kern_synch.c revision 1.334.2.2 1 /* $NetBSD: kern_synch.c,v 1.334.2.2 2020/01/19 21:08:29 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.334.2.2 2020/01/19 21:08:29 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/syslog.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 #include <sys/dtrace_bsd.h>
102 int dtrace_vtime_active=0;
103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
104
105 static void sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 /* "Lightning bolt": once a second sleep address. */
126 kcondvar_t lbolt __cacheline_aligned;
127
128 u_int sched_pstats_ticks __cacheline_aligned;
129
130 /* Preemption event counters. */
131 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
132 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
133 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
134
135 void
136 synch_init(void)
137 {
138
139 cv_init(&lbolt, "lbolt");
140
141 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
142 "kpreempt", "defer: critical section");
143 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
144 "kpreempt", "defer: kernel_lock");
145 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
146 "kpreempt", "immediate");
147 }
148
149 /*
150 * OBSOLETE INTERFACE
151 *
152 * General sleep call. Suspends the current LWP until a wakeup is
153 * performed on the specified identifier. The LWP will then be made
154 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
155 * means no timeout). If pri includes PCATCH flag, signals are checked
156 * before and after sleeping, else signals are not checked. Returns 0 if
157 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
158 * signal needs to be delivered, ERESTART is returned if the current system
159 * call should be restarted if possible, and EINTR is returned if the system
160 * call should be interrupted by the signal (return EINTR).
161 */
162 int
163 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
164 {
165 struct lwp *l = curlwp;
166 sleepq_t *sq;
167 kmutex_t *mp;
168
169 KASSERT((l->l_pflag & LP_INTR) == 0);
170 KASSERT(ident != &lbolt);
171
172 if (sleepq_dontsleep(l)) {
173 (void)sleepq_abort(NULL, 0);
174 return 0;
175 }
176
177 l->l_kpriority = true;
178 sq = sleeptab_lookup(&sleeptab, ident, &mp);
179 sleepq_enter(sq, l, mp);
180 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 return sleepq_block(timo, priority & PCATCH);
182 }
183
184 int
185 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
186 kmutex_t *mtx)
187 {
188 struct lwp *l = curlwp;
189 sleepq_t *sq;
190 kmutex_t *mp;
191 int error;
192
193 KASSERT((l->l_pflag & LP_INTR) == 0);
194 KASSERT(ident != &lbolt);
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 l->l_kpriority = true;
202 sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 sleepq_enter(sq, l, mp);
204 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 mutex_exit(mtx);
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if ((priority & PNORELOCK) == 0)
209 mutex_enter(mtx);
210
211 return error;
212 }
213
214 /*
215 * General sleep call for situations where a wake-up is not expected.
216 */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 kmutex_t *mp;
222 sleepq_t *sq;
223 int error;
224
225 KASSERT(!(timo == 0 && intr == false));
226
227 if (sleepq_dontsleep(l))
228 return sleepq_abort(NULL, 0);
229
230 if (mtx != NULL)
231 mutex_exit(mtx);
232 l->l_kpriority = true;
233 sq = sleeptab_lookup(&sleeptab, l, &mp);
234 sleepq_enter(sq, l, mp);
235 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
236 error = sleepq_block(timo, intr);
237 if (mtx != NULL)
238 mutex_enter(mtx);
239
240 return error;
241 }
242
243 /*
244 * OBSOLETE INTERFACE
245 *
246 * Make all LWPs sleeping on the specified identifier runnable.
247 */
248 void
249 wakeup(wchan_t ident)
250 {
251 sleepq_t *sq;
252 kmutex_t *mp;
253
254 if (__predict_false(cold))
255 return;
256
257 sq = sleeptab_lookup(&sleeptab, ident, &mp);
258 sleepq_wake(sq, ident, (u_int)-1, mp);
259 }
260
261 /*
262 * General yield call. Puts the current LWP back on its run queue and
263 * performs a voluntary context switch. Should only be called when the
264 * current LWP explicitly requests it (eg sched_yield(2)).
265 */
266 void
267 yield(void)
268 {
269 struct lwp *l = curlwp;
270
271 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
272 lwp_lock(l);
273
274 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
275 KASSERT(l->l_stat == LSONPROC);
276
277 /* Voluntary - ditch kpriority boost. */
278 l->l_kpriority = false;
279 spc_lock(l->l_cpu);
280 mi_switch(l);
281 KERNEL_LOCK(l->l_biglocks, l);
282 }
283
284 /*
285 * General preemption call. Puts the current LWP back on its run queue
286 * and performs an involuntary context switch.
287 */
288 void
289 preempt(void)
290 {
291 struct lwp *l = curlwp;
292
293 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
294 lwp_lock(l);
295
296 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
297 KASSERT(l->l_stat == LSONPROC);
298
299 /* Involuntary - keep kpriority boost. */
300 l->l_pflag |= LP_PREEMPTING;
301 spc_lock(l->l_cpu);
302 mi_switch(l);
303 KERNEL_LOCK(l->l_biglocks, l);
304 }
305
306 /*
307 * Handle a request made by another agent to preempt the current LWP
308 * in-kernel. Usually called when l_dopreempt may be non-zero.
309 *
310 * Character addresses for lockstat only.
311 */
312 static char kpreempt_is_disabled;
313 static char kernel_lock_held;
314 static char is_softint_lwp;
315 static char spl_is_raised;
316
317 bool
318 kpreempt(uintptr_t where)
319 {
320 uintptr_t failed;
321 lwp_t *l;
322 int s, dop, lsflag;
323
324 l = curlwp;
325 failed = 0;
326 while ((dop = l->l_dopreempt) != 0) {
327 if (l->l_stat != LSONPROC) {
328 /*
329 * About to block (or die), let it happen.
330 * Doesn't really count as "preemption has
331 * been blocked", since we're going to
332 * context switch.
333 */
334 atomic_swap_uint(&l->l_dopreempt, 0);
335 return true;
336 }
337 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
338 /* Can't preempt idle loop, don't count as failure. */
339 atomic_swap_uint(&l->l_dopreempt, 0);
340 return true;
341 }
342 if (__predict_false(l->l_nopreempt != 0)) {
343 /* LWP holds preemption disabled, explicitly. */
344 if ((dop & DOPREEMPT_COUNTED) == 0) {
345 kpreempt_ev_crit.ev_count++;
346 }
347 failed = (uintptr_t)&kpreempt_is_disabled;
348 break;
349 }
350 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
351 /* Can't preempt soft interrupts yet. */
352 atomic_swap_uint(&l->l_dopreempt, 0);
353 failed = (uintptr_t)&is_softint_lwp;
354 break;
355 }
356 s = splsched();
357 if (__predict_false(l->l_blcnt != 0 ||
358 curcpu()->ci_biglock_wanted != NULL)) {
359 /* Hold or want kernel_lock, code is not MT safe. */
360 splx(s);
361 if ((dop & DOPREEMPT_COUNTED) == 0) {
362 kpreempt_ev_klock.ev_count++;
363 }
364 failed = (uintptr_t)&kernel_lock_held;
365 break;
366 }
367 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
368 /*
369 * It may be that the IPL is too high.
370 * kpreempt_enter() can schedule an
371 * interrupt to retry later.
372 */
373 splx(s);
374 failed = (uintptr_t)&spl_is_raised;
375 break;
376 }
377 /* Do it! */
378 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
379 kpreempt_ev_immed.ev_count++;
380 }
381 lwp_lock(l);
382 /* Involuntary - keep kpriority boost. */
383 l->l_pflag |= LP_PREEMPTING;
384 spc_lock(l->l_cpu);
385 mi_switch(l);
386 l->l_nopreempt++;
387 splx(s);
388
389 /* Take care of any MD cleanup. */
390 cpu_kpreempt_exit(where);
391 l->l_nopreempt--;
392 }
393
394 if (__predict_true(!failed)) {
395 return false;
396 }
397
398 /* Record preemption failure for reporting via lockstat. */
399 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
400 lsflag = 0;
401 LOCKSTAT_ENTER(lsflag);
402 if (__predict_false(lsflag)) {
403 if (where == 0) {
404 where = (uintptr_t)__builtin_return_address(0);
405 }
406 /* Preemption is on, might recurse, so make it atomic. */
407 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
408 (void *)where) == NULL) {
409 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
410 l->l_pfaillock = failed;
411 }
412 }
413 LOCKSTAT_EXIT(lsflag);
414 return true;
415 }
416
417 /*
418 * Return true if preemption is explicitly disabled.
419 */
420 bool
421 kpreempt_disabled(void)
422 {
423 const lwp_t *l = curlwp;
424
425 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
426 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
427 cpu_kpreempt_disabled();
428 }
429
430 /*
431 * Disable kernel preemption.
432 */
433 void
434 kpreempt_disable(void)
435 {
436
437 KPREEMPT_DISABLE(curlwp);
438 }
439
440 /*
441 * Reenable kernel preemption.
442 */
443 void
444 kpreempt_enable(void)
445 {
446
447 KPREEMPT_ENABLE(curlwp);
448 }
449
450 /*
451 * Compute the amount of time during which the current lwp was running.
452 *
453 * - update l_rtime unless it's an idle lwp.
454 */
455
456 void
457 updatertime(lwp_t *l, const struct bintime *now)
458 {
459
460 if (__predict_false(l->l_flag & LW_IDLE))
461 return;
462
463 /* rtime += now - stime */
464 bintime_add(&l->l_rtime, now);
465 bintime_sub(&l->l_rtime, &l->l_stime);
466 }
467
468 /*
469 * Select next LWP from the current CPU to run..
470 */
471 static inline lwp_t *
472 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
473 {
474 lwp_t *newl;
475
476 /*
477 * Let sched_nextlwp() select the LWP to run the CPU next.
478 * If no LWP is runnable, select the idle LWP.
479 *
480 * Note that spc_lwplock might not necessary be held, and
481 * new thread would be unlocked after setting the LWP-lock.
482 */
483 newl = sched_nextlwp();
484 if (newl != NULL) {
485 sched_dequeue(newl);
486 KASSERT(lwp_locked(newl, spc->spc_mutex));
487 KASSERT(newl->l_cpu == ci);
488 newl->l_stat = LSONPROC;
489 newl->l_flag |= LW_RUNNING;
490 lwp_setlock(newl, spc->spc_lwplock);
491 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
492 } else {
493 newl = ci->ci_data.cpu_idlelwp;
494 newl->l_stat = LSONPROC;
495 newl->l_flag |= LW_RUNNING;
496 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
497 SPCF_IDLE;
498 }
499
500 /*
501 * Only clear want_resched if there are no pending (slow) software
502 * interrupts. We can do this without an atomic, because no new
503 * LWPs can appear in the queue due to our hold on spc_mutex, and
504 * the update to ci_want_resched will become globally visible before
505 * the release of spc_mutex becomes globally visible.
506 */
507 ci->ci_want_resched = ci->ci_data.cpu_softints;
508 spc->spc_curpriority = lwp_eprio(newl);
509
510 return newl;
511 }
512
513 /*
514 * The machine independent parts of context switch.
515 *
516 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
517 * changes its own l_cpu (that would screw up curcpu on many ports and could
518 * cause all kinds of other evil stuff). l_cpu is always changed by some
519 * other actor, when it's known the LWP is not running (the LW_RUNNING flag
520 * is checked under lock).
521 */
522 void
523 mi_switch(lwp_t *l)
524 {
525 struct cpu_info *ci;
526 struct schedstate_percpu *spc;
527 struct lwp *newl;
528 int oldspl;
529 struct bintime bt;
530 bool returning;
531
532 KASSERT(lwp_locked(l, NULL));
533 KASSERT(kpreempt_disabled());
534 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
535
536 kstack_check_magic(l);
537
538 binuptime(&bt);
539
540 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
541 KASSERT((l->l_flag & LW_RUNNING) != 0);
542 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
543 ci = curcpu();
544 spc = &ci->ci_schedstate;
545 returning = false;
546 newl = NULL;
547
548 /*
549 * If we have been asked to switch to a specific LWP, then there
550 * is no need to inspect the run queues. If a soft interrupt is
551 * blocking, then return to the interrupted thread without adjusting
552 * VM context or its start time: neither have been changed in order
553 * to take the interrupt.
554 */
555 if (l->l_switchto != NULL) {
556 if ((l->l_pflag & LP_INTR) != 0) {
557 returning = true;
558 softint_block(l);
559 if ((l->l_pflag & LP_TIMEINTR) != 0)
560 updatertime(l, &bt);
561 }
562 newl = l->l_switchto;
563 l->l_switchto = NULL;
564 }
565 #ifndef __HAVE_FAST_SOFTINTS
566 else if (ci->ci_data.cpu_softints != 0) {
567 /* There are pending soft interrupts, so pick one. */
568 newl = softint_picklwp();
569 newl->l_stat = LSONPROC;
570 newl->l_flag |= LW_RUNNING;
571 }
572 #endif /* !__HAVE_FAST_SOFTINTS */
573
574 /*
575 * If on the CPU and we have gotten this far, then we must yield.
576 */
577 if (l->l_stat == LSONPROC && l != newl) {
578 KASSERT(lwp_locked(l, spc->spc_lwplock));
579 KASSERT((l->l_flag & LW_IDLE) == 0);
580 l->l_stat = LSRUN;
581 lwp_setlock(l, spc->spc_mutex);
582 sched_enqueue(l);
583 sched_preempted(l);
584
585 /*
586 * Handle migration. Note that "migrating LWP" may
587 * be reset here, if interrupt/preemption happens
588 * early in idle LWP.
589 */
590 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
591 KASSERT((l->l_pflag & LP_INTR) == 0);
592 spc->spc_migrating = l;
593 }
594 }
595
596 /* Pick new LWP to run. */
597 if (newl == NULL) {
598 newl = nextlwp(ci, spc);
599 }
600
601 /* Items that must be updated with the CPU locked. */
602 if (!returning) {
603 /* Count time spent in current system call */
604 SYSCALL_TIME_SLEEP(l);
605
606 updatertime(l, &bt);
607
608 /* Update the new LWP's start time. */
609 newl->l_stime = bt;
610
611 /*
612 * ci_curlwp changes when a fast soft interrupt occurs.
613 * We use ci_onproc to keep track of which kernel or
614 * user thread is running 'underneath' the software
615 * interrupt. This is important for time accounting,
616 * itimers and forcing user threads to preempt (aston).
617 */
618 ci->ci_onproc = newl;
619 }
620
621 /*
622 * Preemption related tasks. Must be done holding spc_mutex. Clear
623 * l_dopreempt without an atomic - it's only ever set non-zero by
624 * sched_resched_cpu() which also holds spc_mutex, and only ever
625 * cleared by the LWP itself (us) with atomics when not under lock.
626 */
627 l->l_dopreempt = 0;
628 if (__predict_false(l->l_pfailaddr != 0)) {
629 LOCKSTAT_FLAG(lsflag);
630 LOCKSTAT_ENTER(lsflag);
631 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
632 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
633 1, l->l_pfailtime, l->l_pfailaddr);
634 LOCKSTAT_EXIT(lsflag);
635 l->l_pfailtime = 0;
636 l->l_pfaillock = 0;
637 l->l_pfailaddr = 0;
638 }
639
640 if (l != newl) {
641 struct lwp *prevlwp;
642
643 /* Release all locks, but leave the current LWP locked */
644 if (l->l_mutex == spc->spc_mutex) {
645 /*
646 * Drop spc_lwplock, if the current LWP has been moved
647 * to the run queue (it is now locked by spc_mutex).
648 */
649 mutex_spin_exit(spc->spc_lwplock);
650 } else {
651 /*
652 * Otherwise, drop the spc_mutex, we are done with the
653 * run queues.
654 */
655 mutex_spin_exit(spc->spc_mutex);
656 }
657
658 /* We're down to only one lock, so do debug checks. */
659 LOCKDEBUG_BARRIER(l->l_mutex, 1);
660
661 /* Disable spinning on any R/W locks that we hold. */
662 rw_switch();
663
664 /* Count the context switch. */
665 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
666 l->l_ncsw++;
667 if ((l->l_pflag & LP_PREEMPTING) != 0) {
668 l->l_nivcsw++;
669 l->l_pflag &= ~LP_PREEMPTING;
670 }
671
672 /*
673 * Increase the count of spin-mutexes before the release
674 * of the last lock - we must remain at IPL_SCHED after
675 * releasing the lock.
676 */
677 KASSERTMSG(ci->ci_mtx_count == -1,
678 "%s: cpu%u: ci_mtx_count (%d) != -1 "
679 "(block with spin-mutex held)",
680 __func__, cpu_index(ci), ci->ci_mtx_count);
681 oldspl = MUTEX_SPIN_OLDSPL(ci);
682 ci->ci_mtx_count = -2;
683
684 /* Update status for lwpctl, if present. */
685 if (l->l_lwpctl != NULL) {
686 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
687 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
688 }
689
690 /*
691 * If curlwp is a soft interrupt LWP, there's nobody on the
692 * other side to unlock - we're returning into an assembly
693 * trampoline. Unlock now. This is safe because this is a
694 * kernel LWP and is bound to current CPU: the worst anyone
695 * else will do to it, is to put it back onto this CPU's run
696 * queue (and the CPU is busy here right now!).
697 */
698 if (returning) {
699 /* Keep IPL_SCHED after this; MD code will fix up. */
700 l->l_flag &= ~LW_RUNNING;
701 lwp_unlock(l);
702 } else {
703 /* A normal LWP: save old VM context. */
704 pmap_deactivate(l);
705 }
706
707 /*
708 * If DTrace has set the active vtime enum to anything
709 * other than INACTIVE (0), then it should have set the
710 * function to call.
711 */
712 if (__predict_false(dtrace_vtime_active)) {
713 (*dtrace_vtime_switch_func)(newl);
714 }
715
716 /*
717 * We must ensure not to come here from inside a read section.
718 */
719 KASSERT(pserialize_not_in_read_section());
720
721 /* Switch to the new LWP.. */
722 #ifdef MULTIPROCESSOR
723 KASSERT(curlwp == ci->ci_curlwp);
724 #endif
725 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
726 prevlwp = cpu_switchto(l, newl, returning);
727 ci = curcpu();
728 #ifdef MULTIPROCESSOR
729 KASSERT(curlwp == ci->ci_curlwp);
730 #endif
731 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
732 l, curlwp, prevlwp);
733 KASSERT(prevlwp != NULL);
734 KASSERT(l->l_cpu == ci);
735 KASSERT(ci->ci_mtx_count == -2);
736
737 /*
738 * Immediately mark the previous LWP as no longer running,
739 * and unlock it. We'll still be at IPL_SCHED afterwards.
740 */
741 KASSERT((prevlwp->l_flag & LW_RUNNING) != 0);
742 prevlwp->l_flag &= ~LW_RUNNING;
743 lwp_unlock(prevlwp);
744
745 /*
746 * Switched away - we have new curlwp.
747 * Restore VM context and IPL.
748 */
749 pmap_activate(l);
750 pcu_switchpoint(l);
751
752 /* Update status for lwpctl, if present. */
753 if (l->l_lwpctl != NULL) {
754 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
755 l->l_lwpctl->lc_pctr++;
756 }
757
758 /*
759 * Normalize the spin mutex count and restore the previous
760 * SPL. Note that, unless the caller disabled preemption,
761 * we can be preempted at any time after this splx().
762 */
763 KASSERT(l->l_cpu == ci);
764 KASSERT(ci->ci_mtx_count == -1);
765 ci->ci_mtx_count = 0;
766 splx(oldspl);
767 } else {
768 /* Nothing to do - just unlock and return. */
769 mutex_spin_exit(spc->spc_mutex);
770 l->l_pflag &= ~LP_PREEMPTING;
771 lwp_unlock(l);
772 }
773
774 KASSERT(l == curlwp);
775 KASSERT(l->l_stat == LSONPROC);
776
777 SYSCALL_TIME_WAKEUP(l);
778 LOCKDEBUG_BARRIER(NULL, 1);
779 }
780
781 /*
782 * setrunnable: change LWP state to be runnable, placing it on the run queue.
783 *
784 * Call with the process and LWP locked. Will return with the LWP unlocked.
785 */
786 void
787 setrunnable(struct lwp *l)
788 {
789 struct proc *p = l->l_proc;
790 struct cpu_info *ci;
791 kmutex_t *oldlock;
792
793 KASSERT((l->l_flag & LW_IDLE) == 0);
794 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
795 KASSERT(mutex_owned(p->p_lock));
796 KASSERT(lwp_locked(l, NULL));
797 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
798
799 switch (l->l_stat) {
800 case LSSTOP:
801 /*
802 * If we're being traced (possibly because someone attached us
803 * while we were stopped), check for a signal from the debugger.
804 */
805 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
806 signotify(l);
807 p->p_nrlwps++;
808 break;
809 case LSSUSPENDED:
810 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
811 l->l_flag &= ~LW_WSUSPEND;
812 p->p_nrlwps++;
813 cv_broadcast(&p->p_lwpcv);
814 break;
815 case LSSLEEP:
816 KASSERT(l->l_wchan != NULL);
817 break;
818 case LSIDL:
819 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
820 break;
821 default:
822 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
823 }
824
825 /*
826 * If the LWP was sleeping, start it again.
827 */
828 if (l->l_wchan != NULL) {
829 l->l_stat = LSSLEEP;
830 /* lwp_unsleep() will release the lock. */
831 lwp_unsleep(l, true);
832 return;
833 }
834
835 /*
836 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
837 * about to call mi_switch(), in which case it will yield.
838 */
839 if ((l->l_flag & LW_RUNNING) != 0) {
840 l->l_stat = LSONPROC;
841 l->l_slptime = 0;
842 lwp_unlock(l);
843 return;
844 }
845
846 /*
847 * Look for a CPU to run.
848 * Set the LWP runnable.
849 */
850 ci = sched_takecpu(l);
851 l->l_cpu = ci;
852 spc_lock(ci);
853 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
854 sched_setrunnable(l);
855 l->l_stat = LSRUN;
856 l->l_slptime = 0;
857 sched_enqueue(l);
858 sched_resched_lwp(l, true);
859 /* SPC & LWP now unlocked. */
860 mutex_spin_exit(oldlock);
861 }
862
863 /*
864 * suspendsched:
865 *
866 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
867 */
868 void
869 suspendsched(void)
870 {
871 CPU_INFO_ITERATOR cii;
872 struct cpu_info *ci;
873 struct lwp *l;
874 struct proc *p;
875
876 /*
877 * We do this by process in order not to violate the locking rules.
878 */
879 mutex_enter(proc_lock);
880 PROCLIST_FOREACH(p, &allproc) {
881 mutex_enter(p->p_lock);
882 if ((p->p_flag & PK_SYSTEM) != 0) {
883 mutex_exit(p->p_lock);
884 continue;
885 }
886
887 if (p->p_stat != SSTOP) {
888 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
889 p->p_pptr->p_nstopchild++;
890 p->p_waited = 0;
891 }
892 p->p_stat = SSTOP;
893 }
894
895 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
896 if (l == curlwp)
897 continue;
898
899 lwp_lock(l);
900
901 /*
902 * Set L_WREBOOT so that the LWP will suspend itself
903 * when it tries to return to user mode. We want to
904 * try and get to get as many LWPs as possible to
905 * the user / kernel boundary, so that they will
906 * release any locks that they hold.
907 */
908 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
909
910 if (l->l_stat == LSSLEEP &&
911 (l->l_flag & LW_SINTR) != 0) {
912 /* setrunnable() will release the lock. */
913 setrunnable(l);
914 continue;
915 }
916
917 lwp_unlock(l);
918 }
919
920 mutex_exit(p->p_lock);
921 }
922 mutex_exit(proc_lock);
923
924 /*
925 * Kick all CPUs to make them preempt any LWPs running in user mode.
926 * They'll trap into the kernel and suspend themselves in userret().
927 *
928 * Unusually, we don't hold any other scheduler object locked, which
929 * would keep preemption off for sched_resched_cpu(), so disable it
930 * explicitly.
931 */
932 kpreempt_disable();
933 for (CPU_INFO_FOREACH(cii, ci)) {
934 spc_lock(ci);
935 sched_resched_cpu(ci, PRI_KERNEL, true);
936 /* spc now unlocked */
937 }
938 kpreempt_enable();
939 }
940
941 /*
942 * sched_unsleep:
943 *
944 * The is called when the LWP has not been awoken normally but instead
945 * interrupted: for example, if the sleep timed out. Because of this,
946 * it's not a valid action for running or idle LWPs.
947 */
948 static void
949 sched_unsleep(struct lwp *l, bool cleanup)
950 {
951
952 lwp_unlock(l);
953 panic("sched_unsleep");
954 }
955
956 static void
957 sched_changepri(struct lwp *l, pri_t pri)
958 {
959 struct schedstate_percpu *spc;
960 struct cpu_info *ci;
961
962 KASSERT(lwp_locked(l, NULL));
963
964 ci = l->l_cpu;
965 spc = &ci->ci_schedstate;
966
967 if (l->l_stat == LSRUN) {
968 KASSERT(lwp_locked(l, spc->spc_mutex));
969 sched_dequeue(l);
970 l->l_priority = pri;
971 sched_enqueue(l);
972 sched_resched_lwp(l, false);
973 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
974 /* On priority drop, only evict realtime LWPs. */
975 KASSERT(lwp_locked(l, spc->spc_lwplock));
976 l->l_priority = pri;
977 spc_lock(ci);
978 sched_resched_cpu(ci, spc->spc_maxpriority, true);
979 /* spc now unlocked */
980 } else {
981 l->l_priority = pri;
982 }
983 }
984
985 static void
986 sched_lendpri(struct lwp *l, pri_t pri)
987 {
988 struct schedstate_percpu *spc;
989 struct cpu_info *ci;
990
991 KASSERT(lwp_locked(l, NULL));
992
993 ci = l->l_cpu;
994 spc = &ci->ci_schedstate;
995
996 if (l->l_stat == LSRUN) {
997 KASSERT(lwp_locked(l, spc->spc_mutex));
998 sched_dequeue(l);
999 l->l_inheritedprio = pri;
1000 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1001 sched_enqueue(l);
1002 sched_resched_lwp(l, false);
1003 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1004 /* On priority drop, only evict realtime LWPs. */
1005 KASSERT(lwp_locked(l, spc->spc_lwplock));
1006 l->l_inheritedprio = pri;
1007 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1008 spc_lock(ci);
1009 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1010 /* spc now unlocked */
1011 } else {
1012 l->l_inheritedprio = pri;
1013 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1014 }
1015 }
1016
1017 struct lwp *
1018 syncobj_noowner(wchan_t wchan)
1019 {
1020
1021 return NULL;
1022 }
1023
1024 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1025 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1026
1027 /*
1028 * Constants for averages over 1, 5 and 15 minutes when sampling at
1029 * 5 second intervals.
1030 */
1031 static const fixpt_t cexp[ ] = {
1032 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1033 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1034 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1035 };
1036
1037 /*
1038 * sched_pstats:
1039 *
1040 * => Update process statistics and check CPU resource allocation.
1041 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1042 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1043 */
1044 void
1045 sched_pstats(void)
1046 {
1047 extern struct loadavg averunnable;
1048 struct loadavg *avg = &averunnable;
1049 const int clkhz = (stathz != 0 ? stathz : hz);
1050 static bool backwards = false;
1051 static u_int lavg_count = 0;
1052 struct proc *p;
1053 int nrun;
1054
1055 sched_pstats_ticks++;
1056 if (++lavg_count >= 5) {
1057 lavg_count = 0;
1058 nrun = 0;
1059 }
1060 mutex_enter(proc_lock);
1061 PROCLIST_FOREACH(p, &allproc) {
1062 struct lwp *l;
1063 struct rlimit *rlim;
1064 time_t runtm;
1065 int sig;
1066
1067 /* Increment sleep time (if sleeping), ignore overflow. */
1068 mutex_enter(p->p_lock);
1069 runtm = p->p_rtime.sec;
1070 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1071 fixpt_t lpctcpu;
1072 u_int lcpticks;
1073
1074 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1075 continue;
1076 lwp_lock(l);
1077 runtm += l->l_rtime.sec;
1078 l->l_swtime++;
1079 sched_lwp_stats(l);
1080
1081 /* For load average calculation. */
1082 if (__predict_false(lavg_count == 0) &&
1083 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1084 switch (l->l_stat) {
1085 case LSSLEEP:
1086 if (l->l_slptime > 1) {
1087 break;
1088 }
1089 /* FALLTHROUGH */
1090 case LSRUN:
1091 case LSONPROC:
1092 case LSIDL:
1093 nrun++;
1094 }
1095 }
1096 lwp_unlock(l);
1097
1098 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1099 if (l->l_slptime != 0)
1100 continue;
1101
1102 lpctcpu = l->l_pctcpu;
1103 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1104 lpctcpu += ((FSCALE - ccpu) *
1105 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1106 l->l_pctcpu = lpctcpu;
1107 }
1108 /* Calculating p_pctcpu only for ps(1) */
1109 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1110
1111 if (__predict_false(runtm < 0)) {
1112 if (!backwards) {
1113 backwards = true;
1114 printf("WARNING: negative runtime; "
1115 "monotonic clock has gone backwards\n");
1116 }
1117 mutex_exit(p->p_lock);
1118 continue;
1119 }
1120
1121 /*
1122 * Check if the process exceeds its CPU resource allocation.
1123 * If over the hard limit, kill it with SIGKILL.
1124 * If over the soft limit, send SIGXCPU and raise
1125 * the soft limit a little.
1126 */
1127 rlim = &p->p_rlimit[RLIMIT_CPU];
1128 sig = 0;
1129 if (__predict_false(runtm >= rlim->rlim_cur)) {
1130 if (runtm >= rlim->rlim_max) {
1131 sig = SIGKILL;
1132 log(LOG_NOTICE,
1133 "pid %d, command %s, is killed: %s\n",
1134 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1135 uprintf("pid %d, command %s, is killed: %s\n",
1136 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1137 } else {
1138 sig = SIGXCPU;
1139 if (rlim->rlim_cur < rlim->rlim_max)
1140 rlim->rlim_cur += 5;
1141 }
1142 }
1143 mutex_exit(p->p_lock);
1144 if (__predict_false(sig)) {
1145 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1146 psignal(p, sig);
1147 }
1148 }
1149
1150 /* Load average calculation. */
1151 if (__predict_false(lavg_count == 0)) {
1152 int i;
1153 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1154 for (i = 0; i < __arraycount(cexp); i++) {
1155 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1156 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1157 }
1158 }
1159
1160 /* Lightning bolt. */
1161 cv_broadcast(&lbolt);
1162
1163 mutex_exit(proc_lock);
1164 }
1165