Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.339
      1 /*	$NetBSD: kern_synch.c,v 1.339 2020/02/15 18:12:15 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.339 2020/02/15 18:12:15 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/sched.h>
     87 #include <sys/syscall_stats.h>
     88 #include <sys/sleepq.h>
     89 #include <sys/lockdebug.h>
     90 #include <sys/evcnt.h>
     91 #include <sys/intr.h>
     92 #include <sys/lwpctl.h>
     93 #include <sys/atomic.h>
     94 #include <sys/syslog.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #include <dev/lockstat.h>
     99 
    100 #include <sys/dtrace_bsd.h>
    101 int                             dtrace_vtime_active=0;
    102 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    103 
    104 static void	sched_unsleep(struct lwp *, bool);
    105 static void	sched_changepri(struct lwp *, pri_t);
    106 static void	sched_lendpri(struct lwp *, pri_t);
    107 
    108 syncobj_t sleep_syncobj = {
    109 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    110 	.sobj_unsleep	= sleepq_unsleep,
    111 	.sobj_changepri	= sleepq_changepri,
    112 	.sobj_lendpri	= sleepq_lendpri,
    113 	.sobj_owner	= syncobj_noowner,
    114 };
    115 
    116 syncobj_t sched_syncobj = {
    117 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    118 	.sobj_unsleep	= sched_unsleep,
    119 	.sobj_changepri	= sched_changepri,
    120 	.sobj_lendpri	= sched_lendpri,
    121 	.sobj_owner	= syncobj_noowner,
    122 };
    123 
    124 /* "Lightning bolt": once a second sleep address. */
    125 kcondvar_t		lbolt			__cacheline_aligned;
    126 
    127 u_int			sched_pstats_ticks	__cacheline_aligned;
    128 
    129 /* Preemption event counters. */
    130 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    131 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    132 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    133 
    134 void
    135 synch_init(void)
    136 {
    137 
    138 	cv_init(&lbolt, "lbolt");
    139 
    140 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    141 	   "kpreempt", "defer: critical section");
    142 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    143 	   "kpreempt", "defer: kernel_lock");
    144 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    145 	   "kpreempt", "immediate");
    146 }
    147 
    148 /*
    149  * OBSOLETE INTERFACE
    150  *
    151  * General sleep call.  Suspends the current LWP until a wakeup is
    152  * performed on the specified identifier.  The LWP will then be made
    153  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    154  * means no timeout).  If pri includes PCATCH flag, signals are checked
    155  * before and after sleeping, else signals are not checked.  Returns 0 if
    156  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    157  * signal needs to be delivered, ERESTART is returned if the current system
    158  * call should be restarted if possible, and EINTR is returned if the system
    159  * call should be interrupted by the signal (return EINTR).
    160  */
    161 int
    162 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    163 {
    164 	struct lwp *l = curlwp;
    165 	sleepq_t *sq;
    166 	kmutex_t *mp;
    167 
    168 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169 	KASSERT(ident != &lbolt);
    170 
    171 	if (sleepq_dontsleep(l)) {
    172 		(void)sleepq_abort(NULL, 0);
    173 		return 0;
    174 	}
    175 
    176 	l->l_kpriority = true;
    177 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    178 	sleepq_enter(sq, l, mp);
    179 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    180 	return sleepq_block(timo, priority & PCATCH);
    181 }
    182 
    183 int
    184 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    185 	kmutex_t *mtx)
    186 {
    187 	struct lwp *l = curlwp;
    188 	sleepq_t *sq;
    189 	kmutex_t *mp;
    190 	int error;
    191 
    192 	KASSERT((l->l_pflag & LP_INTR) == 0);
    193 	KASSERT(ident != &lbolt);
    194 
    195 	if (sleepq_dontsleep(l)) {
    196 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    197 		return 0;
    198 	}
    199 
    200 	l->l_kpriority = true;
    201 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    202 	sleepq_enter(sq, l, mp);
    203 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    204 	mutex_exit(mtx);
    205 	error = sleepq_block(timo, priority & PCATCH);
    206 
    207 	if ((priority & PNORELOCK) == 0)
    208 		mutex_enter(mtx);
    209 
    210 	return error;
    211 }
    212 
    213 /*
    214  * General sleep call for situations where a wake-up is not expected.
    215  */
    216 int
    217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	kmutex_t *mp;
    221 	sleepq_t *sq;
    222 	int error;
    223 
    224 	KASSERT(!(timo == 0 && intr == false));
    225 
    226 	if (sleepq_dontsleep(l))
    227 		return sleepq_abort(NULL, 0);
    228 
    229 	if (mtx != NULL)
    230 		mutex_exit(mtx);
    231 	l->l_kpriority = true;
    232 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    233 	sleepq_enter(sq, l, mp);
    234 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    235 	error = sleepq_block(timo, intr);
    236 	if (mtx != NULL)
    237 		mutex_enter(mtx);
    238 
    239 	return error;
    240 }
    241 
    242 /*
    243  * OBSOLETE INTERFACE
    244  *
    245  * Make all LWPs sleeping on the specified identifier runnable.
    246  */
    247 void
    248 wakeup(wchan_t ident)
    249 {
    250 	sleepq_t *sq;
    251 	kmutex_t *mp;
    252 
    253 	if (__predict_false(cold))
    254 		return;
    255 
    256 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    257 	sleepq_wake(sq, ident, (u_int)-1, mp);
    258 }
    259 
    260 /*
    261  * General yield call.  Puts the current LWP back on its run queue and
    262  * performs a voluntary context switch.  Should only be called when the
    263  * current LWP explicitly requests it (eg sched_yield(2)).
    264  */
    265 void
    266 yield(void)
    267 {
    268 	struct lwp *l = curlwp;
    269 
    270 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    271 	lwp_lock(l);
    272 
    273 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    274 	KASSERT(l->l_stat == LSONPROC);
    275 
    276 	/* Voluntary - ditch kpriority boost. */
    277 	l->l_kpriority = false;
    278 	spc_lock(l->l_cpu);
    279 	mi_switch(l);
    280 	KERNEL_LOCK(l->l_biglocks, l);
    281 }
    282 
    283 /*
    284  * General preemption call.  Puts the current LWP back on its run queue
    285  * and performs an involuntary context switch.
    286  */
    287 void
    288 preempt(void)
    289 {
    290 	struct lwp *l = curlwp;
    291 
    292 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    293 	lwp_lock(l);
    294 
    295 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    296 	KASSERT(l->l_stat == LSONPROC);
    297 
    298 	/* Involuntary - keep kpriority boost. */
    299 	l->l_pflag |= LP_PREEMPTING;
    300 	spc_lock(l->l_cpu);
    301 	mi_switch(l);
    302 	KERNEL_LOCK(l->l_biglocks, l);
    303 }
    304 
    305 /*
    306  * Handle a request made by another agent to preempt the current LWP
    307  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    308  *
    309  * Character addresses for lockstat only.
    310  */
    311 static char	kpreempt_is_disabled;
    312 static char	kernel_lock_held;
    313 static char	is_softint_lwp;
    314 static char	spl_is_raised;
    315 
    316 bool
    317 kpreempt(uintptr_t where)
    318 {
    319 	uintptr_t failed;
    320 	lwp_t *l;
    321 	int s, dop, lsflag;
    322 
    323 	l = curlwp;
    324 	failed = 0;
    325 	while ((dop = l->l_dopreempt) != 0) {
    326 		if (l->l_stat != LSONPROC) {
    327 			/*
    328 			 * About to block (or die), let it happen.
    329 			 * Doesn't really count as "preemption has
    330 			 * been blocked", since we're going to
    331 			 * context switch.
    332 			 */
    333 			atomic_swap_uint(&l->l_dopreempt, 0);
    334 			return true;
    335 		}
    336 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    337 			/* Can't preempt idle loop, don't count as failure. */
    338 			atomic_swap_uint(&l->l_dopreempt, 0);
    339 			return true;
    340 		}
    341 		if (__predict_false(l->l_nopreempt != 0)) {
    342 			/* LWP holds preemption disabled, explicitly. */
    343 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    344 				kpreempt_ev_crit.ev_count++;
    345 			}
    346 			failed = (uintptr_t)&kpreempt_is_disabled;
    347 			break;
    348 		}
    349 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    350 			/* Can't preempt soft interrupts yet. */
    351 			atomic_swap_uint(&l->l_dopreempt, 0);
    352 			failed = (uintptr_t)&is_softint_lwp;
    353 			break;
    354 		}
    355 		s = splsched();
    356 		if (__predict_false(l->l_blcnt != 0 ||
    357 		    curcpu()->ci_biglock_wanted != NULL)) {
    358 			/* Hold or want kernel_lock, code is not MT safe. */
    359 			splx(s);
    360 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    361 				kpreempt_ev_klock.ev_count++;
    362 			}
    363 			failed = (uintptr_t)&kernel_lock_held;
    364 			break;
    365 		}
    366 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    367 			/*
    368 			 * It may be that the IPL is too high.
    369 			 * kpreempt_enter() can schedule an
    370 			 * interrupt to retry later.
    371 			 */
    372 			splx(s);
    373 			failed = (uintptr_t)&spl_is_raised;
    374 			break;
    375 		}
    376 		/* Do it! */
    377 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    378 			kpreempt_ev_immed.ev_count++;
    379 		}
    380 		lwp_lock(l);
    381 		/* Involuntary - keep kpriority boost. */
    382 		l->l_pflag |= LP_PREEMPTING;
    383 		spc_lock(l->l_cpu);
    384 		mi_switch(l);
    385 		l->l_nopreempt++;
    386 		splx(s);
    387 
    388 		/* Take care of any MD cleanup. */
    389 		cpu_kpreempt_exit(where);
    390 		l->l_nopreempt--;
    391 	}
    392 
    393 	if (__predict_true(!failed)) {
    394 		return false;
    395 	}
    396 
    397 	/* Record preemption failure for reporting via lockstat. */
    398 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    399 	lsflag = 0;
    400 	LOCKSTAT_ENTER(lsflag);
    401 	if (__predict_false(lsflag)) {
    402 		if (where == 0) {
    403 			where = (uintptr_t)__builtin_return_address(0);
    404 		}
    405 		/* Preemption is on, might recurse, so make it atomic. */
    406 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    407 		    (void *)where) == NULL) {
    408 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    409 			l->l_pfaillock = failed;
    410 		}
    411 	}
    412 	LOCKSTAT_EXIT(lsflag);
    413 	return true;
    414 }
    415 
    416 /*
    417  * Return true if preemption is explicitly disabled.
    418  */
    419 bool
    420 kpreempt_disabled(void)
    421 {
    422 	const lwp_t *l = curlwp;
    423 
    424 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    425 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    426 	    cpu_kpreempt_disabled();
    427 }
    428 
    429 /*
    430  * Disable kernel preemption.
    431  */
    432 void
    433 kpreempt_disable(void)
    434 {
    435 
    436 	KPREEMPT_DISABLE(curlwp);
    437 }
    438 
    439 /*
    440  * Reenable kernel preemption.
    441  */
    442 void
    443 kpreempt_enable(void)
    444 {
    445 
    446 	KPREEMPT_ENABLE(curlwp);
    447 }
    448 
    449 /*
    450  * Compute the amount of time during which the current lwp was running.
    451  *
    452  * - update l_rtime unless it's an idle lwp.
    453  */
    454 
    455 void
    456 updatertime(lwp_t *l, const struct bintime *now)
    457 {
    458 
    459 	if (__predict_false(l->l_flag & LW_IDLE))
    460 		return;
    461 
    462 	/* rtime += now - stime */
    463 	bintime_add(&l->l_rtime, now);
    464 	bintime_sub(&l->l_rtime, &l->l_stime);
    465 }
    466 
    467 /*
    468  * Select next LWP from the current CPU to run..
    469  */
    470 static inline lwp_t *
    471 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    472 {
    473 	lwp_t *newl;
    474 
    475 	/*
    476 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    477 	 * If no LWP is runnable, select the idle LWP.
    478 	 *
    479 	 * Note that spc_lwplock might not necessary be held, and
    480 	 * new thread would be unlocked after setting the LWP-lock.
    481 	 */
    482 	newl = sched_nextlwp();
    483 	if (newl != NULL) {
    484 		sched_dequeue(newl);
    485 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    486 		KASSERT(newl->l_cpu == ci);
    487 		lwp_setlock(newl, spc->spc_lwplock);
    488 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    489 	} else {
    490 		newl = ci->ci_data.cpu_idlelwp;
    491 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    492 		    SPCF_IDLE;
    493 	}
    494 	newl->l_stat = LSONPROC;
    495 	newl->l_pflag |= LP_RUNNING;
    496 
    497 	/*
    498 	 * Only clear want_resched if there are no pending (slow) software
    499 	 * interrupts.  We can do this without an atomic, because no new
    500 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    501 	 * the update to ci_want_resched will become globally visible before
    502 	 * the release of spc_mutex becomes globally visible.
    503 	 */
    504 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    505 	spc->spc_curpriority = lwp_eprio(newl);
    506 
    507 	return newl;
    508 }
    509 
    510 /*
    511  * The machine independent parts of context switch.
    512  *
    513  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    514  * changes its own l_cpu (that would screw up curcpu on many ports and could
    515  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    516  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    517  * is checked under lock).
    518  */
    519 void
    520 mi_switch(lwp_t *l)
    521 {
    522 	struct cpu_info *ci;
    523 	struct schedstate_percpu *spc;
    524 	struct lwp *newl;
    525 	kmutex_t *lock;
    526 	int oldspl;
    527 	struct bintime bt;
    528 	bool returning;
    529 
    530 	KASSERT(lwp_locked(l, NULL));
    531 	KASSERT(kpreempt_disabled());
    532 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    533 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    534 
    535 	kstack_check_magic(l);
    536 
    537 	binuptime(&bt);
    538 
    539 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    540 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    541 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    542 	ci = curcpu();
    543 	spc = &ci->ci_schedstate;
    544 	returning = false;
    545 	newl = NULL;
    546 
    547 	/*
    548 	 * If we have been asked to switch to a specific LWP, then there
    549 	 * is no need to inspect the run queues.  If a soft interrupt is
    550 	 * blocking, then return to the interrupted thread without adjusting
    551 	 * VM context or its start time: neither have been changed in order
    552 	 * to take the interrupt.
    553 	 */
    554 	if (l->l_switchto != NULL) {
    555 		if ((l->l_pflag & LP_INTR) != 0) {
    556 			returning = true;
    557 			softint_block(l);
    558 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    559 				updatertime(l, &bt);
    560 		}
    561 		newl = l->l_switchto;
    562 		l->l_switchto = NULL;
    563 	}
    564 #ifndef __HAVE_FAST_SOFTINTS
    565 	else if (ci->ci_data.cpu_softints != 0) {
    566 		/* There are pending soft interrupts, so pick one. */
    567 		newl = softint_picklwp();
    568 		newl->l_stat = LSONPROC;
    569 		newl->l_pflag |= LP_RUNNING;
    570 	}
    571 #endif	/* !__HAVE_FAST_SOFTINTS */
    572 
    573 	/*
    574 	 * If on the CPU and we have gotten this far, then we must yield.
    575 	 */
    576 	if (l->l_stat == LSONPROC && l != newl) {
    577 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    578 		KASSERT((l->l_flag & LW_IDLE) == 0);
    579 		l->l_stat = LSRUN;
    580 		lwp_setlock(l, spc->spc_mutex);
    581 		sched_enqueue(l);
    582 		sched_preempted(l);
    583 
    584 		/*
    585 		 * Handle migration.  Note that "migrating LWP" may
    586 		 * be reset here, if interrupt/preemption happens
    587 		 * early in idle LWP.
    588 		 */
    589 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    590 			KASSERT((l->l_pflag & LP_INTR) == 0);
    591 			spc->spc_migrating = l;
    592 		}
    593 	}
    594 
    595 	/* Pick new LWP to run. */
    596 	if (newl == NULL) {
    597 		newl = nextlwp(ci, spc);
    598 	}
    599 
    600 	/* Items that must be updated with the CPU locked. */
    601 	if (!returning) {
    602 		/* Count time spent in current system call */
    603 		SYSCALL_TIME_SLEEP(l);
    604 
    605 		updatertime(l, &bt);
    606 
    607 		/* Update the new LWP's start time. */
    608 		newl->l_stime = bt;
    609 
    610 		/*
    611 		 * ci_curlwp changes when a fast soft interrupt occurs.
    612 		 * We use ci_onproc to keep track of which kernel or
    613 		 * user thread is running 'underneath' the software
    614 		 * interrupt.  This is important for time accounting,
    615 		 * itimers and forcing user threads to preempt (aston).
    616 		 */
    617 		ci->ci_onproc = newl;
    618 	}
    619 
    620 	/*
    621 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    622 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    623 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    624 	 * cleared by the LWP itself (us) with atomics when not under lock.
    625 	 */
    626 	l->l_dopreempt = 0;
    627 	if (__predict_false(l->l_pfailaddr != 0)) {
    628 		LOCKSTAT_FLAG(lsflag);
    629 		LOCKSTAT_ENTER(lsflag);
    630 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    631 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    632 		    1, l->l_pfailtime, l->l_pfailaddr);
    633 		LOCKSTAT_EXIT(lsflag);
    634 		l->l_pfailtime = 0;
    635 		l->l_pfaillock = 0;
    636 		l->l_pfailaddr = 0;
    637 	}
    638 
    639 	if (l != newl) {
    640 		struct lwp *prevlwp;
    641 
    642 		/* Release all locks, but leave the current LWP locked */
    643 		if (l->l_mutex == spc->spc_mutex) {
    644 			/*
    645 			 * Drop spc_lwplock, if the current LWP has been moved
    646 			 * to the run queue (it is now locked by spc_mutex).
    647 			 */
    648 			mutex_spin_exit(spc->spc_lwplock);
    649 		} else {
    650 			/*
    651 			 * Otherwise, drop the spc_mutex, we are done with the
    652 			 * run queues.
    653 			 */
    654 			mutex_spin_exit(spc->spc_mutex);
    655 		}
    656 
    657 		/* We're down to only one lock, so do debug checks. */
    658 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    659 
    660 		/* Count the context switch. */
    661 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    662 		l->l_ncsw++;
    663 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    664 			l->l_nivcsw++;
    665 			l->l_pflag &= ~LP_PREEMPTING;
    666 		}
    667 
    668 		/*
    669 		 * Increase the count of spin-mutexes before the release
    670 		 * of the last lock - we must remain at IPL_SCHED after
    671 		 * releasing the lock.
    672 		 */
    673 		KASSERTMSG(ci->ci_mtx_count == -1,
    674 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    675 		    "(block with spin-mutex held)",
    676 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    677 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    678 		ci->ci_mtx_count = -2;
    679 
    680 		/* Update status for lwpctl, if present. */
    681 		if (l->l_lwpctl != NULL) {
    682 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    683 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    684 		}
    685 
    686 		/*
    687 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    688 		 * other side to unlock - we're returning into an assembly
    689 		 * trampoline.  Unlock now.  This is safe because this is a
    690 		 * kernel LWP and is bound to current CPU: the worst anyone
    691 		 * else will do to it, is to put it back onto this CPU's run
    692 		 * queue (and the CPU is busy here right now!).
    693 		 */
    694 		if (returning) {
    695 			/* Keep IPL_SCHED after this; MD code will fix up. */
    696 			l->l_pflag &= ~LP_RUNNING;
    697 			lwp_unlock(l);
    698 		} else {
    699 			/* A normal LWP: save old VM context. */
    700 			pmap_deactivate(l);
    701 		}
    702 
    703 		/*
    704 		 * If DTrace has set the active vtime enum to anything
    705 		 * other than INACTIVE (0), then it should have set the
    706 		 * function to call.
    707 		 */
    708 		if (__predict_false(dtrace_vtime_active)) {
    709 			(*dtrace_vtime_switch_func)(newl);
    710 		}
    711 
    712 		/*
    713 		 * We must ensure not to come here from inside a read section.
    714 		 */
    715 		KASSERT(pserialize_not_in_read_section());
    716 
    717 		/* Switch to the new LWP.. */
    718 #ifdef MULTIPROCESSOR
    719 		KASSERT(curlwp == ci->ci_curlwp);
    720 #endif
    721 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    722 		prevlwp = cpu_switchto(l, newl, returning);
    723 		ci = curcpu();
    724 #ifdef MULTIPROCESSOR
    725 		KASSERT(curlwp == ci->ci_curlwp);
    726 #endif
    727 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    728 		    l, curlwp, prevlwp);
    729 		KASSERT(prevlwp != NULL);
    730 		KASSERT(l->l_cpu == ci);
    731 		KASSERT(ci->ci_mtx_count == -2);
    732 
    733 		/*
    734 		 * Immediately mark the previous LWP as no longer running
    735 		 * and unlock (to keep lock wait times short as possible).
    736 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    737 		 * don't touch after clearing LP_RUNNING as it could be
    738 		 * reaped by another CPU.  Issue a memory barrier to ensure
    739 		 * this.
    740 		 */
    741 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    742 		lock = prevlwp->l_mutex;
    743 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    744 			membar_sync();
    745 		}
    746 		prevlwp->l_pflag &= ~LP_RUNNING;
    747 		mutex_spin_exit(lock);
    748 
    749 		/*
    750 		 * Switched away - we have new curlwp.
    751 		 * Restore VM context and IPL.
    752 		 */
    753 		pmap_activate(l);
    754 		pcu_switchpoint(l);
    755 
    756 		/* Update status for lwpctl, if present. */
    757 		if (l->l_lwpctl != NULL) {
    758 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    759 			l->l_lwpctl->lc_pctr++;
    760 		}
    761 
    762 		/*
    763 		 * Normalize the spin mutex count and restore the previous
    764 		 * SPL.  Note that, unless the caller disabled preemption,
    765 		 * we can be preempted at any time after this splx().
    766 		 */
    767 		KASSERT(l->l_cpu == ci);
    768 		KASSERT(ci->ci_mtx_count == -1);
    769 		ci->ci_mtx_count = 0;
    770 		splx(oldspl);
    771 	} else {
    772 		/* Nothing to do - just unlock and return. */
    773 		mutex_spin_exit(spc->spc_mutex);
    774 		l->l_pflag &= ~LP_PREEMPTING;
    775 		lwp_unlock(l);
    776 	}
    777 
    778 	KASSERT(l == curlwp);
    779 	KASSERT(l->l_stat == LSONPROC);
    780 
    781 	SYSCALL_TIME_WAKEUP(l);
    782 	LOCKDEBUG_BARRIER(NULL, 1);
    783 }
    784 
    785 /*
    786  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    787  *
    788  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    789  */
    790 void
    791 setrunnable(struct lwp *l)
    792 {
    793 	struct proc *p = l->l_proc;
    794 	struct cpu_info *ci;
    795 	kmutex_t *oldlock;
    796 
    797 	KASSERT((l->l_flag & LW_IDLE) == 0);
    798 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    799 	KASSERT(mutex_owned(p->p_lock));
    800 	KASSERT(lwp_locked(l, NULL));
    801 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    802 
    803 	switch (l->l_stat) {
    804 	case LSSTOP:
    805 		/*
    806 		 * If we're being traced (possibly because someone attached us
    807 		 * while we were stopped), check for a signal from the debugger.
    808 		 */
    809 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    810 			signotify(l);
    811 		p->p_nrlwps++;
    812 		break;
    813 	case LSSUSPENDED:
    814 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    815 		l->l_flag &= ~LW_WSUSPEND;
    816 		p->p_nrlwps++;
    817 		cv_broadcast(&p->p_lwpcv);
    818 		break;
    819 	case LSSLEEP:
    820 		KASSERT(l->l_wchan != NULL);
    821 		break;
    822 	case LSIDL:
    823 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    824 		break;
    825 	default:
    826 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    827 	}
    828 
    829 	/*
    830 	 * If the LWP was sleeping, start it again.
    831 	 */
    832 	if (l->l_wchan != NULL) {
    833 		l->l_stat = LSSLEEP;
    834 		/* lwp_unsleep() will release the lock. */
    835 		lwp_unsleep(l, true);
    836 		return;
    837 	}
    838 
    839 	/*
    840 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    841 	 * about to call mi_switch(), in which case it will yield.
    842 	 */
    843 	if ((l->l_pflag & LP_RUNNING) != 0) {
    844 		l->l_stat = LSONPROC;
    845 		l->l_slptime = 0;
    846 		lwp_unlock(l);
    847 		return;
    848 	}
    849 
    850 	/*
    851 	 * Look for a CPU to run.
    852 	 * Set the LWP runnable.
    853 	 */
    854 	ci = sched_takecpu(l);
    855 	l->l_cpu = ci;
    856 	spc_lock(ci);
    857 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    858 	sched_setrunnable(l);
    859 	l->l_stat = LSRUN;
    860 	l->l_slptime = 0;
    861 	sched_enqueue(l);
    862 	sched_resched_lwp(l, true);
    863 	/* SPC & LWP now unlocked. */
    864 	mutex_spin_exit(oldlock);
    865 }
    866 
    867 /*
    868  * suspendsched:
    869  *
    870  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    871  */
    872 void
    873 suspendsched(void)
    874 {
    875 	CPU_INFO_ITERATOR cii;
    876 	struct cpu_info *ci;
    877 	struct lwp *l;
    878 	struct proc *p;
    879 
    880 	/*
    881 	 * We do this by process in order not to violate the locking rules.
    882 	 */
    883 	mutex_enter(proc_lock);
    884 	PROCLIST_FOREACH(p, &allproc) {
    885 		mutex_enter(p->p_lock);
    886 		if ((p->p_flag & PK_SYSTEM) != 0) {
    887 			mutex_exit(p->p_lock);
    888 			continue;
    889 		}
    890 
    891 		if (p->p_stat != SSTOP) {
    892 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    893 				p->p_pptr->p_nstopchild++;
    894 				p->p_waited = 0;
    895 			}
    896 			p->p_stat = SSTOP;
    897 		}
    898 
    899 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    900 			if (l == curlwp)
    901 				continue;
    902 
    903 			lwp_lock(l);
    904 
    905 			/*
    906 			 * Set L_WREBOOT so that the LWP will suspend itself
    907 			 * when it tries to return to user mode.  We want to
    908 			 * try and get to get as many LWPs as possible to
    909 			 * the user / kernel boundary, so that they will
    910 			 * release any locks that they hold.
    911 			 */
    912 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    913 
    914 			if (l->l_stat == LSSLEEP &&
    915 			    (l->l_flag & LW_SINTR) != 0) {
    916 				/* setrunnable() will release the lock. */
    917 				setrunnable(l);
    918 				continue;
    919 			}
    920 
    921 			lwp_unlock(l);
    922 		}
    923 
    924 		mutex_exit(p->p_lock);
    925 	}
    926 	mutex_exit(proc_lock);
    927 
    928 	/*
    929 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    930 	 * They'll trap into the kernel and suspend themselves in userret().
    931 	 *
    932 	 * Unusually, we don't hold any other scheduler object locked, which
    933 	 * would keep preemption off for sched_resched_cpu(), so disable it
    934 	 * explicitly.
    935 	 */
    936 	kpreempt_disable();
    937 	for (CPU_INFO_FOREACH(cii, ci)) {
    938 		spc_lock(ci);
    939 		sched_resched_cpu(ci, PRI_KERNEL, true);
    940 		/* spc now unlocked */
    941 	}
    942 	kpreempt_enable();
    943 }
    944 
    945 /*
    946  * sched_unsleep:
    947  *
    948  *	The is called when the LWP has not been awoken normally but instead
    949  *	interrupted: for example, if the sleep timed out.  Because of this,
    950  *	it's not a valid action for running or idle LWPs.
    951  */
    952 static void
    953 sched_unsleep(struct lwp *l, bool cleanup)
    954 {
    955 
    956 	lwp_unlock(l);
    957 	panic("sched_unsleep");
    958 }
    959 
    960 static void
    961 sched_changepri(struct lwp *l, pri_t pri)
    962 {
    963 	struct schedstate_percpu *spc;
    964 	struct cpu_info *ci;
    965 
    966 	KASSERT(lwp_locked(l, NULL));
    967 
    968 	ci = l->l_cpu;
    969 	spc = &ci->ci_schedstate;
    970 
    971 	if (l->l_stat == LSRUN) {
    972 		KASSERT(lwp_locked(l, spc->spc_mutex));
    973 		sched_dequeue(l);
    974 		l->l_priority = pri;
    975 		sched_enqueue(l);
    976 		sched_resched_lwp(l, false);
    977 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
    978 		/* On priority drop, only evict realtime LWPs. */
    979 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    980 		l->l_priority = pri;
    981 		spc_lock(ci);
    982 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
    983 		/* spc now unlocked */
    984 	} else {
    985 		l->l_priority = pri;
    986 	}
    987 }
    988 
    989 static void
    990 sched_lendpri(struct lwp *l, pri_t pri)
    991 {
    992 	struct schedstate_percpu *spc;
    993 	struct cpu_info *ci;
    994 
    995 	KASSERT(lwp_locked(l, NULL));
    996 
    997 	ci = l->l_cpu;
    998 	spc = &ci->ci_schedstate;
    999 
   1000 	if (l->l_stat == LSRUN) {
   1001 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1002 		sched_dequeue(l);
   1003 		l->l_inheritedprio = pri;
   1004 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1005 		sched_enqueue(l);
   1006 		sched_resched_lwp(l, false);
   1007 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1008 		/* On priority drop, only evict realtime LWPs. */
   1009 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1010 		l->l_inheritedprio = pri;
   1011 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1012 		spc_lock(ci);
   1013 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1014 		/* spc now unlocked */
   1015 	} else {
   1016 		l->l_inheritedprio = pri;
   1017 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1018 	}
   1019 }
   1020 
   1021 struct lwp *
   1022 syncobj_noowner(wchan_t wchan)
   1023 {
   1024 
   1025 	return NULL;
   1026 }
   1027 
   1028 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1029 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1030 
   1031 /*
   1032  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1033  * 5 second intervals.
   1034  */
   1035 static const fixpt_t cexp[ ] = {
   1036 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1037 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1038 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1039 };
   1040 
   1041 /*
   1042  * sched_pstats:
   1043  *
   1044  * => Update process statistics and check CPU resource allocation.
   1045  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1046  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1047  */
   1048 void
   1049 sched_pstats(void)
   1050 {
   1051 	extern struct loadavg averunnable;
   1052 	struct loadavg *avg = &averunnable;
   1053 	const int clkhz = (stathz != 0 ? stathz : hz);
   1054 	static bool backwards = false;
   1055 	static u_int lavg_count = 0;
   1056 	struct proc *p;
   1057 	int nrun;
   1058 
   1059 	sched_pstats_ticks++;
   1060 	if (++lavg_count >= 5) {
   1061 		lavg_count = 0;
   1062 		nrun = 0;
   1063 	}
   1064 	mutex_enter(proc_lock);
   1065 	PROCLIST_FOREACH(p, &allproc) {
   1066 		struct lwp *l;
   1067 		struct rlimit *rlim;
   1068 		time_t runtm;
   1069 		int sig;
   1070 
   1071 		/* Increment sleep time (if sleeping), ignore overflow. */
   1072 		mutex_enter(p->p_lock);
   1073 		runtm = p->p_rtime.sec;
   1074 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1075 			fixpt_t lpctcpu;
   1076 			u_int lcpticks;
   1077 
   1078 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1079 				continue;
   1080 			lwp_lock(l);
   1081 			runtm += l->l_rtime.sec;
   1082 			l->l_swtime++;
   1083 			sched_lwp_stats(l);
   1084 
   1085 			/* For load average calculation. */
   1086 			if (__predict_false(lavg_count == 0) &&
   1087 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1088 				switch (l->l_stat) {
   1089 				case LSSLEEP:
   1090 					if (l->l_slptime > 1) {
   1091 						break;
   1092 					}
   1093 					/* FALLTHROUGH */
   1094 				case LSRUN:
   1095 				case LSONPROC:
   1096 				case LSIDL:
   1097 					nrun++;
   1098 				}
   1099 			}
   1100 			lwp_unlock(l);
   1101 
   1102 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1103 			if (l->l_slptime != 0)
   1104 				continue;
   1105 
   1106 			lpctcpu = l->l_pctcpu;
   1107 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1108 			lpctcpu += ((FSCALE - ccpu) *
   1109 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1110 			l->l_pctcpu = lpctcpu;
   1111 		}
   1112 		/* Calculating p_pctcpu only for ps(1) */
   1113 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1114 
   1115 		if (__predict_false(runtm < 0)) {
   1116 			if (!backwards) {
   1117 				backwards = true;
   1118 				printf("WARNING: negative runtime; "
   1119 				    "monotonic clock has gone backwards\n");
   1120 			}
   1121 			mutex_exit(p->p_lock);
   1122 			continue;
   1123 		}
   1124 
   1125 		/*
   1126 		 * Check if the process exceeds its CPU resource allocation.
   1127 		 * If over the hard limit, kill it with SIGKILL.
   1128 		 * If over the soft limit, send SIGXCPU and raise
   1129 		 * the soft limit a little.
   1130 		 */
   1131 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1132 		sig = 0;
   1133 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1134 			if (runtm >= rlim->rlim_max) {
   1135 				sig = SIGKILL;
   1136 				log(LOG_NOTICE,
   1137 				    "pid %d, command %s, is killed: %s\n",
   1138 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1139 				uprintf("pid %d, command %s, is killed: %s\n",
   1140 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1141 			} else {
   1142 				sig = SIGXCPU;
   1143 				if (rlim->rlim_cur < rlim->rlim_max)
   1144 					rlim->rlim_cur += 5;
   1145 			}
   1146 		}
   1147 		mutex_exit(p->p_lock);
   1148 		if (__predict_false(sig)) {
   1149 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1150 			psignal(p, sig);
   1151 		}
   1152 	}
   1153 
   1154 	/* Load average calculation. */
   1155 	if (__predict_false(lavg_count == 0)) {
   1156 		int i;
   1157 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1158 		for (i = 0; i < __arraycount(cexp); i++) {
   1159 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1160 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1161 		}
   1162 	}
   1163 
   1164 	/* Lightning bolt. */
   1165 	cv_broadcast(&lbolt);
   1166 
   1167 	mutex_exit(proc_lock);
   1168 }
   1169