kern_synch.c revision 1.335 1 /* $NetBSD: kern_synch.c,v 1.335 2020/01/08 17:38:42 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.335 2020/01/08 17:38:42 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sched.h>
87 #include <sys/syscall_stats.h>
88 #include <sys/sleepq.h>
89 #include <sys/lockdebug.h>
90 #include <sys/evcnt.h>
91 #include <sys/intr.h>
92 #include <sys/lwpctl.h>
93 #include <sys/atomic.h>
94 #include <sys/syslog.h>
95
96 #include <uvm/uvm_extern.h>
97
98 #include <dev/lockstat.h>
99
100 #include <sys/dtrace_bsd.h>
101 int dtrace_vtime_active=0;
102 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103
104 static void sched_unsleep(struct lwp *, bool);
105 static void sched_changepri(struct lwp *, pri_t);
106 static void sched_lendpri(struct lwp *, pri_t);
107
108 syncobj_t sleep_syncobj = {
109 .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 .sobj_unsleep = sleepq_unsleep,
111 .sobj_changepri = sleepq_changepri,
112 .sobj_lendpri = sleepq_lendpri,
113 .sobj_owner = syncobj_noowner,
114 };
115
116 syncobj_t sched_syncobj = {
117 .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 .sobj_unsleep = sched_unsleep,
119 .sobj_changepri = sched_changepri,
120 .sobj_lendpri = sched_lendpri,
121 .sobj_owner = syncobj_noowner,
122 };
123
124 /* "Lightning bolt": once a second sleep address. */
125 kcondvar_t lbolt __cacheline_aligned;
126
127 u_int sched_pstats_ticks __cacheline_aligned;
128
129 /* Preemption event counters. */
130 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133
134 void
135 synch_init(void)
136 {
137
138 cv_init(&lbolt, "lbolt");
139
140 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 "kpreempt", "defer: critical section");
142 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 "kpreempt", "defer: kernel_lock");
144 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 "kpreempt", "immediate");
146 }
147
148 /*
149 * OBSOLETE INTERFACE
150 *
151 * General sleep call. Suspends the current LWP until a wakeup is
152 * performed on the specified identifier. The LWP will then be made
153 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 * means no timeout). If pri includes PCATCH flag, signals are checked
155 * before and after sleeping, else signals are not checked. Returns 0 if
156 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 * signal needs to be delivered, ERESTART is returned if the current system
158 * call should be restarted if possible, and EINTR is returned if the system
159 * call should be interrupted by the signal (return EINTR).
160 */
161 int
162 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 {
164 struct lwp *l = curlwp;
165 sleepq_t *sq;
166 kmutex_t *mp;
167
168 KASSERT((l->l_pflag & LP_INTR) == 0);
169 KASSERT(ident != &lbolt);
170
171 if (sleepq_dontsleep(l)) {
172 (void)sleepq_abort(NULL, 0);
173 return 0;
174 }
175
176 l->l_kpriority = true;
177 sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 sleepq_enter(sq, l, mp);
179 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 return sleepq_block(timo, priority & PCATCH);
181 }
182
183 int
184 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 kmutex_t *mtx)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 int error;
191
192 KASSERT((l->l_pflag & LP_INTR) == 0);
193 KASSERT(ident != &lbolt);
194
195 if (sleepq_dontsleep(l)) {
196 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 return 0;
198 }
199
200 l->l_kpriority = true;
201 sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 sleepq_enter(sq, l, mp);
203 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 kmutex_t *mp;
221 sleepq_t *sq;
222 int error;
223
224 KASSERT(!(timo == 0 && intr == false));
225
226 if (sleepq_dontsleep(l))
227 return sleepq_abort(NULL, 0);
228
229 if (mtx != NULL)
230 mutex_exit(mtx);
231 l->l_kpriority = true;
232 sq = sleeptab_lookup(&sleeptab, l, &mp);
233 sleepq_enter(sq, l, mp);
234 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 error = sleepq_block(timo, intr);
236 if (mtx != NULL)
237 mutex_enter(mtx);
238
239 return error;
240 }
241
242 /*
243 * OBSOLETE INTERFACE
244 *
245 * Make all LWPs sleeping on the specified identifier runnable.
246 */
247 void
248 wakeup(wchan_t ident)
249 {
250 sleepq_t *sq;
251 kmutex_t *mp;
252
253 if (__predict_false(cold))
254 return;
255
256 sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 sleepq_wake(sq, ident, (u_int)-1, mp);
258 }
259
260 /*
261 * General yield call. Puts the current LWP back on its run queue and
262 * performs a voluntary context switch. Should only be called when the
263 * current LWP explicitly requests it (eg sched_yield(2)).
264 */
265 void
266 yield(void)
267 {
268 struct lwp *l = curlwp;
269
270 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 lwp_lock(l);
272
273 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 KASSERT(l->l_stat == LSONPROC);
275
276 /* Voluntary - ditch kpriority boost. */
277 l->l_kpriority = false;
278 spc_lock(l->l_cpu);
279 mi_switch(l);
280 KERNEL_LOCK(l->l_biglocks, l);
281 }
282
283 /*
284 * General preemption call. Puts the current LWP back on its run queue
285 * and performs an involuntary context switch.
286 */
287 void
288 preempt(void)
289 {
290 struct lwp *l = curlwp;
291
292 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
293 lwp_lock(l);
294
295 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 KASSERT(l->l_stat == LSONPROC);
297
298 /* Involuntary - keep kpriority boost. */
299 l->l_pflag |= LP_PREEMPTING;
300 spc_lock(l->l_cpu);
301 mi_switch(l);
302 KERNEL_LOCK(l->l_biglocks, l);
303 }
304
305 /*
306 * Handle a request made by another agent to preempt the current LWP
307 * in-kernel. Usually called when l_dopreempt may be non-zero.
308 *
309 * Character addresses for lockstat only.
310 */
311 static char kpreempt_is_disabled;
312 static char kernel_lock_held;
313 static char is_softint_lwp;
314 static char spl_is_raised;
315
316 bool
317 kpreempt(uintptr_t where)
318 {
319 uintptr_t failed;
320 lwp_t *l;
321 int s, dop, lsflag;
322
323 l = curlwp;
324 failed = 0;
325 while ((dop = l->l_dopreempt) != 0) {
326 if (l->l_stat != LSONPROC) {
327 /*
328 * About to block (or die), let it happen.
329 * Doesn't really count as "preemption has
330 * been blocked", since we're going to
331 * context switch.
332 */
333 atomic_swap_uint(&l->l_dopreempt, 0);
334 return true;
335 }
336 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
337 /* Can't preempt idle loop, don't count as failure. */
338 atomic_swap_uint(&l->l_dopreempt, 0);
339 return true;
340 }
341 if (__predict_false(l->l_nopreempt != 0)) {
342 /* LWP holds preemption disabled, explicitly. */
343 if ((dop & DOPREEMPT_COUNTED) == 0) {
344 kpreempt_ev_crit.ev_count++;
345 }
346 failed = (uintptr_t)&kpreempt_is_disabled;
347 break;
348 }
349 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
350 /* Can't preempt soft interrupts yet. */
351 atomic_swap_uint(&l->l_dopreempt, 0);
352 failed = (uintptr_t)&is_softint_lwp;
353 break;
354 }
355 s = splsched();
356 if (__predict_false(l->l_blcnt != 0 ||
357 curcpu()->ci_biglock_wanted != NULL)) {
358 /* Hold or want kernel_lock, code is not MT safe. */
359 splx(s);
360 if ((dop & DOPREEMPT_COUNTED) == 0) {
361 kpreempt_ev_klock.ev_count++;
362 }
363 failed = (uintptr_t)&kernel_lock_held;
364 break;
365 }
366 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
367 /*
368 * It may be that the IPL is too high.
369 * kpreempt_enter() can schedule an
370 * interrupt to retry later.
371 */
372 splx(s);
373 failed = (uintptr_t)&spl_is_raised;
374 break;
375 }
376 /* Do it! */
377 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
378 kpreempt_ev_immed.ev_count++;
379 }
380 lwp_lock(l);
381 /* Involuntary - keep kpriority boost. */
382 l->l_pflag |= LP_PREEMPTING;
383 spc_lock(l->l_cpu);
384 mi_switch(l);
385 l->l_nopreempt++;
386 splx(s);
387
388 /* Take care of any MD cleanup. */
389 cpu_kpreempt_exit(where);
390 l->l_nopreempt--;
391 }
392
393 if (__predict_true(!failed)) {
394 return false;
395 }
396
397 /* Record preemption failure for reporting via lockstat. */
398 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
399 lsflag = 0;
400 LOCKSTAT_ENTER(lsflag);
401 if (__predict_false(lsflag)) {
402 if (where == 0) {
403 where = (uintptr_t)__builtin_return_address(0);
404 }
405 /* Preemption is on, might recurse, so make it atomic. */
406 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
407 (void *)where) == NULL) {
408 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
409 l->l_pfaillock = failed;
410 }
411 }
412 LOCKSTAT_EXIT(lsflag);
413 return true;
414 }
415
416 /*
417 * Return true if preemption is explicitly disabled.
418 */
419 bool
420 kpreempt_disabled(void)
421 {
422 const lwp_t *l = curlwp;
423
424 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
425 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
426 cpu_kpreempt_disabled();
427 }
428
429 /*
430 * Disable kernel preemption.
431 */
432 void
433 kpreempt_disable(void)
434 {
435
436 KPREEMPT_DISABLE(curlwp);
437 }
438
439 /*
440 * Reenable kernel preemption.
441 */
442 void
443 kpreempt_enable(void)
444 {
445
446 KPREEMPT_ENABLE(curlwp);
447 }
448
449 /*
450 * Compute the amount of time during which the current lwp was running.
451 *
452 * - update l_rtime unless it's an idle lwp.
453 */
454
455 void
456 updatertime(lwp_t *l, const struct bintime *now)
457 {
458
459 if (__predict_false(l->l_flag & LW_IDLE))
460 return;
461
462 /* rtime += now - stime */
463 bintime_add(&l->l_rtime, now);
464 bintime_sub(&l->l_rtime, &l->l_stime);
465 }
466
467 /*
468 * Select next LWP from the current CPU to run..
469 */
470 static inline lwp_t *
471 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
472 {
473 lwp_t *newl;
474
475 /*
476 * Let sched_nextlwp() select the LWP to run the CPU next.
477 * If no LWP is runnable, select the idle LWP.
478 *
479 * Note that spc_lwplock might not necessary be held, and
480 * new thread would be unlocked after setting the LWP-lock.
481 */
482 newl = sched_nextlwp();
483 if (newl != NULL) {
484 sched_dequeue(newl);
485 KASSERT(lwp_locked(newl, spc->spc_mutex));
486 KASSERT(newl->l_cpu == ci);
487 newl->l_stat = LSONPROC;
488 newl->l_flag |= LW_RUNNING;
489 lwp_setlock(newl, spc->spc_lwplock);
490 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
491 } else {
492 newl = ci->ci_data.cpu_idlelwp;
493 newl->l_stat = LSONPROC;
494 newl->l_flag |= LW_RUNNING;
495 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
496 SPCF_IDLE;
497 }
498
499 /*
500 * Only clear want_resched if there are no pending (slow) software
501 * interrupts. We can do this without an atomic, because no new
502 * LWPs can appear in the queue due to our hold on spc_mutex, and
503 * the update to ci_want_resched will become globally visible before
504 * the release of spc_mutex becomes globally visible.
505 */
506 ci->ci_want_resched = ci->ci_data.cpu_softints;
507 spc->spc_curpriority = lwp_eprio(newl);
508
509 return newl;
510 }
511
512 /*
513 * The machine independent parts of context switch.
514 *
515 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
516 * changes its own l_cpu (that would screw up curcpu on many ports and could
517 * cause all kinds of other evil stuff). l_cpu is always changed by some
518 * other actor, when it's known the LWP is not running (the LW_RUNNING flag
519 * is checked under lock).
520 */
521 void
522 mi_switch(lwp_t *l)
523 {
524 struct cpu_info *ci;
525 struct schedstate_percpu *spc;
526 struct lwp *newl;
527 int oldspl;
528 struct bintime bt;
529 bool returning;
530
531 KASSERT(lwp_locked(l, NULL));
532 KASSERT(kpreempt_disabled());
533 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
534
535 kstack_check_magic(l);
536
537 binuptime(&bt);
538
539 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
540 KASSERT((l->l_flag & LW_RUNNING) != 0);
541 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
542 ci = curcpu();
543 spc = &ci->ci_schedstate;
544 returning = false;
545 newl = NULL;
546
547 /*
548 * If we have been asked to switch to a specific LWP, then there
549 * is no need to inspect the run queues. If a soft interrupt is
550 * blocking, then return to the interrupted thread without adjusting
551 * VM context or its start time: neither have been changed in order
552 * to take the interrupt.
553 */
554 if (l->l_switchto != NULL) {
555 if ((l->l_pflag & LP_INTR) != 0) {
556 returning = true;
557 softint_block(l);
558 if ((l->l_pflag & LP_TIMEINTR) != 0)
559 updatertime(l, &bt);
560 }
561 newl = l->l_switchto;
562 l->l_switchto = NULL;
563 }
564 #ifndef __HAVE_FAST_SOFTINTS
565 else if (ci->ci_data.cpu_softints != 0) {
566 /* There are pending soft interrupts, so pick one. */
567 newl = softint_picklwp();
568 newl->l_stat = LSONPROC;
569 newl->l_flag |= LW_RUNNING;
570 }
571 #endif /* !__HAVE_FAST_SOFTINTS */
572
573 /*
574 * If on the CPU and we have gotten this far, then we must yield.
575 */
576 if (l->l_stat == LSONPROC && l != newl) {
577 KASSERT(lwp_locked(l, spc->spc_lwplock));
578 KASSERT((l->l_flag & LW_IDLE) == 0);
579 l->l_stat = LSRUN;
580 lwp_setlock(l, spc->spc_mutex);
581 sched_enqueue(l);
582 /*
583 * Handle migration. Note that "migrating LWP" may
584 * be reset here, if interrupt/preemption happens
585 * early in idle LWP.
586 */
587 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
588 KASSERT((l->l_pflag & LP_INTR) == 0);
589 spc->spc_migrating = l;
590 }
591 }
592
593 /* Pick new LWP to run. */
594 if (newl == NULL) {
595 newl = nextlwp(ci, spc);
596 }
597
598 /* Items that must be updated with the CPU locked. */
599 if (!returning) {
600 /* Count time spent in current system call */
601 SYSCALL_TIME_SLEEP(l);
602
603 updatertime(l, &bt);
604
605 /* Update the new LWP's start time. */
606 newl->l_stime = bt;
607
608 /*
609 * ci_curlwp changes when a fast soft interrupt occurs.
610 * We use ci_onproc to keep track of which kernel or
611 * user thread is running 'underneath' the software
612 * interrupt. This is important for time accounting,
613 * itimers and forcing user threads to preempt (aston).
614 */
615 ci->ci_onproc = newl;
616 }
617
618 /*
619 * Preemption related tasks. Must be done holding spc_mutex. Clear
620 * l_dopreempt without an atomic - it's only ever set non-zero by
621 * sched_resched_cpu() which also holds spc_mutex, and only ever
622 * cleared by the LWP itself (us) with atomics when not under lock.
623 */
624 l->l_dopreempt = 0;
625 if (__predict_false(l->l_pfailaddr != 0)) {
626 LOCKSTAT_FLAG(lsflag);
627 LOCKSTAT_ENTER(lsflag);
628 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
629 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
630 1, l->l_pfailtime, l->l_pfailaddr);
631 LOCKSTAT_EXIT(lsflag);
632 l->l_pfailtime = 0;
633 l->l_pfaillock = 0;
634 l->l_pfailaddr = 0;
635 }
636
637 if (l != newl) {
638 struct lwp *prevlwp;
639
640 /* Release all locks, but leave the current LWP locked */
641 if (l->l_mutex == spc->spc_mutex) {
642 /*
643 * Drop spc_lwplock, if the current LWP has been moved
644 * to the run queue (it is now locked by spc_mutex).
645 */
646 mutex_spin_exit(spc->spc_lwplock);
647 } else {
648 /*
649 * Otherwise, drop the spc_mutex, we are done with the
650 * run queues.
651 */
652 mutex_spin_exit(spc->spc_mutex);
653 }
654
655 /* We're down to only one lock, so do debug checks. */
656 LOCKDEBUG_BARRIER(l->l_mutex, 1);
657
658 /* Count the context switch. */
659 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
660 l->l_ncsw++;
661 if ((l->l_pflag & LP_PREEMPTING) != 0) {
662 l->l_nivcsw++;
663 l->l_pflag &= ~LP_PREEMPTING;
664 }
665
666 /*
667 * Increase the count of spin-mutexes before the release
668 * of the last lock - we must remain at IPL_SCHED after
669 * releasing the lock.
670 */
671 KASSERTMSG(ci->ci_mtx_count == -1,
672 "%s: cpu%u: ci_mtx_count (%d) != -1 "
673 "(block with spin-mutex held)",
674 __func__, cpu_index(ci), ci->ci_mtx_count);
675 oldspl = MUTEX_SPIN_OLDSPL(ci);
676 ci->ci_mtx_count = -2;
677
678 /* Update status for lwpctl, if present. */
679 if (l->l_lwpctl != NULL) {
680 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
681 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
682 }
683
684 /*
685 * If curlwp is a soft interrupt LWP, there's nobody on the
686 * other side to unlock - we're returning into an assembly
687 * trampoline. Unlock now. This is safe because this is a
688 * kernel LWP and is bound to current CPU: the worst anyone
689 * else will do to it, is to put it back onto this CPU's run
690 * queue (and the CPU is busy here right now!).
691 */
692 if (returning) {
693 /* Keep IPL_SCHED after this; MD code will fix up. */
694 l->l_flag &= ~LW_RUNNING;
695 lwp_unlock(l);
696 } else {
697 /* A normal LWP: save old VM context. */
698 pmap_deactivate(l);
699 }
700
701 /*
702 * If DTrace has set the active vtime enum to anything
703 * other than INACTIVE (0), then it should have set the
704 * function to call.
705 */
706 if (__predict_false(dtrace_vtime_active)) {
707 (*dtrace_vtime_switch_func)(newl);
708 }
709
710 /*
711 * We must ensure not to come here from inside a read section.
712 */
713 KASSERT(pserialize_not_in_read_section());
714
715 /* Switch to the new LWP.. */
716 #ifdef MULTIPROCESSOR
717 KASSERT(curlwp == ci->ci_curlwp);
718 #endif
719 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
720 prevlwp = cpu_switchto(l, newl, returning);
721 ci = curcpu();
722 #ifdef MULTIPROCESSOR
723 KASSERT(curlwp == ci->ci_curlwp);
724 #endif
725 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
726 l, curlwp, prevlwp);
727 KASSERT(prevlwp != NULL);
728 KASSERT(l->l_cpu == ci);
729 KASSERT(ci->ci_mtx_count == -2);
730
731 /*
732 * Immediately mark the previous LWP as no longer running,
733 * and unlock it. We'll still be at IPL_SCHED afterwards.
734 */
735 KASSERT((prevlwp->l_flag & LW_RUNNING) != 0);
736 prevlwp->l_flag &= ~LW_RUNNING;
737 lwp_unlock(prevlwp);
738
739 /*
740 * Switched away - we have new curlwp.
741 * Restore VM context and IPL.
742 */
743 pmap_activate(l);
744 pcu_switchpoint(l);
745
746 /* Update status for lwpctl, if present. */
747 if (l->l_lwpctl != NULL) {
748 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
749 l->l_lwpctl->lc_pctr++;
750 }
751
752 /*
753 * Normalize the spin mutex count and restore the previous
754 * SPL. Note that, unless the caller disabled preemption,
755 * we can be preempted at any time after this splx().
756 */
757 KASSERT(l->l_cpu == ci);
758 KASSERT(ci->ci_mtx_count == -1);
759 ci->ci_mtx_count = 0;
760 splx(oldspl);
761 } else {
762 /* Nothing to do - just unlock and return. */
763 mutex_spin_exit(spc->spc_mutex);
764 l->l_pflag &= ~LP_PREEMPTING;
765 lwp_unlock(l);
766 }
767
768 KASSERT(l == curlwp);
769 KASSERT(l->l_stat == LSONPROC);
770
771 SYSCALL_TIME_WAKEUP(l);
772 LOCKDEBUG_BARRIER(NULL, 1);
773 }
774
775 /*
776 * setrunnable: change LWP state to be runnable, placing it on the run queue.
777 *
778 * Call with the process and LWP locked. Will return with the LWP unlocked.
779 */
780 void
781 setrunnable(struct lwp *l)
782 {
783 struct proc *p = l->l_proc;
784 struct cpu_info *ci;
785 kmutex_t *oldlock;
786
787 KASSERT((l->l_flag & LW_IDLE) == 0);
788 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
789 KASSERT(mutex_owned(p->p_lock));
790 KASSERT(lwp_locked(l, NULL));
791 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
792
793 switch (l->l_stat) {
794 case LSSTOP:
795 /*
796 * If we're being traced (possibly because someone attached us
797 * while we were stopped), check for a signal from the debugger.
798 */
799 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
800 signotify(l);
801 p->p_nrlwps++;
802 break;
803 case LSSUSPENDED:
804 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
805 l->l_flag &= ~LW_WSUSPEND;
806 p->p_nrlwps++;
807 cv_broadcast(&p->p_lwpcv);
808 break;
809 case LSSLEEP:
810 KASSERT(l->l_wchan != NULL);
811 break;
812 case LSIDL:
813 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
814 break;
815 default:
816 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
817 }
818
819 /*
820 * If the LWP was sleeping, start it again.
821 */
822 if (l->l_wchan != NULL) {
823 l->l_stat = LSSLEEP;
824 /* lwp_unsleep() will release the lock. */
825 lwp_unsleep(l, true);
826 return;
827 }
828
829 /*
830 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
831 * about to call mi_switch(), in which case it will yield.
832 */
833 if ((l->l_flag & LW_RUNNING) != 0) {
834 l->l_stat = LSONPROC;
835 l->l_slptime = 0;
836 lwp_unlock(l);
837 return;
838 }
839
840 /*
841 * Look for a CPU to run.
842 * Set the LWP runnable.
843 */
844 ci = sched_takecpu(l);
845 l->l_cpu = ci;
846 spc_lock(ci);
847 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
848 sched_setrunnable(l);
849 l->l_stat = LSRUN;
850 l->l_slptime = 0;
851 sched_enqueue(l);
852 sched_resched_lwp(l, true);
853 /* SPC & LWP now unlocked. */
854 mutex_spin_exit(oldlock);
855 }
856
857 /*
858 * suspendsched:
859 *
860 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
861 */
862 void
863 suspendsched(void)
864 {
865 CPU_INFO_ITERATOR cii;
866 struct cpu_info *ci;
867 struct lwp *l;
868 struct proc *p;
869
870 /*
871 * We do this by process in order not to violate the locking rules.
872 */
873 mutex_enter(proc_lock);
874 PROCLIST_FOREACH(p, &allproc) {
875 mutex_enter(p->p_lock);
876 if ((p->p_flag & PK_SYSTEM) != 0) {
877 mutex_exit(p->p_lock);
878 continue;
879 }
880
881 if (p->p_stat != SSTOP) {
882 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
883 p->p_pptr->p_nstopchild++;
884 p->p_waited = 0;
885 }
886 p->p_stat = SSTOP;
887 }
888
889 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
890 if (l == curlwp)
891 continue;
892
893 lwp_lock(l);
894
895 /*
896 * Set L_WREBOOT so that the LWP will suspend itself
897 * when it tries to return to user mode. We want to
898 * try and get to get as many LWPs as possible to
899 * the user / kernel boundary, so that they will
900 * release any locks that they hold.
901 */
902 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
903
904 if (l->l_stat == LSSLEEP &&
905 (l->l_flag & LW_SINTR) != 0) {
906 /* setrunnable() will release the lock. */
907 setrunnable(l);
908 continue;
909 }
910
911 lwp_unlock(l);
912 }
913
914 mutex_exit(p->p_lock);
915 }
916 mutex_exit(proc_lock);
917
918 /*
919 * Kick all CPUs to make them preempt any LWPs running in user mode.
920 * They'll trap into the kernel and suspend themselves in userret().
921 *
922 * Unusually, we don't hold any other scheduler object locked, which
923 * would keep preemption off for sched_resched_cpu(), so disable it
924 * explicitly.
925 */
926 kpreempt_disable();
927 for (CPU_INFO_FOREACH(cii, ci)) {
928 spc_lock(ci);
929 sched_resched_cpu(ci, PRI_KERNEL, true);
930 /* spc now unlocked */
931 }
932 kpreempt_enable();
933 }
934
935 /*
936 * sched_unsleep:
937 *
938 * The is called when the LWP has not been awoken normally but instead
939 * interrupted: for example, if the sleep timed out. Because of this,
940 * it's not a valid action for running or idle LWPs.
941 */
942 static void
943 sched_unsleep(struct lwp *l, bool cleanup)
944 {
945
946 lwp_unlock(l);
947 panic("sched_unsleep");
948 }
949
950 static void
951 sched_changepri(struct lwp *l, pri_t pri)
952 {
953 struct schedstate_percpu *spc;
954 struct cpu_info *ci;
955
956 KASSERT(lwp_locked(l, NULL));
957
958 ci = l->l_cpu;
959 spc = &ci->ci_schedstate;
960
961 if (l->l_stat == LSRUN) {
962 KASSERT(lwp_locked(l, spc->spc_mutex));
963 sched_dequeue(l);
964 l->l_priority = pri;
965 sched_enqueue(l);
966 sched_resched_lwp(l, false);
967 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
968 /* On priority drop, only evict realtime LWPs. */
969 KASSERT(lwp_locked(l, spc->spc_lwplock));
970 l->l_priority = pri;
971 spc_lock(ci);
972 sched_resched_cpu(ci, spc->spc_maxpriority, true);
973 /* spc now unlocked */
974 } else {
975 l->l_priority = pri;
976 }
977 }
978
979 static void
980 sched_lendpri(struct lwp *l, pri_t pri)
981 {
982 struct schedstate_percpu *spc;
983 struct cpu_info *ci;
984
985 KASSERT(lwp_locked(l, NULL));
986
987 ci = l->l_cpu;
988 spc = &ci->ci_schedstate;
989
990 if (l->l_stat == LSRUN) {
991 KASSERT(lwp_locked(l, spc->spc_mutex));
992 sched_dequeue(l);
993 l->l_inheritedprio = pri;
994 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
995 sched_enqueue(l);
996 sched_resched_lwp(l, false);
997 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
998 /* On priority drop, only evict realtime LWPs. */
999 KASSERT(lwp_locked(l, spc->spc_lwplock));
1000 l->l_inheritedprio = pri;
1001 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1002 spc_lock(ci);
1003 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1004 /* spc now unlocked */
1005 } else {
1006 l->l_inheritedprio = pri;
1007 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1008 }
1009 }
1010
1011 struct lwp *
1012 syncobj_noowner(wchan_t wchan)
1013 {
1014
1015 return NULL;
1016 }
1017
1018 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1019 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1020
1021 /*
1022 * Constants for averages over 1, 5 and 15 minutes when sampling at
1023 * 5 second intervals.
1024 */
1025 static const fixpt_t cexp[ ] = {
1026 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1027 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1028 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1029 };
1030
1031 /*
1032 * sched_pstats:
1033 *
1034 * => Update process statistics and check CPU resource allocation.
1035 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1036 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1037 */
1038 void
1039 sched_pstats(void)
1040 {
1041 extern struct loadavg averunnable;
1042 struct loadavg *avg = &averunnable;
1043 const int clkhz = (stathz != 0 ? stathz : hz);
1044 static bool backwards = false;
1045 static u_int lavg_count = 0;
1046 struct proc *p;
1047 int nrun;
1048
1049 sched_pstats_ticks++;
1050 if (++lavg_count >= 5) {
1051 lavg_count = 0;
1052 nrun = 0;
1053 }
1054 mutex_enter(proc_lock);
1055 PROCLIST_FOREACH(p, &allproc) {
1056 struct lwp *l;
1057 struct rlimit *rlim;
1058 time_t runtm;
1059 int sig;
1060
1061 /* Increment sleep time (if sleeping), ignore overflow. */
1062 mutex_enter(p->p_lock);
1063 runtm = p->p_rtime.sec;
1064 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1065 fixpt_t lpctcpu;
1066 u_int lcpticks;
1067
1068 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1069 continue;
1070 lwp_lock(l);
1071 runtm += l->l_rtime.sec;
1072 l->l_swtime++;
1073 sched_lwp_stats(l);
1074
1075 /* For load average calculation. */
1076 if (__predict_false(lavg_count == 0) &&
1077 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1078 switch (l->l_stat) {
1079 case LSSLEEP:
1080 if (l->l_slptime > 1) {
1081 break;
1082 }
1083 /* FALLTHROUGH */
1084 case LSRUN:
1085 case LSONPROC:
1086 case LSIDL:
1087 nrun++;
1088 }
1089 }
1090 lwp_unlock(l);
1091
1092 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1093 if (l->l_slptime != 0)
1094 continue;
1095
1096 lpctcpu = l->l_pctcpu;
1097 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1098 lpctcpu += ((FSCALE - ccpu) *
1099 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1100 l->l_pctcpu = lpctcpu;
1101 }
1102 /* Calculating p_pctcpu only for ps(1) */
1103 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1104
1105 if (__predict_false(runtm < 0)) {
1106 if (!backwards) {
1107 backwards = true;
1108 printf("WARNING: negative runtime; "
1109 "monotonic clock has gone backwards\n");
1110 }
1111 mutex_exit(p->p_lock);
1112 continue;
1113 }
1114
1115 /*
1116 * Check if the process exceeds its CPU resource allocation.
1117 * If over the hard limit, kill it with SIGKILL.
1118 * If over the soft limit, send SIGXCPU and raise
1119 * the soft limit a little.
1120 */
1121 rlim = &p->p_rlimit[RLIMIT_CPU];
1122 sig = 0;
1123 if (__predict_false(runtm >= rlim->rlim_cur)) {
1124 if (runtm >= rlim->rlim_max) {
1125 sig = SIGKILL;
1126 log(LOG_NOTICE,
1127 "pid %d, command %s, is killed: %s\n",
1128 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1129 uprintf("pid %d, command %s, is killed: %s\n",
1130 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1131 } else {
1132 sig = SIGXCPU;
1133 if (rlim->rlim_cur < rlim->rlim_max)
1134 rlim->rlim_cur += 5;
1135 }
1136 }
1137 mutex_exit(p->p_lock);
1138 if (__predict_false(sig)) {
1139 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1140 psignal(p, sig);
1141 }
1142 }
1143
1144 /* Load average calculation. */
1145 if (__predict_false(lavg_count == 0)) {
1146 int i;
1147 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1148 for (i = 0; i < __arraycount(cexp); i++) {
1149 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1150 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1151 }
1152 }
1153
1154 /* Lightning bolt. */
1155 cv_broadcast(&lbolt);
1156
1157 mutex_exit(proc_lock);
1158 }
1159