue and
262 * performs a voluntary context switch. Should only be called when the
263 * current LWP explicitly requests it (eg sched_yield(2)).
264 */
265 void
266 yield(void)
267 {
268 struct lwp *l = curlwp;
269
270 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 lwp_lock(l);
272
273 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 KASSERT(l->l_stat == LSONPROC);
275
276 /* Voluntary - ditch kpriority boost. */
277 l->l_kpriority = false;
278 spc_lock(l->l_cpu);
279 mi_switch(l);
280 KERNEL_LOCK(l->l_biglocks, l);
281 }
282
283 /*
284 * General preemption call. Puts the current LWP back on its run queue
285 * and performs an involuntary context switch.
286 */
287 void
288 preempt(void)
289 {
290 struct lwp *l = curlwp;
291
292 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
293 lwp_lock(l);
294
295 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 KASSERT(l->l_stat == LSONPROC);
297
298 /* Involuntary - keep kpriority boost. */
299 l->l_pflag |= LP_PREEMPTING;
300 spc_lock(l->l_cpu);
301 mi_switch(l);
302 KERNEL_LOCK(l->l_biglocks, l);
303 }
304
305 /*
306 * Handle a request made by another agent to preempt the current LWP
307 * in-kernel. Usually called when l_dopreempt may be non-zero.
308 *
309 * Character addresses for lockstat only.
310 */
311 static char kpreempt_is_disabled;
312 static char kernel_lock_held;
313 static char is_softint_lwp;
314 static char spl_is_raised;
315
316 bool
317 kpreempt(uintptr_t where)
318 {
319 uintptr_t failed;
320 lwp_t *l;
321 int s, dop, lsflag;
322
323 l = curlwp;
324 failed = 0;
325 while ((dop = l->l_dopreempt) != 0) {
326 if (l->l_stat != LSONPROC) {
327 /*
328 * About to block (or die), let it happen.
329 * Doesn't really count as "preemption has
330 * been blocked", since we're going to
331 * context switch.
332 */
333 atomic_swap_uint(&l->l_dopreempt, 0);
334 return true;
335 }
336 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
337 /* Can't preempt idle loop, don't count as failure. */
338 atomic_swap_uint(&l->l_dopreempt, 0);
339 return true;
340 }
341 if (__predict_false(l->l_nopreempt != 0)) {
342 /* LWP holds preemption disabled, explicitly. */
343 if ((dop & DOPREEMPT_COUNTED) == 0) {
344 kpreempt_ev_crit.ev_count++;
345 }
346 failed = (uintptr_t)&kpreempt_is_disabled;
347 break;
348 }
349 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
350 /* Can't preempt soft interrupts yet. */
351 atomic_swap_uint(&l->l_dopreempt, 0);
352 failed = (uintptr_t)&is_softint_lwp;
353 break;
354 }
355 s = splsched();
356 if (__predict_false(l->l_blcnt != 0 ||
357 curcpu()->ci_biglock_wanted != NULL)) {
358 /* Hold or want kernel_lock, code is not MT safe. */
359 splx(s);
360 if ((dop & DOPREEMPT_COUNTED) == 0) {
361 kpreempt_ev_klock.ev_count++;
362 }
363 failed = (uintptr_t)&kernel_lock_held;
364 break;
365 }
366 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
367 /*
368 * It may be that the IPL is too high.
369 * kpreempt_enter() can schedule an
370 * interrupt to retry later.
371 */
372 splx(s);
373 failed = (uintptr_t)&spl_is_raised;
374 break;
375 }
376 /* Do it! */
377 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
378 kpreempt_ev_immed.ev_count++;
379 }
380 lwp_lock(l);
381 /* Involuntary - keep kpriority boost. */
382 l->l_pflag |= LP_PREEMPTING;
383 spc_lock(l->l_cpu);
384 mi_switch(l);
385 l->l_nopreempt++;
386 splx(s);
387
388 /* Take care of any MD cleanup. */
389 cpu_kpreempt_exit(where);
390 l->l_nopreempt--;
391 }
392
393 if (__predict_true(!failed)) {
394 return false;
395 }
396
397 /* Record preemption failure for reporting via lockstat. */
398 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
399 lsflag = 0;
400 LOCKSTAT_ENTER(lsflag);
401 if (__predict_false(lsflag)) {
402 if (where == 0) {
403 where = (uintptr_t)__builtin_return_address(0);
404 }
405 /* Preemption is on, might recurse, so make it atomic. */
406 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
407 (void *)where) == NULL) {
408 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
409 l->l_pfaillock = failed;
410 }
411 }
412 LOCKSTAT_EXIT(lsflag);
413 return true;
414 }
415
416 /*
417 * Return true if preemption is explicitly disabled.
418 */
419 bool
420 kpreempt_disabled(void)
421 {
422 const lwp_t *l = curlwp;
423
424 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
425 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
426 cpu_kpreempt_disabled();
427 }
428
429 /*
430 * Disable kernel preemption.
431 */
432 void
433 kpreempt_disable(void)
434 {
435
436 KPREEMPT_DISABLE(curlwp);
437 }
438
439 /*
440 * Reenable kernel preemption.
441 */
442 void
443 kpreempt_enable(void)
444 {
445
446 KPREEMPT_ENABLE(curlwp);
447 }
448
449 /*
450 * Compute the amount of time during which the current lwp was running.
451 *
452 * - update l_rtime unless it's an idle lwp.
453 */
454
455 void
456 updatertime(lwp_t *l, const struct bintime *now)
457 {
458
459 if (__predict_false(l->l_flag & LW_IDLE))
460 return;
461
462 /* rtime += now - stime */
463 bintime_add(&l->l_rtime, now);
464 bintime_sub(&l->l_rtime, &l->l_stime);
465 }
466
467 /*
468 * Select next LWP from the current CPU to run..
469 */
470 static inline lwp_t *
471 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
472 {
473 lwp_t *newl;
474
475 /*
476 * Let sched_nextlwp() select the LWP to run the CPU next.
477 * If no LWP is runnable, select the idle LWP.
478 *
479 * Note that spc_lwplock might not necessary be held, and
480 * new thread would be unlocked after setting the LWP-lock.
481 */
482 newl = sched_nextlwp();
483 if (newl != NULL) {
484 sched_dequeue(newl);
485 KASSERT(lwp_locked(newl, spc->spc_mutex));
486 KASSERT(newl->l_cpu == ci);
487 newl->l_stat = LSONPROC;
488 newl->l_pflag |= LP_RUNNING;
489 lwp_setlock(newl, spc->spc_lwplock);
490 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
491 } else {
492 newl = ci->ci_data.cpu_idlelwp;
493 newl->l_stat = LSONPROC;
494 newl->l_pflag |= LP_RUNNING;
495 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
496 SPCF_IDLE;
497 }
498
499 /*
500 * Only clear want_resched if there are no pending (slow) software
501 * interrupts. We can do this without an atomic, because no new
502 * LWPs can appear in the queue due to our hold on spc_mutex, and
503 * the update to ci_want_resched will become globally visible before
504 * the release of spc_mutex becomes globally visible.
505 */
506 ci->ci_want_resched = ci->ci_data.cpu_softints;
507 spc->spc_curpriority = lwp_eprio(newl);
508
509 return newl;
510 }
511
512 /*
513 * The machine independent parts of context switch.
514 *
515 * NOTE: do not use l->l_cpu in this routine. The caller may have enqueued
516 * itself onto another CPU's run queue, so l->l_cpu may point elsewhere.
517 */
518 void
519 mi_switch(lwp_t *l)
520 {
521 struct cpu_info *ci;
522 struct schedstate_percpu *spc;
523 struct lwp *newl;
524 int oldspl;
525 struct bintime bt;
526 bool returning;
527
528 KASSERT(lwp_locked(l, NULL));
529 KASSERT(kpreempt_disabled());
530 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
531
532 kstack_check_magic(l);
533
534 binuptime(&bt);
535
536 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
537 KASSERT((l->l_pflag & LP_RUNNING) != 0);
538 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
539 ci = curcpu();
540 spc = &ci->ci_schedstate;
541 returning = false;
542 newl = NULL;
543
544 /*
545 * If we have been asked to switch to a specific LWP, then there
546 * is no need to inspect the run queues. If a soft interrupt is
547 * blocking, then return to the interrupted thread without adjusting
548 * VM context or its start time: neither have been changed in order
549 * to take the interrupt.
550 */
551 if (l->l_switchto != NULL) {
552 if ((l->l_pflag & LP_INTR) != 0) {
553 returning = true;
554 softint_block(l);
555 if ((l->l_pflag & LP_TIMEINTR) != 0)
556 updatertime(l, &bt);
557 }
558 newl = l->l_switchto;
559 l->l_switchto = NULL;
560 }
561 #ifndef __HAVE_FAST_SOFTINTS
562 else if (ci->ci_data.cpu_softints != 0) {
563 /* There are pending soft interrupts, so pick one. */
564 newl = softint_picklwp();
565 newl->l_stat = LSONPROC;
566 newl->l_pflag |= LP_RUNNING;
567 }
568 #endif /* !__HAVE_FAST_SOFTINTS */
569
570 /*
571 * If on the CPU and we have gotten this far, then we must yield.
572 */
573 if (l->l_stat == LSONPROC && l != newl) {
574 KASSERT(lwp_locked(l, spc->spc_lwplock));
575 KASSERT((l->l_flag & LW_IDLE) == 0);
576 l->l_stat = LSRUN;
577 lwp_setlock(l, spc->spc_mutex);
578 sched_enqueue(l);
579 /*
580 * Handle migration. Note that "migrating LWP" may
581 * be reset here, if interrupt/preemption happens
582 * early in idle LWP.
583 */
584 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
585 KASSERT((l->l_pflag & LP_INTR) == 0);
586 spc->spc_migrating = l;
587 }
588 }
589
590 /* Pick new LWP to run. */
591 if (newl == NULL) {
592 newl = nextlwp(ci, spc);
593 }
594
595 /* Items that must be updated with the CPU locked. */
596 if (!returning) {
597 /* Count time spent in current system call */
598 SYSCALL_TIME_SLEEP(l);
599
600 updatertime(l, &bt);
601
602 /* Update the new LWP's start time. */
603 newl->l_stime = bt;
604
605 /*
606 * ci_curlwp changes when a fast soft interrupt occurs.
607 * We use ci_onproc to keep track of which kernel or
608 * user thread is running 'underneath' the software
609 * interrupt. This is important for time accounting,
610 * itimers and forcing user threads to preempt (aston).
611 */
612 ci->ci_onproc = newl;
613 }
614
615 /*
616 * Preemption related tasks. Must be done holding spc_mutex. Clear
617 * l_dopreempt without an atomic - it's only ever set non-zero by
618 * sched_resched_cpu() which also holds spc_mutex, and only ever
619 * cleared by the LWP itself (us) with atomics when not under lock.
620 */
621 l->l_dopreempt = 0;
622 if (__predict_false(l->l_pfailaddr != 0)) {
623 LOCKSTAT_FLAG(lsflag);
624 LOCKSTAT_ENTER(lsflag);
625 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
626 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
627 1, l->l_pfailtime, l->l_pfailaddr);
628 LOCKSTAT_EXIT(lsflag);
629 l->l_pfailtime = 0;
630 l->l_pfaillock = 0;
631 l->l_pfailaddr = 0;
632 }
633
634 if (l != newl) {
635 struct lwp *prevlwp;
636
637 /* Release all locks, but leave the current LWP locked */
638 if (l->l_mutex == spc->spc_mutex) {
639 /*
640 * Drop spc_lwplock, if the current LWP has been moved
641 * to the run queue (it is now locked by spc_mutex).
642 */
643 mutex_spin_exit(spc->spc_lwplock);
644 } else {
645 /*
646 * Otherwise, drop the spc_mutex, we are done with the
647 * run queues.
648 */
649 mutex_spin_exit(spc->spc_mutex);
650 }
651
652 /* We're down to only one lock, so do debug checks. */
653 LOCKDEBUG_BARRIER(l->l_mutex, 1);
654
655 /*
656 * Mark that context switch is going to be performed
657 * for this LWP, to protect it from being switched
658 * to on another CPU.
659 */
660 KASSERT(l->l_ctxswtch == 0);
661 l->l_ctxswtch = 1;
662 l->l_ncsw++;
663 if ((l->l_pflag & LP_PREEMPTING) != 0)
664 l->l_nivcsw++;
665 KASSERT((l->l_pflag & LP_RUNNING) != 0);
666 l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
667
668 /*
669 * Increase the count of spin-mutexes before the release
670 * of the last lock - we must remain at IPL_SCHED during
671 * the context switch.
672 */
673 KASSERTMSG(ci->ci_mtx_count == -1,
674 "%s: cpu%u: ci_mtx_count (%d) != -1 "
675 "(block with spin-mutex held)",
676 __func__, cpu_index(ci), ci->ci_mtx_count);
677 oldspl = MUTEX_SPIN_OLDSPL(ci);
678 ci->ci_mtx_count--;
679 lwp_unlock(l);
680
681 /* Count the context switch on this CPU. */
682 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
683
684 /* Update status for lwpctl, if present. */
685 if (l->l_lwpctl != NULL)
686 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
687
688 /*
689 * Save old VM context, unless a soft interrupt
690 * handler is blocking.
691 */
692 if (!returning)
693 pmap_deactivate(l);
694
695 /*
696 * We may need to spin-wait if 'newl' is still
697 * context switching on another CPU.
698 */
699 if (__predict_false(newl->l_ctxswtch != 0)) {
700 u_int count;
701 count = SPINLOCK_BACKOFF_MIN;
702 while (newl->l_ctxswtch)
703 SPINLOCK_BACKOFF(count);
704 }
705 membar_enter();
706
707 /*
708 * If DTrace has set the active vtime enum to anything
709 * other than INACTIVE (0), then it should have set the
710 * function to call.
711 */
712 if (__predict_false(dtrace_vtime_active)) {
713 (*dtrace_vtime_switch_func)(newl);
714 }
715
716 /*
717 * We must ensure not to come here from inside a read section.
718 */
719 KASSERT(pserialize_not_in_read_section());
720
721 /* Switch to the new LWP.. */
722 #ifdef MULTIPROCESSOR
723 KASSERT(curlwp == ci->ci_curlwp);
724 #endif
725 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
726 prevlwp = cpu_switchto(l, newl, returning);
727 ci = curcpu();
728 #ifdef MULTIPROCESSOR
729 KASSERT(curlwp == ci->ci_curlwp);
730 #endif
731 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
732 l, curlwp, prevlwp);
733
734 /*
735 * Switched away - we have new curlwp.
736 * Restore VM context and IPL.
737 */
738 pmap_activate(l);
739 pcu_switchpoint(l);
740
741 if (prevlwp != NULL) {
742 /* Normalize the count of the spin-mutexes */
743 ci->ci_mtx_count++;
744 /* Unmark the state of context switch */
745 membar_exit();
746 prevlwp->l_ctxswtch = 0;
747 }
748
749 /* Update status for lwpctl, if present. */
750 if (l->l_lwpctl != NULL) {
751 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
752 l->l_lwpctl->lc_pctr++;
753 }
754
755 /*
756 * Note that, unless the caller disabled preemption, we can
757 * be preempted at any time after this splx().
758 */
759 KASSERT(l->l_cpu == ci);
760 splx(oldspl);
761 } else {
762 /* Nothing to do - just unlock and return. */
763 mutex_spin_exit(spc->spc_mutex);
764 l->l_pflag &= ~LP_PREEMPTING;
765 /* We're down to only one lock, so do debug checks. */
766 LOCKDEBUG_BARRIER(l->l_mutex, 1);
767 lwp_unlock(l);
768 }
769
770 KASSERT(l == curlwp);
771 KASSERT(l->l_stat == LSONPROC);
772
773 SYSCALL_TIME_WAKEUP(l);
774 LOCKDEBUG_BARRIER(NULL, 1);
775 }
776
777 /*
778 * The machine independent parts of context switch to oblivion.
779 * Does not return. Call with the LWP unlocked.
780 */
781 void
782 lwp_exit_switchaway(lwp_t *l)
783 {
784 struct cpu_info *ci;
785 struct lwp *newl;
786 struct bintime bt;
787
788 ci = l->l_cpu;
789
790 KASSERT(kpreempt_disabled());
791 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
792 KASSERT(ci == curcpu());
793 LOCKDEBUG_BARRIER(NULL, 0);
794
795 kstack_check_magic(l);
796
797 /* Count time spent in current system call */
798 SYSCALL_TIME_SLEEP(l);
799 binuptime(&bt);
800 updatertime(l, &bt);
801
802 /* Must stay at IPL_SCHED even after releasing run queue lock. */
803 (void)splsched();
804
805 /*
806 * Let sched_nextlwp() select the LWP to run the CPU next.
807 * If no LWP is runnable, select the idle LWP.
808 *
809 * Note that spc_lwplock might not necessary be held, and
810 * new thread would be unlocked after setting the LWP-lock.
811 */
812 spc_lock(ci);
813 #ifndef __HAVE_FAST_SOFTINTS
814 if (ci->ci_data.cpu_softints != 0) {
815 /* There are pending soft interrupts, so pick one. */
816 newl = softint_picklwp();
817 newl->l_stat = LSONPROC;
818 newl->l_pflag |= LP_RUNNING;
819 } else
820 #endif /* !__HAVE_FAST_SOFTINTS */
821 {
822 newl = nextlwp(ci, &ci->ci_schedstate);
823 }
824
825 /* Update the new LWP's start time. */
826 newl->l_stime = bt;
827 l->l_pflag &= ~LP_RUNNING;
828
829 /*
830 * ci_curlwp changes when a fast soft interrupt occurs.
831 * We use ci_onproc to keep track of which kernel or
832 * user thread is running 'underneath' the software
833 * interrupt. This is important for time accounting,
834 * itimers and forcing user threads to preempt (aston).
835 */
836 ci->ci_onproc = newl;
837
838 /* Unlock the run queue. */
839 spc_unlock(ci);
840
841 /* Count the context switch on this CPU. */
842 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
843
844 /* Update status for lwpctl, if present. */
845 if (l->l_lwpctl != NULL)
846 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
847
848 /*
849 * We may need to spin-wait if 'newl' is still
850 * context switching on another CPU.
851 */
852 if (__predict_false(newl->l_ctxswtch != 0)) {
853 u_int count;
854 count = SPINLOCK_BACKOFF_MIN;
855 while (newl->l_ctxswtch)
856 SPINLOCK_BACKOFF(count);
857 }
858 membar_enter();
859
860 /*
861 * If DTrace has set the active vtime enum to anything
862 * other than INACTIVE (0), then it should have set the
863 * function to call.
864 */
865 if (__predict_false(dtrace_vtime_active)) {
866 (*dtrace_vtime_switch_func)(newl);
867 }
868
869 /* Switch to the new LWP.. */
870 (void)cpu_switchto(NULL, newl, false);
871
872 for (;;) continue; /* XXX: convince gcc about "noreturn" */
873 /* NOTREACHED */
874 }
875
876 /*
877 * setrunnable: change LWP state to be runnable, placing it on the run queue.
878 *
879 * Call with the process and LWP locked. Will return with the LWP unlocked.
880 */
881 void
882 setrunnable(struct lwp *l)
883 {
884 struct proc *p = l->l_proc;
885 struct cpu_info *ci;
886 kmutex_t *oldlock;
887
888 KASSERT((l->l_flag & LW_IDLE) == 0);
889 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
890 KASSERT(mutex_owned(p->p_lock));
891 KASSERT(lwp_locked(l, NULL));
892 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
893
894 switch (l->l_stat) {
895 case LSSTOP:
896 /*
897 * If we're being traced (possibly because someone attached us
898 * while we were stopped), check for a signal from the debugger.
899 */
900 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
901 signotify(l);
902 p->p_nrlwps++;
903 break;
904 case LSSUSPENDED:
905 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
906 l->l_flag &= ~LW_WSUSPEND;
907 p->p_nrlwps++;
908 cv_broadcast(&p->p_lwpcv);
909 break;
910 case LSSLEEP:
911 KASSERT(l->l_wchan != NULL);
912 break;
913 case LSIDL:
914 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
915 break;
916 default:
917 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
918 }
919
920 /*
921 * If the LWP was sleeping, start it again.
922 */
923 if (l->l_wchan != NULL) {
924 l->l_stat = LSSLEEP;
925 /* lwp_unsleep() will release the lock. */
926 lwp_unsleep(l, true);
927 return;
928 }
929
930 /*
931 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
932 * about to call mi_switch(), in which case it will yield.
933 */
934 if ((l->l_pflag & LP_RUNNING) != 0) {
935 l->l_stat = LSONPROC;
936 l->l_slptime = 0;
937 lwp_unlock(l);
938 return;
939 }
940
941 /*
942 * Look for a CPU to run.
943 * Set the LWP runnable.
944 */
945 ci = sched_takecpu(l);
946 l->l_cpu = ci;
947 spc_lock(ci);
948 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
949 sched_setrunnable(l);
950 l->l_stat = LSRUN;
951 l->l_slptime = 0;
952 sched_enqueue(l);
953 sched_resched_lwp(l, true);
954 /* SPC & LWP now unlocked. */
955 mutex_spin_exit(oldlock);
956 }
957
958 /*
959 * suspendsched:
960 *
961 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
962 */
963 void
964 suspendsched(void)
965 {
966 CPU_INFO_ITERATOR cii;
967 struct cpu_info *ci;
968 struct lwp *l;
969 struct proc *p;
970
971 /*
972 * We do this by process in order not to violate the locking rules.
973 */
974 mutex_enter(proc_lock);
975 PROCLIST_FOREACH(p, &allproc) {
976 mutex_enter(p->p_lock);
977 if ((p->p_flag & PK_SYSTEM) != 0) {
978 mutex_exit(p->p_lock);
979 continue;
980 }
981
982 if (p->p_stat != SSTOP) {
983 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
984 p->p_pptr->p_nstopchild++;
985 p->p_waited = 0;
986 }
987 p->p_stat = SSTOP;
988 }
989
990 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
991 if (l == curlwp)
992 continue;
993
994 lwp_lock(l);
995
996 /*
997 * Set L_WREBOOT so that the LWP will suspend itself
998 * when it tries to return to user mode. We want to
999 * try and get to get as many LWPs as possible to
1000 * the user / kernel boundary, so that they will
1001 * release any locks that they hold.
1002 */
1003 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1004
1005 if (l->l_stat == LSSLEEP &&
1006 (l->l_flag & LW_SINTR) != 0) {
1007 /* setrunnable() will release the lock. */
1008 setrunnable(l);
1009 continue;
1010 }
1011
1012 lwp_unlock(l);
1013 }
1014
1015 mutex_exit(p->p_lock);
1016 }
1017 mutex_exit(proc_lock);
1018
1019 /*
1020 * Kick all CPUs to make them preempt any LWPs running in user mode.
1021 * They'll trap into the kernel and suspend themselves in userret().
1022 *
1023 * Unusually, we don't hold any other scheduler object locked, which
1024 * would keep preemption off for sched_resched_cpu(), so disable it
1025 * explicitly.
1026 */
1027 kpreempt_disable();
1028 for (CPU_INFO_FOREACH(cii, ci)) {
1029 spc_lock(ci);
1030 sched_resched_cpu(ci, PRI_KERNEL, true);
1031 /* spc now unlocked */
1032 }
1033 kpreempt_enable();
1034 }
1035
1036 /*
1037 * sched_unsleep:
1038 *
1039 * The is called when the LWP has not been awoken normally but instead
1040 * interrupted: for example, if the sleep timed out. Because of this,
1041 * it's not a valid action for running or idle LWPs.
1042 */
1043 static void
1044 sched_unsleep(struct lwp *l, bool cleanup)
1045 {
1046
1047 lwp_unlock(l);
1048 panic("sched_unsleep");
1049 }
1050
1051 static void
1052 sched_changepri(struct lwp *l, pri_t pri)
1053 {
1054 struct schedstate_percpu *spc;
1055 struct cpu_info *ci;
1056
1057 KASSERT(lwp_locked(l, NULL));
1058
1059 ci = l->l_cpu;
1060 spc = &ci->ci_schedstate;
1061
1062 if (l->l_stat == LSRUN) {
1063 KASSERT(lwp_locked(l, spc->spc_mutex));
1064 sched_dequeue(l);
1065 l->l_priority = pri;
1066 sched_enqueue(l);
1067 sched_resched_lwp(l, false);
1068 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1069 /* On priority drop, only evict realtime LWPs. */
1070 KASSERT(lwp_locked(l, spc->spc_lwplock));
1071 l->l_priority = pri;
1072 spc_lock(ci);
1073 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1074 /* spc now unlocked */
1075 } else {
1076 l->l_priority = pri;
1077 }
1078 }
1079
1080 static void
1081 sched_lendpri(struct lwp *l, pri_t pri)
1082 {
1083 struct schedstate_percpu *spc;
1084 struct cpu_info *ci;
1085
1086 KASSERT(lwp_locked(l, NULL));
1087
1088 ci = l->l_cpu;
1089 spc = &ci->ci_schedstate;
1090
1091 if (l->l_stat == LSRUN) {
1092 KASSERT(lwp_locked(l, spc->spc_mutex));
1093 sched_dequeue(l);
1094 l->l_inheritedprio = pri;
1095 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1096 sched_enqueue(l);
1097 sched_resched_lwp(l, false);
1098 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1099 /* On priority drop, only evict realtime LWPs. */
1100 KASSERT(lwp_locked(l, spc->spc_lwplock));
1101 l->l_inheritedprio = pri;
1102 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1103 spc_lock(ci);
1104 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1105 /* spc now unlocked */
1106 } else {
1107 l->l_inheritedprio = pri;
1108 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1109 }
1110 }
1111
1112 struct lwp *
1113 syncobj_noowner(wchan_t wchan)
1114 {
1115
1116 return NULL;
1117 }
1118
1119 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1120 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1121
1122 /*
1123 * Constants for averages over 1, 5 and 15 minutes when sampling at
1124 * 5 second intervals.
1125 */
1126 static const fixpt_t cexp[ ] = {
1127 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1128 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1129 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1130 };
1131
1132 /*
1133 * sched_pstats:
1134 *
1135 * => Update process statistics and check CPU resource allocation.
1136 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1137 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1138 */
1139 void
1140 sched_pstats(void)
1141 {
1142 extern struct loadavg averunnable;
1143 struct loadavg *avg = &averunnable;
1144 const int clkhz = (stathz != 0 ? stathz : hz);
1145 static bool backwards = false;
1146 static u_int lavg_count = 0;
1147 struct proc *p;
1148 int nrun;
1149
1150 sched_pstats_ticks++;
1151 if (++lavg_count >= 5) {
1152 lavg_count = 0;
1153 nrun = 0;
1154 }
1155 mutex_enter(proc_lock);
1156 PROCLIST_FOREACH(p, &allproc) {
1157 struct lwp *l;
1158 struct rlimit *rlim;
1159 time_t runtm;
1160 int sig;
1161
1162 /* Increment sleep time (if sleeping), ignore overflow. */
1163 mutex_enter(p->p_lock);
1164 runtm = p->p_rtime.sec;
1165 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1166 fixpt_t lpctcpu;
1167 u_int lcpticks;
1168
1169 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1170 continue;
1171 lwp_lock(l);
1172 runtm += l->l_rtime.sec;
1173 l->l_swtime++;
1174 sched_lwp_stats(l);
1175
1176 /* For load average calculation. */
1177 if (__predict_false(lavg_count == 0) &&
1178 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1179 switch (l->l_stat) {
1180 case LSSLEEP:
1181 if (l->l_slptime > 1) {
1182 break;
1183 }
1184 /* FALLTHROUGH */
1185 case LSRUN:
1186 case LSONPROC:
1187 case LSIDL:
1188 nrun++;
1189 }
1190 }
1191 lwp_unlock(l);
1192
1193 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1194 if (l->l_slptime != 0)
1195 continue;
1196
1197 lpctcpu = l->l_pctcpu;
1198 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1199 lpctcpu += ((FSCALE - ccpu) *
1200 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1201 l->l_pctcpu = lpctcpu;
1202 }
1203 /* Calculating p_pctcpu only for ps(1) */
1204 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1205
1206 if (__predict_false(runtm < 0)) {
1207 if (!backwards) {
1208 backwards = true;
1209 printf("WARNING: negative runtime; "
1210 "monotonic clock has gone backwards\n");
1211 }
1212 mutex_exit(p->p_lock);
1213 continue;
1214 }
1215
1216 /*
1217 * Check if the process exceeds its CPU resource allocation.
1218 * If over the hard limit, kill it with SIGKILL.
1219 * If over the soft limit, send SIGXCPU and raise
1220 * the soft limit a little.
1221 */
1222 rlim = &p->p_rlimit[RLIMIT_CPU];
1223 sig = 0;
1224 if (__predict_false(runtm >= rlim->rlim_cur)) {
1225 if (runtm >= rlim->rlim_max) {
1226 sig = SIGKILL;
1227 log(LOG_NOTICE,
1228 "pid %d, command %s, is killed: %s\n",
1229 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1230 uprintf("pid %d, command %s, is killed: %s\n",
1231 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1232 } else {
1233 sig = SIGXCPU;
1234 if (rlim->rlim_cur < rlim->rlim_max)
1235 rlim->rlim_cur += 5;
1236 }
1237 }
1238 mutex_exit(p->p_lock);
1239 if (__predict_false(sig)) {
1240 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1241 psignal(p, sig);
1242 }
1243 }
1244
1245 /* Load average calculation. */
1246 if (__predict_false(lavg_count == 0)) {
1247 int i;
1248 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1249 for (i = 0; i < __arraycount(cexp); i++) {
1250 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1251 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1252 }
1253 }
1254
1255 /* Lightning bolt. */
1256 cv_broadcast(&lbolt);
1257
1258 mutex_exit(proc_lock);
1259 }
1260