kern_synch.c revision 1.342 1 /* $NetBSD: kern_synch.c,v 1.342 2020/02/23 16:27:09 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.342 2020/02/23 16:27:09 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/syslog.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 #include <sys/dtrace_bsd.h>
102 int dtrace_vtime_active=0;
103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
104
105 static void sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 syncobj_t kpause_syncobj = {
126 .sobj_flag = SOBJ_SLEEPQ_NULL,
127 .sobj_unsleep = sleepq_unsleep,
128 .sobj_changepri = sleepq_changepri,
129 .sobj_lendpri = sleepq_lendpri,
130 .sobj_owner = syncobj_noowner,
131 };
132
133 /* "Lightning bolt": once a second sleep address. */
134 kcondvar_t lbolt __cacheline_aligned;
135
136 u_int sched_pstats_ticks __cacheline_aligned;
137
138 /* Preemption event counters. */
139 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
140 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
141 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
142
143 void
144 synch_init(void)
145 {
146
147 cv_init(&lbolt, "lbolt");
148
149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "defer: critical section");
151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 "kpreempt", "defer: kernel_lock");
153 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "immediate");
155 }
156
157 /*
158 * OBSOLETE INTERFACE
159 *
160 * General sleep call. Suspends the current LWP until a wakeup is
161 * performed on the specified identifier. The LWP will then be made
162 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
163 * means no timeout). If pri includes PCATCH flag, signals are checked
164 * before and after sleeping, else signals are not checked. Returns 0 if
165 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
166 * signal needs to be delivered, ERESTART is returned if the current system
167 * call should be restarted if possible, and EINTR is returned if the system
168 * call should be interrupted by the signal (return EINTR).
169 */
170 int
171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
172 {
173 struct lwp *l = curlwp;
174 sleepq_t *sq;
175 kmutex_t *mp;
176
177 KASSERT((l->l_pflag & LP_INTR) == 0);
178 KASSERT(ident != &lbolt);
179
180 if (sleepq_dontsleep(l)) {
181 (void)sleepq_abort(NULL, 0);
182 return 0;
183 }
184
185 l->l_kpriority = true;
186 sq = sleeptab_lookup(&sleeptab, ident, &mp);
187 sleepq_enter(sq, l, mp);
188 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
189 return sleepq_block(timo, priority & PCATCH);
190 }
191
192 int
193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
194 kmutex_t *mtx)
195 {
196 struct lwp *l = curlwp;
197 sleepq_t *sq;
198 kmutex_t *mp;
199 int error;
200
201 KASSERT((l->l_pflag & LP_INTR) == 0);
202 KASSERT(ident != &lbolt);
203
204 if (sleepq_dontsleep(l)) {
205 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
206 return 0;
207 }
208
209 l->l_kpriority = true;
210 sq = sleeptab_lookup(&sleeptab, ident, &mp);
211 sleepq_enter(sq, l, mp);
212 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
213 mutex_exit(mtx);
214 error = sleepq_block(timo, priority & PCATCH);
215
216 if ((priority & PNORELOCK) == 0)
217 mutex_enter(mtx);
218
219 return error;
220 }
221
222 /*
223 * XXXAD Temporary - for use of UVM only. PLEASE DO NOT USE ELSEWHERE.
224 * Will go once there is a better solution, eg waits interlocked by
225 * pg->interlock. To wake an LWP sleeping with this, you need to hold a
226 * write lock.
227 */
228 int
229 rwtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
230 krwlock_t *rw)
231 {
232 struct lwp *l = curlwp;
233 sleepq_t *sq;
234 kmutex_t *mp;
235 int error;
236 krw_t op;
237
238 KASSERT((l->l_pflag & LP_INTR) == 0);
239 KASSERT(ident != &lbolt);
240
241 if (sleepq_dontsleep(l)) {
242 (void)sleepq_abort(NULL, (priority & PNORELOCK) != 0);
243 if ((priority & PNORELOCK) != 0)
244 rw_exit(rw);
245 return 0;
246 }
247
248 l->l_kpriority = true;
249 sq = sleeptab_lookup(&sleeptab, ident, &mp);
250 sleepq_enter(sq, l, mp);
251 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
252 op = rw_lock_op(rw);
253 rw_exit(rw);
254 error = sleepq_block(timo, priority & PCATCH);
255
256 if ((priority & PNORELOCK) == 0)
257 rw_enter(rw, op);
258
259 return error;
260 }
261
262 /*
263 * General sleep call for situations where a wake-up is not expected.
264 */
265 int
266 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
267 {
268 struct lwp *l = curlwp;
269 int error;
270
271 KASSERT(!(timo == 0 && intr == false));
272
273 if (sleepq_dontsleep(l))
274 return sleepq_abort(NULL, 0);
275
276 if (mtx != NULL)
277 mutex_exit(mtx);
278 l->l_kpriority = true;
279 lwp_lock(l);
280 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
281 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj);
282 error = sleepq_block(timo, intr);
283 if (mtx != NULL)
284 mutex_enter(mtx);
285
286 return error;
287 }
288
289 /*
290 * OBSOLETE INTERFACE
291 *
292 * Make all LWPs sleeping on the specified identifier runnable.
293 */
294 void
295 wakeup(wchan_t ident)
296 {
297 sleepq_t *sq;
298 kmutex_t *mp;
299
300 if (__predict_false(cold))
301 return;
302
303 sq = sleeptab_lookup(&sleeptab, ident, &mp);
304 sleepq_wake(sq, ident, (u_int)-1, mp);
305 }
306
307 /*
308 * General yield call. Puts the current LWP back on its run queue and
309 * performs a voluntary context switch. Should only be called when the
310 * current LWP explicitly requests it (eg sched_yield(2)).
311 */
312 void
313 yield(void)
314 {
315 struct lwp *l = curlwp;
316
317 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
318 lwp_lock(l);
319
320 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
321 KASSERT(l->l_stat == LSONPROC);
322
323 /* Voluntary - ditch kpriority boost. */
324 l->l_kpriority = false;
325 spc_lock(l->l_cpu);
326 mi_switch(l);
327 KERNEL_LOCK(l->l_biglocks, l);
328 }
329
330 /*
331 * General preemption call. Puts the current LWP back on its run queue
332 * and performs an involuntary context switch.
333 */
334 void
335 preempt(void)
336 {
337 struct lwp *l = curlwp;
338
339 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
340 lwp_lock(l);
341
342 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
343 KASSERT(l->l_stat == LSONPROC);
344
345 /* Involuntary - keep kpriority boost. */
346 l->l_pflag |= LP_PREEMPTING;
347 spc_lock(l->l_cpu);
348 mi_switch(l);
349 KERNEL_LOCK(l->l_biglocks, l);
350 }
351
352 /*
353 * Handle a request made by another agent to preempt the current LWP
354 * in-kernel. Usually called when l_dopreempt may be non-zero.
355 *
356 * Character addresses for lockstat only.
357 */
358 static char kpreempt_is_disabled;
359 static char kernel_lock_held;
360 static char is_softint_lwp;
361 static char spl_is_raised;
362
363 bool
364 kpreempt(uintptr_t where)
365 {
366 uintptr_t failed;
367 lwp_t *l;
368 int s, dop, lsflag;
369
370 l = curlwp;
371 failed = 0;
372 while ((dop = l->l_dopreempt) != 0) {
373 if (l->l_stat != LSONPROC) {
374 /*
375 * About to block (or die), let it happen.
376 * Doesn't really count as "preemption has
377 * been blocked", since we're going to
378 * context switch.
379 */
380 atomic_swap_uint(&l->l_dopreempt, 0);
381 return true;
382 }
383 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
384 /* Can't preempt idle loop, don't count as failure. */
385 atomic_swap_uint(&l->l_dopreempt, 0);
386 return true;
387 }
388 if (__predict_false(l->l_nopreempt != 0)) {
389 /* LWP holds preemption disabled, explicitly. */
390 if ((dop & DOPREEMPT_COUNTED) == 0) {
391 kpreempt_ev_crit.ev_count++;
392 }
393 failed = (uintptr_t)&kpreempt_is_disabled;
394 break;
395 }
396 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
397 /* Can't preempt soft interrupts yet. */
398 atomic_swap_uint(&l->l_dopreempt, 0);
399 failed = (uintptr_t)&is_softint_lwp;
400 break;
401 }
402 s = splsched();
403 if (__predict_false(l->l_blcnt != 0 ||
404 curcpu()->ci_biglock_wanted != NULL)) {
405 /* Hold or want kernel_lock, code is not MT safe. */
406 splx(s);
407 if ((dop & DOPREEMPT_COUNTED) == 0) {
408 kpreempt_ev_klock.ev_count++;
409 }
410 failed = (uintptr_t)&kernel_lock_held;
411 break;
412 }
413 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
414 /*
415 * It may be that the IPL is too high.
416 * kpreempt_enter() can schedule an
417 * interrupt to retry later.
418 */
419 splx(s);
420 failed = (uintptr_t)&spl_is_raised;
421 break;
422 }
423 /* Do it! */
424 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
425 kpreempt_ev_immed.ev_count++;
426 }
427 lwp_lock(l);
428 /* Involuntary - keep kpriority boost. */
429 l->l_pflag |= LP_PREEMPTING;
430 spc_lock(l->l_cpu);
431 mi_switch(l);
432 l->l_nopreempt++;
433 splx(s);
434
435 /* Take care of any MD cleanup. */
436 cpu_kpreempt_exit(where);
437 l->l_nopreempt--;
438 }
439
440 if (__predict_true(!failed)) {
441 return false;
442 }
443
444 /* Record preemption failure for reporting via lockstat. */
445 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
446 lsflag = 0;
447 LOCKSTAT_ENTER(lsflag);
448 if (__predict_false(lsflag)) {
449 if (where == 0) {
450 where = (uintptr_t)__builtin_return_address(0);
451 }
452 /* Preemption is on, might recurse, so make it atomic. */
453 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
454 (void *)where) == NULL) {
455 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
456 l->l_pfaillock = failed;
457 }
458 }
459 LOCKSTAT_EXIT(lsflag);
460 return true;
461 }
462
463 /*
464 * Return true if preemption is explicitly disabled.
465 */
466 bool
467 kpreempt_disabled(void)
468 {
469 const lwp_t *l = curlwp;
470
471 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
472 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
473 cpu_kpreempt_disabled();
474 }
475
476 /*
477 * Disable kernel preemption.
478 */
479 void
480 kpreempt_disable(void)
481 {
482
483 KPREEMPT_DISABLE(curlwp);
484 }
485
486 /*
487 * Reenable kernel preemption.
488 */
489 void
490 kpreempt_enable(void)
491 {
492
493 KPREEMPT_ENABLE(curlwp);
494 }
495
496 /*
497 * Compute the amount of time during which the current lwp was running.
498 *
499 * - update l_rtime unless it's an idle lwp.
500 */
501
502 void
503 updatertime(lwp_t *l, const struct bintime *now)
504 {
505
506 if (__predict_false(l->l_flag & LW_IDLE))
507 return;
508
509 /* rtime += now - stime */
510 bintime_add(&l->l_rtime, now);
511 bintime_sub(&l->l_rtime, &l->l_stime);
512 }
513
514 /*
515 * Select next LWP from the current CPU to run..
516 */
517 static inline lwp_t *
518 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
519 {
520 lwp_t *newl;
521
522 /*
523 * Let sched_nextlwp() select the LWP to run the CPU next.
524 * If no LWP is runnable, select the idle LWP.
525 *
526 * On arrival here LWPs on a run queue are locked by spc_mutex which
527 * is currently held. Idle LWPs are always locked by spc_lwplock,
528 * which may or may not be held here. On exit from this code block,
529 * in all cases newl is locked by spc_lwplock.
530 */
531 newl = sched_nextlwp();
532 if (newl != NULL) {
533 sched_dequeue(newl);
534 KASSERT(lwp_locked(newl, spc->spc_mutex));
535 KASSERT(newl->l_cpu == ci);
536 newl->l_stat = LSONPROC;
537 newl->l_pflag |= LP_RUNNING;
538 spc->spc_curpriority = lwp_eprio(newl);
539 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
540 lwp_setlock(newl, spc->spc_lwplock);
541 } else {
542 /*
543 * Updates to newl here are unlocked, but newl is the idle
544 * LWP and thus sheltered from outside interference, so no
545 * harm is going to come of it.
546 */
547 newl = ci->ci_data.cpu_idlelwp;
548 newl->l_stat = LSONPROC;
549 newl->l_pflag |= LP_RUNNING;
550 spc->spc_curpriority = PRI_IDLE;
551 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
552 SPCF_IDLE;
553 }
554
555 /*
556 * Only clear want_resched if there are no pending (slow) software
557 * interrupts. We can do this without an atomic, because no new
558 * LWPs can appear in the queue due to our hold on spc_mutex, and
559 * the update to ci_want_resched will become globally visible before
560 * the release of spc_mutex becomes globally visible.
561 */
562 ci->ci_want_resched = ci->ci_data.cpu_softints;
563
564 return newl;
565 }
566
567 /*
568 * The machine independent parts of context switch.
569 *
570 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
571 * changes its own l_cpu (that would screw up curcpu on many ports and could
572 * cause all kinds of other evil stuff). l_cpu is always changed by some
573 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
574 * is checked under lock).
575 */
576 void
577 mi_switch(lwp_t *l)
578 {
579 struct cpu_info *ci;
580 struct schedstate_percpu *spc;
581 struct lwp *newl;
582 kmutex_t *lock;
583 int oldspl;
584 struct bintime bt;
585 bool returning;
586
587 KASSERT(lwp_locked(l, NULL));
588 KASSERT(kpreempt_disabled());
589 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
590 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
591
592 kstack_check_magic(l);
593
594 binuptime(&bt);
595
596 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
597 KASSERT((l->l_pflag & LP_RUNNING) != 0);
598 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
599 ci = curcpu();
600 spc = &ci->ci_schedstate;
601 returning = false;
602 newl = NULL;
603
604 /*
605 * If we have been asked to switch to a specific LWP, then there
606 * is no need to inspect the run queues. If a soft interrupt is
607 * blocking, then return to the interrupted thread without adjusting
608 * VM context or its start time: neither have been changed in order
609 * to take the interrupt.
610 */
611 if (l->l_switchto != NULL) {
612 if ((l->l_pflag & LP_INTR) != 0) {
613 returning = true;
614 softint_block(l);
615 if ((l->l_pflag & LP_TIMEINTR) != 0)
616 updatertime(l, &bt);
617 }
618 newl = l->l_switchto;
619 l->l_switchto = NULL;
620 }
621 #ifndef __HAVE_FAST_SOFTINTS
622 else if (ci->ci_data.cpu_softints != 0) {
623 /* There are pending soft interrupts, so pick one. */
624 newl = softint_picklwp();
625 newl->l_stat = LSONPROC;
626 newl->l_pflag |= LP_RUNNING;
627 }
628 #endif /* !__HAVE_FAST_SOFTINTS */
629
630 /*
631 * If on the CPU and we have gotten this far, then we must yield.
632 */
633 if (l->l_stat == LSONPROC && l != newl) {
634 KASSERT(lwp_locked(l, spc->spc_lwplock));
635 KASSERT((l->l_flag & LW_IDLE) == 0);
636 l->l_stat = LSRUN;
637 lwp_setlock(l, spc->spc_mutex);
638 sched_enqueue(l);
639 sched_preempted(l);
640
641 /*
642 * Handle migration. Note that "migrating LWP" may
643 * be reset here, if interrupt/preemption happens
644 * early in idle LWP.
645 */
646 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
647 KASSERT((l->l_pflag & LP_INTR) == 0);
648 spc->spc_migrating = l;
649 }
650 }
651
652 /* Pick new LWP to run. */
653 if (newl == NULL) {
654 newl = nextlwp(ci, spc);
655 }
656
657 /* Items that must be updated with the CPU locked. */
658 if (!returning) {
659 /* Count time spent in current system call */
660 SYSCALL_TIME_SLEEP(l);
661
662 updatertime(l, &bt);
663
664 /* Update the new LWP's start time. */
665 newl->l_stime = bt;
666
667 /*
668 * ci_curlwp changes when a fast soft interrupt occurs.
669 * We use ci_onproc to keep track of which kernel or
670 * user thread is running 'underneath' the software
671 * interrupt. This is important for time accounting,
672 * itimers and forcing user threads to preempt (aston).
673 */
674 ci->ci_onproc = newl;
675 }
676
677 /*
678 * Preemption related tasks. Must be done holding spc_mutex. Clear
679 * l_dopreempt without an atomic - it's only ever set non-zero by
680 * sched_resched_cpu() which also holds spc_mutex, and only ever
681 * cleared by the LWP itself (us) with atomics when not under lock.
682 */
683 l->l_dopreempt = 0;
684 if (__predict_false(l->l_pfailaddr != 0)) {
685 LOCKSTAT_FLAG(lsflag);
686 LOCKSTAT_ENTER(lsflag);
687 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
688 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
689 1, l->l_pfailtime, l->l_pfailaddr);
690 LOCKSTAT_EXIT(lsflag);
691 l->l_pfailtime = 0;
692 l->l_pfaillock = 0;
693 l->l_pfailaddr = 0;
694 }
695
696 if (l != newl) {
697 struct lwp *prevlwp;
698
699 /* Release all locks, but leave the current LWP locked */
700 if (l->l_mutex == spc->spc_mutex) {
701 /*
702 * Drop spc_lwplock, if the current LWP has been moved
703 * to the run queue (it is now locked by spc_mutex).
704 */
705 mutex_spin_exit(spc->spc_lwplock);
706 } else {
707 /*
708 * Otherwise, drop the spc_mutex, we are done with the
709 * run queues.
710 */
711 mutex_spin_exit(spc->spc_mutex);
712 }
713
714 /* We're down to only one lock, so do debug checks. */
715 LOCKDEBUG_BARRIER(l->l_mutex, 1);
716
717 /* Count the context switch. */
718 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
719 l->l_ncsw++;
720 if ((l->l_pflag & LP_PREEMPTING) != 0) {
721 l->l_nivcsw++;
722 l->l_pflag &= ~LP_PREEMPTING;
723 }
724
725 /*
726 * Increase the count of spin-mutexes before the release
727 * of the last lock - we must remain at IPL_SCHED after
728 * releasing the lock.
729 */
730 KASSERTMSG(ci->ci_mtx_count == -1,
731 "%s: cpu%u: ci_mtx_count (%d) != -1 "
732 "(block with spin-mutex held)",
733 __func__, cpu_index(ci), ci->ci_mtx_count);
734 oldspl = MUTEX_SPIN_OLDSPL(ci);
735 ci->ci_mtx_count = -2;
736
737 /* Update status for lwpctl, if present. */
738 if (l->l_lwpctl != NULL) {
739 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
740 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
741 }
742
743 /*
744 * If curlwp is a soft interrupt LWP, there's nobody on the
745 * other side to unlock - we're returning into an assembly
746 * trampoline. Unlock now. This is safe because this is a
747 * kernel LWP and is bound to current CPU: the worst anyone
748 * else will do to it, is to put it back onto this CPU's run
749 * queue (and the CPU is busy here right now!).
750 */
751 if (returning) {
752 /* Keep IPL_SCHED after this; MD code will fix up. */
753 l->l_pflag &= ~LP_RUNNING;
754 lwp_unlock(l);
755 } else {
756 /* A normal LWP: save old VM context. */
757 pmap_deactivate(l);
758 }
759
760 /*
761 * If DTrace has set the active vtime enum to anything
762 * other than INACTIVE (0), then it should have set the
763 * function to call.
764 */
765 if (__predict_false(dtrace_vtime_active)) {
766 (*dtrace_vtime_switch_func)(newl);
767 }
768
769 /*
770 * We must ensure not to come here from inside a read section.
771 */
772 KASSERT(pserialize_not_in_read_section());
773
774 /* Switch to the new LWP.. */
775 #ifdef MULTIPROCESSOR
776 KASSERT(curlwp == ci->ci_curlwp);
777 #endif
778 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
779 prevlwp = cpu_switchto(l, newl, returning);
780 ci = curcpu();
781 #ifdef MULTIPROCESSOR
782 KASSERT(curlwp == ci->ci_curlwp);
783 #endif
784 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
785 l, curlwp, prevlwp);
786 KASSERT(prevlwp != NULL);
787 KASSERT(l->l_cpu == ci);
788 KASSERT(ci->ci_mtx_count == -2);
789
790 /*
791 * Immediately mark the previous LWP as no longer running
792 * and unlock (to keep lock wait times short as possible).
793 * We'll still be at IPL_SCHED afterwards. If a zombie,
794 * don't touch after clearing LP_RUNNING as it could be
795 * reaped by another CPU. Issue a memory barrier to ensure
796 * this.
797 */
798 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
799 lock = prevlwp->l_mutex;
800 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
801 membar_sync();
802 }
803 prevlwp->l_pflag &= ~LP_RUNNING;
804 mutex_spin_exit(lock);
805
806 /*
807 * Switched away - we have new curlwp.
808 * Restore VM context and IPL.
809 */
810 pmap_activate(l);
811 pcu_switchpoint(l);
812
813 /* Update status for lwpctl, if present. */
814 if (l->l_lwpctl != NULL) {
815 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
816 l->l_lwpctl->lc_pctr++;
817 }
818
819 /*
820 * Normalize the spin mutex count and restore the previous
821 * SPL. Note that, unless the caller disabled preemption,
822 * we can be preempted at any time after this splx().
823 */
824 KASSERT(l->l_cpu == ci);
825 KASSERT(ci->ci_mtx_count == -1);
826 ci->ci_mtx_count = 0;
827 splx(oldspl);
828 } else {
829 /* Nothing to do - just unlock and return. */
830 mutex_spin_exit(spc->spc_mutex);
831 l->l_pflag &= ~LP_PREEMPTING;
832 lwp_unlock(l);
833 }
834
835 KASSERT(l == curlwp);
836 KASSERT(l->l_stat == LSONPROC);
837
838 SYSCALL_TIME_WAKEUP(l);
839 LOCKDEBUG_BARRIER(NULL, 1);
840 }
841
842 /*
843 * setrunnable: change LWP state to be runnable, placing it on the run queue.
844 *
845 * Call with the process and LWP locked. Will return with the LWP unlocked.
846 */
847 void
848 setrunnable(struct lwp *l)
849 {
850 struct proc *p = l->l_proc;
851 struct cpu_info *ci;
852 kmutex_t *oldlock;
853
854 KASSERT((l->l_flag & LW_IDLE) == 0);
855 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
856 KASSERT(mutex_owned(p->p_lock));
857 KASSERT(lwp_locked(l, NULL));
858 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
859
860 switch (l->l_stat) {
861 case LSSTOP:
862 /*
863 * If we're being traced (possibly because someone attached us
864 * while we were stopped), check for a signal from the debugger.
865 */
866 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
867 signotify(l);
868 p->p_nrlwps++;
869 break;
870 case LSSUSPENDED:
871 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
872 l->l_flag &= ~LW_WSUSPEND;
873 p->p_nrlwps++;
874 cv_broadcast(&p->p_lwpcv);
875 break;
876 case LSSLEEP:
877 KASSERT(l->l_wchan != NULL);
878 break;
879 case LSIDL:
880 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
881 break;
882 default:
883 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
884 }
885
886 /*
887 * If the LWP was sleeping, start it again.
888 */
889 if (l->l_wchan != NULL) {
890 l->l_stat = LSSLEEP;
891 /* lwp_unsleep() will release the lock. */
892 lwp_unsleep(l, true);
893 return;
894 }
895
896 /*
897 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
898 * about to call mi_switch(), in which case it will yield.
899 */
900 if ((l->l_pflag & LP_RUNNING) != 0) {
901 l->l_stat = LSONPROC;
902 l->l_slptime = 0;
903 lwp_unlock(l);
904 return;
905 }
906
907 /*
908 * Look for a CPU to run.
909 * Set the LWP runnable.
910 */
911 ci = sched_takecpu(l);
912 l->l_cpu = ci;
913 spc_lock(ci);
914 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
915 sched_setrunnable(l);
916 l->l_stat = LSRUN;
917 l->l_slptime = 0;
918 sched_enqueue(l);
919 sched_resched_lwp(l, true);
920 /* SPC & LWP now unlocked. */
921 mutex_spin_exit(oldlock);
922 }
923
924 /*
925 * suspendsched:
926 *
927 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
928 */
929 void
930 suspendsched(void)
931 {
932 CPU_INFO_ITERATOR cii;
933 struct cpu_info *ci;
934 struct lwp *l;
935 struct proc *p;
936
937 /*
938 * We do this by process in order not to violate the locking rules.
939 */
940 mutex_enter(proc_lock);
941 PROCLIST_FOREACH(p, &allproc) {
942 mutex_enter(p->p_lock);
943 if ((p->p_flag & PK_SYSTEM) != 0) {
944 mutex_exit(p->p_lock);
945 continue;
946 }
947
948 if (p->p_stat != SSTOP) {
949 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
950 p->p_pptr->p_nstopchild++;
951 p->p_waited = 0;
952 }
953 p->p_stat = SSTOP;
954 }
955
956 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
957 if (l == curlwp)
958 continue;
959
960 lwp_lock(l);
961
962 /*
963 * Set L_WREBOOT so that the LWP will suspend itself
964 * when it tries to return to user mode. We want to
965 * try and get to get as many LWPs as possible to
966 * the user / kernel boundary, so that they will
967 * release any locks that they hold.
968 */
969 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
970
971 if (l->l_stat == LSSLEEP &&
972 (l->l_flag & LW_SINTR) != 0) {
973 /* setrunnable() will release the lock. */
974 setrunnable(l);
975 continue;
976 }
977
978 lwp_unlock(l);
979 }
980
981 mutex_exit(p->p_lock);
982 }
983 mutex_exit(proc_lock);
984
985 /*
986 * Kick all CPUs to make them preempt any LWPs running in user mode.
987 * They'll trap into the kernel and suspend themselves in userret().
988 *
989 * Unusually, we don't hold any other scheduler object locked, which
990 * would keep preemption off for sched_resched_cpu(), so disable it
991 * explicitly.
992 */
993 kpreempt_disable();
994 for (CPU_INFO_FOREACH(cii, ci)) {
995 spc_lock(ci);
996 sched_resched_cpu(ci, PRI_KERNEL, true);
997 /* spc now unlocked */
998 }
999 kpreempt_enable();
1000 }
1001
1002 /*
1003 * sched_unsleep:
1004 *
1005 * The is called when the LWP has not been awoken normally but instead
1006 * interrupted: for example, if the sleep timed out. Because of this,
1007 * it's not a valid action for running or idle LWPs.
1008 */
1009 static void
1010 sched_unsleep(struct lwp *l, bool cleanup)
1011 {
1012
1013 lwp_unlock(l);
1014 panic("sched_unsleep");
1015 }
1016
1017 static void
1018 sched_changepri(struct lwp *l, pri_t pri)
1019 {
1020 struct schedstate_percpu *spc;
1021 struct cpu_info *ci;
1022
1023 KASSERT(lwp_locked(l, NULL));
1024
1025 ci = l->l_cpu;
1026 spc = &ci->ci_schedstate;
1027
1028 if (l->l_stat == LSRUN) {
1029 KASSERT(lwp_locked(l, spc->spc_mutex));
1030 sched_dequeue(l);
1031 l->l_priority = pri;
1032 sched_enqueue(l);
1033 sched_resched_lwp(l, false);
1034 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1035 /* On priority drop, only evict realtime LWPs. */
1036 KASSERT(lwp_locked(l, spc->spc_lwplock));
1037 l->l_priority = pri;
1038 spc_lock(ci);
1039 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1040 /* spc now unlocked */
1041 } else {
1042 l->l_priority = pri;
1043 }
1044 }
1045
1046 static void
1047 sched_lendpri(struct lwp *l, pri_t pri)
1048 {
1049 struct schedstate_percpu *spc;
1050 struct cpu_info *ci;
1051
1052 KASSERT(lwp_locked(l, NULL));
1053
1054 ci = l->l_cpu;
1055 spc = &ci->ci_schedstate;
1056
1057 if (l->l_stat == LSRUN) {
1058 KASSERT(lwp_locked(l, spc->spc_mutex));
1059 sched_dequeue(l);
1060 l->l_inheritedprio = pri;
1061 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1062 sched_enqueue(l);
1063 sched_resched_lwp(l, false);
1064 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1065 /* On priority drop, only evict realtime LWPs. */
1066 KASSERT(lwp_locked(l, spc->spc_lwplock));
1067 l->l_inheritedprio = pri;
1068 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1069 spc_lock(ci);
1070 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1071 /* spc now unlocked */
1072 } else {
1073 l->l_inheritedprio = pri;
1074 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1075 }
1076 }
1077
1078 struct lwp *
1079 syncobj_noowner(wchan_t wchan)
1080 {
1081
1082 return NULL;
1083 }
1084
1085 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1086 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1087
1088 /*
1089 * Constants for averages over 1, 5 and 15 minutes when sampling at
1090 * 5 second intervals.
1091 */
1092 static const fixpt_t cexp[ ] = {
1093 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1094 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1095 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1096 };
1097
1098 /*
1099 * sched_pstats:
1100 *
1101 * => Update process statistics and check CPU resource allocation.
1102 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1103 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1104 */
1105 void
1106 sched_pstats(void)
1107 {
1108 extern struct loadavg averunnable;
1109 struct loadavg *avg = &averunnable;
1110 const int clkhz = (stathz != 0 ? stathz : hz);
1111 static bool backwards = false;
1112 static u_int lavg_count = 0;
1113 struct proc *p;
1114 int nrun;
1115
1116 sched_pstats_ticks++;
1117 if (++lavg_count >= 5) {
1118 lavg_count = 0;
1119 nrun = 0;
1120 }
1121 mutex_enter(proc_lock);
1122 PROCLIST_FOREACH(p, &allproc) {
1123 struct lwp *l;
1124 struct rlimit *rlim;
1125 time_t runtm;
1126 int sig;
1127
1128 /* Increment sleep time (if sleeping), ignore overflow. */
1129 mutex_enter(p->p_lock);
1130 runtm = p->p_rtime.sec;
1131 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1132 fixpt_t lpctcpu;
1133 u_int lcpticks;
1134
1135 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1136 continue;
1137 lwp_lock(l);
1138 runtm += l->l_rtime.sec;
1139 l->l_swtime++;
1140 sched_lwp_stats(l);
1141
1142 /* For load average calculation. */
1143 if (__predict_false(lavg_count == 0) &&
1144 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1145 switch (l->l_stat) {
1146 case LSSLEEP:
1147 if (l->l_slptime > 1) {
1148 break;
1149 }
1150 /* FALLTHROUGH */
1151 case LSRUN:
1152 case LSONPROC:
1153 case LSIDL:
1154 nrun++;
1155 }
1156 }
1157 lwp_unlock(l);
1158
1159 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1160 if (l->l_slptime != 0)
1161 continue;
1162
1163 lpctcpu = l->l_pctcpu;
1164 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1165 lpctcpu += ((FSCALE - ccpu) *
1166 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1167 l->l_pctcpu = lpctcpu;
1168 }
1169 /* Calculating p_pctcpu only for ps(1) */
1170 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1171
1172 if (__predict_false(runtm < 0)) {
1173 if (!backwards) {
1174 backwards = true;
1175 printf("WARNING: negative runtime; "
1176 "monotonic clock has gone backwards\n");
1177 }
1178 mutex_exit(p->p_lock);
1179 continue;
1180 }
1181
1182 /*
1183 * Check if the process exceeds its CPU resource allocation.
1184 * If over the hard limit, kill it with SIGKILL.
1185 * If over the soft limit, send SIGXCPU and raise
1186 * the soft limit a little.
1187 */
1188 rlim = &p->p_rlimit[RLIMIT_CPU];
1189 sig = 0;
1190 if (__predict_false(runtm >= rlim->rlim_cur)) {
1191 if (runtm >= rlim->rlim_max) {
1192 sig = SIGKILL;
1193 log(LOG_NOTICE,
1194 "pid %d, command %s, is killed: %s\n",
1195 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1196 uprintf("pid %d, command %s, is killed: %s\n",
1197 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1198 } else {
1199 sig = SIGXCPU;
1200 if (rlim->rlim_cur < rlim->rlim_max)
1201 rlim->rlim_cur += 5;
1202 }
1203 }
1204 mutex_exit(p->p_lock);
1205 if (__predict_false(sig)) {
1206 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1207 psignal(p, sig);
1208 }
1209 }
1210
1211 /* Load average calculation. */
1212 if (__predict_false(lavg_count == 0)) {
1213 int i;
1214 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1215 for (i = 0; i < __arraycount(cexp); i++) {
1216 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1217 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1218 }
1219 }
1220
1221 /* Lightning bolt. */
1222 cv_broadcast(&lbolt);
1223
1224 mutex_exit(proc_lock);
1225 }
1226