Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.342
      1 /*	$NetBSD: kern_synch.c,v 1.342 2020/02/23 16:27:09 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.342 2020/02/23 16:27:09 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/rwlock.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/syslog.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 #include <sys/dtrace_bsd.h>
    102 int                             dtrace_vtime_active=0;
    103 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    104 
    105 static void	sched_unsleep(struct lwp *, bool);
    106 static void	sched_changepri(struct lwp *, pri_t);
    107 static void	sched_lendpri(struct lwp *, pri_t);
    108 
    109 syncobj_t sleep_syncobj = {
    110 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    111 	.sobj_unsleep	= sleepq_unsleep,
    112 	.sobj_changepri	= sleepq_changepri,
    113 	.sobj_lendpri	= sleepq_lendpri,
    114 	.sobj_owner	= syncobj_noowner,
    115 };
    116 
    117 syncobj_t sched_syncobj = {
    118 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    119 	.sobj_unsleep	= sched_unsleep,
    120 	.sobj_changepri	= sched_changepri,
    121 	.sobj_lendpri	= sched_lendpri,
    122 	.sobj_owner	= syncobj_noowner,
    123 };
    124 
    125 syncobj_t kpause_syncobj = {
    126 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
    127 	.sobj_unsleep	= sleepq_unsleep,
    128 	.sobj_changepri	= sleepq_changepri,
    129 	.sobj_lendpri	= sleepq_lendpri,
    130 	.sobj_owner	= syncobj_noowner,
    131 };
    132 
    133 /* "Lightning bolt": once a second sleep address. */
    134 kcondvar_t		lbolt			__cacheline_aligned;
    135 
    136 u_int			sched_pstats_ticks	__cacheline_aligned;
    137 
    138 /* Preemption event counters. */
    139 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    140 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    141 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    142 
    143 void
    144 synch_init(void)
    145 {
    146 
    147 	cv_init(&lbolt, "lbolt");
    148 
    149 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150 	   "kpreempt", "defer: critical section");
    151 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: kernel_lock");
    153 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "immediate");
    155 }
    156 
    157 /*
    158  * OBSOLETE INTERFACE
    159  *
    160  * General sleep call.  Suspends the current LWP until a wakeup is
    161  * performed on the specified identifier.  The LWP will then be made
    162  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    163  * means no timeout).  If pri includes PCATCH flag, signals are checked
    164  * before and after sleeping, else signals are not checked.  Returns 0 if
    165  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    166  * signal needs to be delivered, ERESTART is returned if the current system
    167  * call should be restarted if possible, and EINTR is returned if the system
    168  * call should be interrupted by the signal (return EINTR).
    169  */
    170 int
    171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    172 {
    173 	struct lwp *l = curlwp;
    174 	sleepq_t *sq;
    175 	kmutex_t *mp;
    176 
    177 	KASSERT((l->l_pflag & LP_INTR) == 0);
    178 	KASSERT(ident != &lbolt);
    179 
    180 	if (sleepq_dontsleep(l)) {
    181 		(void)sleepq_abort(NULL, 0);
    182 		return 0;
    183 	}
    184 
    185 	l->l_kpriority = true;
    186 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    187 	sleepq_enter(sq, l, mp);
    188 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    189 	return sleepq_block(timo, priority & PCATCH);
    190 }
    191 
    192 int
    193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    194 	kmutex_t *mtx)
    195 {
    196 	struct lwp *l = curlwp;
    197 	sleepq_t *sq;
    198 	kmutex_t *mp;
    199 	int error;
    200 
    201 	KASSERT((l->l_pflag & LP_INTR) == 0);
    202 	KASSERT(ident != &lbolt);
    203 
    204 	if (sleepq_dontsleep(l)) {
    205 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    206 		return 0;
    207 	}
    208 
    209 	l->l_kpriority = true;
    210 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    211 	sleepq_enter(sq, l, mp);
    212 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    213 	mutex_exit(mtx);
    214 	error = sleepq_block(timo, priority & PCATCH);
    215 
    216 	if ((priority & PNORELOCK) == 0)
    217 		mutex_enter(mtx);
    218 
    219 	return error;
    220 }
    221 
    222 /*
    223  * XXXAD Temporary - for use of UVM only.  PLEASE DO NOT USE ELSEWHERE.
    224  * Will go once there is a better solution, eg waits interlocked by
    225  * pg->interlock.  To wake an LWP sleeping with this, you need to hold a
    226  * write lock.
    227  */
    228 int
    229 rwtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    230 	 krwlock_t *rw)
    231 {
    232 	struct lwp *l = curlwp;
    233 	sleepq_t *sq;
    234 	kmutex_t *mp;
    235 	int error;
    236 	krw_t op;
    237 
    238 	KASSERT((l->l_pflag & LP_INTR) == 0);
    239 	KASSERT(ident != &lbolt);
    240 
    241 	if (sleepq_dontsleep(l)) {
    242 		(void)sleepq_abort(NULL, (priority & PNORELOCK) != 0);
    243 		if ((priority & PNORELOCK) != 0)
    244 			rw_exit(rw);
    245 		return 0;
    246 	}
    247 
    248 	l->l_kpriority = true;
    249 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    250 	sleepq_enter(sq, l, mp);
    251 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    252 	op = rw_lock_op(rw);
    253 	rw_exit(rw);
    254 	error = sleepq_block(timo, priority & PCATCH);
    255 
    256 	if ((priority & PNORELOCK) == 0)
    257 		rw_enter(rw, op);
    258 
    259 	return error;
    260 }
    261 
    262 /*
    263  * General sleep call for situations where a wake-up is not expected.
    264  */
    265 int
    266 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    267 {
    268 	struct lwp *l = curlwp;
    269 	int error;
    270 
    271 	KASSERT(!(timo == 0 && intr == false));
    272 
    273 	if (sleepq_dontsleep(l))
    274 		return sleepq_abort(NULL, 0);
    275 
    276 	if (mtx != NULL)
    277 		mutex_exit(mtx);
    278 	l->l_kpriority = true;
    279 	lwp_lock(l);
    280 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
    281 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj);
    282 	error = sleepq_block(timo, intr);
    283 	if (mtx != NULL)
    284 		mutex_enter(mtx);
    285 
    286 	return error;
    287 }
    288 
    289 /*
    290  * OBSOLETE INTERFACE
    291  *
    292  * Make all LWPs sleeping on the specified identifier runnable.
    293  */
    294 void
    295 wakeup(wchan_t ident)
    296 {
    297 	sleepq_t *sq;
    298 	kmutex_t *mp;
    299 
    300 	if (__predict_false(cold))
    301 		return;
    302 
    303 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    304 	sleepq_wake(sq, ident, (u_int)-1, mp);
    305 }
    306 
    307 /*
    308  * General yield call.  Puts the current LWP back on its run queue and
    309  * performs a voluntary context switch.  Should only be called when the
    310  * current LWP explicitly requests it (eg sched_yield(2)).
    311  */
    312 void
    313 yield(void)
    314 {
    315 	struct lwp *l = curlwp;
    316 
    317 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    318 	lwp_lock(l);
    319 
    320 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    321 	KASSERT(l->l_stat == LSONPROC);
    322 
    323 	/* Voluntary - ditch kpriority boost. */
    324 	l->l_kpriority = false;
    325 	spc_lock(l->l_cpu);
    326 	mi_switch(l);
    327 	KERNEL_LOCK(l->l_biglocks, l);
    328 }
    329 
    330 /*
    331  * General preemption call.  Puts the current LWP back on its run queue
    332  * and performs an involuntary context switch.
    333  */
    334 void
    335 preempt(void)
    336 {
    337 	struct lwp *l = curlwp;
    338 
    339 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    340 	lwp_lock(l);
    341 
    342 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    343 	KASSERT(l->l_stat == LSONPROC);
    344 
    345 	/* Involuntary - keep kpriority boost. */
    346 	l->l_pflag |= LP_PREEMPTING;
    347 	spc_lock(l->l_cpu);
    348 	mi_switch(l);
    349 	KERNEL_LOCK(l->l_biglocks, l);
    350 }
    351 
    352 /*
    353  * Handle a request made by another agent to preempt the current LWP
    354  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    355  *
    356  * Character addresses for lockstat only.
    357  */
    358 static char	kpreempt_is_disabled;
    359 static char	kernel_lock_held;
    360 static char	is_softint_lwp;
    361 static char	spl_is_raised;
    362 
    363 bool
    364 kpreempt(uintptr_t where)
    365 {
    366 	uintptr_t failed;
    367 	lwp_t *l;
    368 	int s, dop, lsflag;
    369 
    370 	l = curlwp;
    371 	failed = 0;
    372 	while ((dop = l->l_dopreempt) != 0) {
    373 		if (l->l_stat != LSONPROC) {
    374 			/*
    375 			 * About to block (or die), let it happen.
    376 			 * Doesn't really count as "preemption has
    377 			 * been blocked", since we're going to
    378 			 * context switch.
    379 			 */
    380 			atomic_swap_uint(&l->l_dopreempt, 0);
    381 			return true;
    382 		}
    383 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    384 			/* Can't preempt idle loop, don't count as failure. */
    385 			atomic_swap_uint(&l->l_dopreempt, 0);
    386 			return true;
    387 		}
    388 		if (__predict_false(l->l_nopreempt != 0)) {
    389 			/* LWP holds preemption disabled, explicitly. */
    390 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    391 				kpreempt_ev_crit.ev_count++;
    392 			}
    393 			failed = (uintptr_t)&kpreempt_is_disabled;
    394 			break;
    395 		}
    396 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    397 			/* Can't preempt soft interrupts yet. */
    398 			atomic_swap_uint(&l->l_dopreempt, 0);
    399 			failed = (uintptr_t)&is_softint_lwp;
    400 			break;
    401 		}
    402 		s = splsched();
    403 		if (__predict_false(l->l_blcnt != 0 ||
    404 		    curcpu()->ci_biglock_wanted != NULL)) {
    405 			/* Hold or want kernel_lock, code is not MT safe. */
    406 			splx(s);
    407 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    408 				kpreempt_ev_klock.ev_count++;
    409 			}
    410 			failed = (uintptr_t)&kernel_lock_held;
    411 			break;
    412 		}
    413 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    414 			/*
    415 			 * It may be that the IPL is too high.
    416 			 * kpreempt_enter() can schedule an
    417 			 * interrupt to retry later.
    418 			 */
    419 			splx(s);
    420 			failed = (uintptr_t)&spl_is_raised;
    421 			break;
    422 		}
    423 		/* Do it! */
    424 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    425 			kpreempt_ev_immed.ev_count++;
    426 		}
    427 		lwp_lock(l);
    428 		/* Involuntary - keep kpriority boost. */
    429 		l->l_pflag |= LP_PREEMPTING;
    430 		spc_lock(l->l_cpu);
    431 		mi_switch(l);
    432 		l->l_nopreempt++;
    433 		splx(s);
    434 
    435 		/* Take care of any MD cleanup. */
    436 		cpu_kpreempt_exit(where);
    437 		l->l_nopreempt--;
    438 	}
    439 
    440 	if (__predict_true(!failed)) {
    441 		return false;
    442 	}
    443 
    444 	/* Record preemption failure for reporting via lockstat. */
    445 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    446 	lsflag = 0;
    447 	LOCKSTAT_ENTER(lsflag);
    448 	if (__predict_false(lsflag)) {
    449 		if (where == 0) {
    450 			where = (uintptr_t)__builtin_return_address(0);
    451 		}
    452 		/* Preemption is on, might recurse, so make it atomic. */
    453 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    454 		    (void *)where) == NULL) {
    455 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    456 			l->l_pfaillock = failed;
    457 		}
    458 	}
    459 	LOCKSTAT_EXIT(lsflag);
    460 	return true;
    461 }
    462 
    463 /*
    464  * Return true if preemption is explicitly disabled.
    465  */
    466 bool
    467 kpreempt_disabled(void)
    468 {
    469 	const lwp_t *l = curlwp;
    470 
    471 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    472 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    473 	    cpu_kpreempt_disabled();
    474 }
    475 
    476 /*
    477  * Disable kernel preemption.
    478  */
    479 void
    480 kpreempt_disable(void)
    481 {
    482 
    483 	KPREEMPT_DISABLE(curlwp);
    484 }
    485 
    486 /*
    487  * Reenable kernel preemption.
    488  */
    489 void
    490 kpreempt_enable(void)
    491 {
    492 
    493 	KPREEMPT_ENABLE(curlwp);
    494 }
    495 
    496 /*
    497  * Compute the amount of time during which the current lwp was running.
    498  *
    499  * - update l_rtime unless it's an idle lwp.
    500  */
    501 
    502 void
    503 updatertime(lwp_t *l, const struct bintime *now)
    504 {
    505 
    506 	if (__predict_false(l->l_flag & LW_IDLE))
    507 		return;
    508 
    509 	/* rtime += now - stime */
    510 	bintime_add(&l->l_rtime, now);
    511 	bintime_sub(&l->l_rtime, &l->l_stime);
    512 }
    513 
    514 /*
    515  * Select next LWP from the current CPU to run..
    516  */
    517 static inline lwp_t *
    518 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    519 {
    520 	lwp_t *newl;
    521 
    522 	/*
    523 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    524 	 * If no LWP is runnable, select the idle LWP.
    525 	 *
    526 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
    527 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
    528 	 * which may or may not be held here.  On exit from this code block,
    529 	 * in all cases newl is locked by spc_lwplock.
    530 	 */
    531 	newl = sched_nextlwp();
    532 	if (newl != NULL) {
    533 		sched_dequeue(newl);
    534 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    535 		KASSERT(newl->l_cpu == ci);
    536 		newl->l_stat = LSONPROC;
    537 		newl->l_pflag |= LP_RUNNING;
    538 		spc->spc_curpriority = lwp_eprio(newl);
    539 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    540 		lwp_setlock(newl, spc->spc_lwplock);
    541 	} else {
    542 		/*
    543 		 * Updates to newl here are unlocked, but newl is the idle
    544 		 * LWP and thus sheltered from outside interference, so no
    545 		 * harm is going to come of it.
    546 		 */
    547 		newl = ci->ci_data.cpu_idlelwp;
    548 		newl->l_stat = LSONPROC;
    549 		newl->l_pflag |= LP_RUNNING;
    550 		spc->spc_curpriority = PRI_IDLE;
    551 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    552 		    SPCF_IDLE;
    553 	}
    554 
    555 	/*
    556 	 * Only clear want_resched if there are no pending (slow) software
    557 	 * interrupts.  We can do this without an atomic, because no new
    558 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    559 	 * the update to ci_want_resched will become globally visible before
    560 	 * the release of spc_mutex becomes globally visible.
    561 	 */
    562 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    563 
    564 	return newl;
    565 }
    566 
    567 /*
    568  * The machine independent parts of context switch.
    569  *
    570  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    571  * changes its own l_cpu (that would screw up curcpu on many ports and could
    572  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    573  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    574  * is checked under lock).
    575  */
    576 void
    577 mi_switch(lwp_t *l)
    578 {
    579 	struct cpu_info *ci;
    580 	struct schedstate_percpu *spc;
    581 	struct lwp *newl;
    582 	kmutex_t *lock;
    583 	int oldspl;
    584 	struct bintime bt;
    585 	bool returning;
    586 
    587 	KASSERT(lwp_locked(l, NULL));
    588 	KASSERT(kpreempt_disabled());
    589 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    590 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    591 
    592 	kstack_check_magic(l);
    593 
    594 	binuptime(&bt);
    595 
    596 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    597 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    598 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    599 	ci = curcpu();
    600 	spc = &ci->ci_schedstate;
    601 	returning = false;
    602 	newl = NULL;
    603 
    604 	/*
    605 	 * If we have been asked to switch to a specific LWP, then there
    606 	 * is no need to inspect the run queues.  If a soft interrupt is
    607 	 * blocking, then return to the interrupted thread without adjusting
    608 	 * VM context or its start time: neither have been changed in order
    609 	 * to take the interrupt.
    610 	 */
    611 	if (l->l_switchto != NULL) {
    612 		if ((l->l_pflag & LP_INTR) != 0) {
    613 			returning = true;
    614 			softint_block(l);
    615 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    616 				updatertime(l, &bt);
    617 		}
    618 		newl = l->l_switchto;
    619 		l->l_switchto = NULL;
    620 	}
    621 #ifndef __HAVE_FAST_SOFTINTS
    622 	else if (ci->ci_data.cpu_softints != 0) {
    623 		/* There are pending soft interrupts, so pick one. */
    624 		newl = softint_picklwp();
    625 		newl->l_stat = LSONPROC;
    626 		newl->l_pflag |= LP_RUNNING;
    627 	}
    628 #endif	/* !__HAVE_FAST_SOFTINTS */
    629 
    630 	/*
    631 	 * If on the CPU and we have gotten this far, then we must yield.
    632 	 */
    633 	if (l->l_stat == LSONPROC && l != newl) {
    634 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    635 		KASSERT((l->l_flag & LW_IDLE) == 0);
    636 		l->l_stat = LSRUN;
    637 		lwp_setlock(l, spc->spc_mutex);
    638 		sched_enqueue(l);
    639 		sched_preempted(l);
    640 
    641 		/*
    642 		 * Handle migration.  Note that "migrating LWP" may
    643 		 * be reset here, if interrupt/preemption happens
    644 		 * early in idle LWP.
    645 		 */
    646 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    647 			KASSERT((l->l_pflag & LP_INTR) == 0);
    648 			spc->spc_migrating = l;
    649 		}
    650 	}
    651 
    652 	/* Pick new LWP to run. */
    653 	if (newl == NULL) {
    654 		newl = nextlwp(ci, spc);
    655 	}
    656 
    657 	/* Items that must be updated with the CPU locked. */
    658 	if (!returning) {
    659 		/* Count time spent in current system call */
    660 		SYSCALL_TIME_SLEEP(l);
    661 
    662 		updatertime(l, &bt);
    663 
    664 		/* Update the new LWP's start time. */
    665 		newl->l_stime = bt;
    666 
    667 		/*
    668 		 * ci_curlwp changes when a fast soft interrupt occurs.
    669 		 * We use ci_onproc to keep track of which kernel or
    670 		 * user thread is running 'underneath' the software
    671 		 * interrupt.  This is important for time accounting,
    672 		 * itimers and forcing user threads to preempt (aston).
    673 		 */
    674 		ci->ci_onproc = newl;
    675 	}
    676 
    677 	/*
    678 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    679 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    680 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    681 	 * cleared by the LWP itself (us) with atomics when not under lock.
    682 	 */
    683 	l->l_dopreempt = 0;
    684 	if (__predict_false(l->l_pfailaddr != 0)) {
    685 		LOCKSTAT_FLAG(lsflag);
    686 		LOCKSTAT_ENTER(lsflag);
    687 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    688 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    689 		    1, l->l_pfailtime, l->l_pfailaddr);
    690 		LOCKSTAT_EXIT(lsflag);
    691 		l->l_pfailtime = 0;
    692 		l->l_pfaillock = 0;
    693 		l->l_pfailaddr = 0;
    694 	}
    695 
    696 	if (l != newl) {
    697 		struct lwp *prevlwp;
    698 
    699 		/* Release all locks, but leave the current LWP locked */
    700 		if (l->l_mutex == spc->spc_mutex) {
    701 			/*
    702 			 * Drop spc_lwplock, if the current LWP has been moved
    703 			 * to the run queue (it is now locked by spc_mutex).
    704 			 */
    705 			mutex_spin_exit(spc->spc_lwplock);
    706 		} else {
    707 			/*
    708 			 * Otherwise, drop the spc_mutex, we are done with the
    709 			 * run queues.
    710 			 */
    711 			mutex_spin_exit(spc->spc_mutex);
    712 		}
    713 
    714 		/* We're down to only one lock, so do debug checks. */
    715 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    716 
    717 		/* Count the context switch. */
    718 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    719 		l->l_ncsw++;
    720 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    721 			l->l_nivcsw++;
    722 			l->l_pflag &= ~LP_PREEMPTING;
    723 		}
    724 
    725 		/*
    726 		 * Increase the count of spin-mutexes before the release
    727 		 * of the last lock - we must remain at IPL_SCHED after
    728 		 * releasing the lock.
    729 		 */
    730 		KASSERTMSG(ci->ci_mtx_count == -1,
    731 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    732 		    "(block with spin-mutex held)",
    733 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    734 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    735 		ci->ci_mtx_count = -2;
    736 
    737 		/* Update status for lwpctl, if present. */
    738 		if (l->l_lwpctl != NULL) {
    739 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    740 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    741 		}
    742 
    743 		/*
    744 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    745 		 * other side to unlock - we're returning into an assembly
    746 		 * trampoline.  Unlock now.  This is safe because this is a
    747 		 * kernel LWP and is bound to current CPU: the worst anyone
    748 		 * else will do to it, is to put it back onto this CPU's run
    749 		 * queue (and the CPU is busy here right now!).
    750 		 */
    751 		if (returning) {
    752 			/* Keep IPL_SCHED after this; MD code will fix up. */
    753 			l->l_pflag &= ~LP_RUNNING;
    754 			lwp_unlock(l);
    755 		} else {
    756 			/* A normal LWP: save old VM context. */
    757 			pmap_deactivate(l);
    758 		}
    759 
    760 		/*
    761 		 * If DTrace has set the active vtime enum to anything
    762 		 * other than INACTIVE (0), then it should have set the
    763 		 * function to call.
    764 		 */
    765 		if (__predict_false(dtrace_vtime_active)) {
    766 			(*dtrace_vtime_switch_func)(newl);
    767 		}
    768 
    769 		/*
    770 		 * We must ensure not to come here from inside a read section.
    771 		 */
    772 		KASSERT(pserialize_not_in_read_section());
    773 
    774 		/* Switch to the new LWP.. */
    775 #ifdef MULTIPROCESSOR
    776 		KASSERT(curlwp == ci->ci_curlwp);
    777 #endif
    778 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    779 		prevlwp = cpu_switchto(l, newl, returning);
    780 		ci = curcpu();
    781 #ifdef MULTIPROCESSOR
    782 		KASSERT(curlwp == ci->ci_curlwp);
    783 #endif
    784 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    785 		    l, curlwp, prevlwp);
    786 		KASSERT(prevlwp != NULL);
    787 		KASSERT(l->l_cpu == ci);
    788 		KASSERT(ci->ci_mtx_count == -2);
    789 
    790 		/*
    791 		 * Immediately mark the previous LWP as no longer running
    792 		 * and unlock (to keep lock wait times short as possible).
    793 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    794 		 * don't touch after clearing LP_RUNNING as it could be
    795 		 * reaped by another CPU.  Issue a memory barrier to ensure
    796 		 * this.
    797 		 */
    798 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    799 		lock = prevlwp->l_mutex;
    800 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    801 			membar_sync();
    802 		}
    803 		prevlwp->l_pflag &= ~LP_RUNNING;
    804 		mutex_spin_exit(lock);
    805 
    806 		/*
    807 		 * Switched away - we have new curlwp.
    808 		 * Restore VM context and IPL.
    809 		 */
    810 		pmap_activate(l);
    811 		pcu_switchpoint(l);
    812 
    813 		/* Update status for lwpctl, if present. */
    814 		if (l->l_lwpctl != NULL) {
    815 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    816 			l->l_lwpctl->lc_pctr++;
    817 		}
    818 
    819 		/*
    820 		 * Normalize the spin mutex count and restore the previous
    821 		 * SPL.  Note that, unless the caller disabled preemption,
    822 		 * we can be preempted at any time after this splx().
    823 		 */
    824 		KASSERT(l->l_cpu == ci);
    825 		KASSERT(ci->ci_mtx_count == -1);
    826 		ci->ci_mtx_count = 0;
    827 		splx(oldspl);
    828 	} else {
    829 		/* Nothing to do - just unlock and return. */
    830 		mutex_spin_exit(spc->spc_mutex);
    831 		l->l_pflag &= ~LP_PREEMPTING;
    832 		lwp_unlock(l);
    833 	}
    834 
    835 	KASSERT(l == curlwp);
    836 	KASSERT(l->l_stat == LSONPROC);
    837 
    838 	SYSCALL_TIME_WAKEUP(l);
    839 	LOCKDEBUG_BARRIER(NULL, 1);
    840 }
    841 
    842 /*
    843  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    844  *
    845  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    846  */
    847 void
    848 setrunnable(struct lwp *l)
    849 {
    850 	struct proc *p = l->l_proc;
    851 	struct cpu_info *ci;
    852 	kmutex_t *oldlock;
    853 
    854 	KASSERT((l->l_flag & LW_IDLE) == 0);
    855 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    856 	KASSERT(mutex_owned(p->p_lock));
    857 	KASSERT(lwp_locked(l, NULL));
    858 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    859 
    860 	switch (l->l_stat) {
    861 	case LSSTOP:
    862 		/*
    863 		 * If we're being traced (possibly because someone attached us
    864 		 * while we were stopped), check for a signal from the debugger.
    865 		 */
    866 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    867 			signotify(l);
    868 		p->p_nrlwps++;
    869 		break;
    870 	case LSSUSPENDED:
    871 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    872 		l->l_flag &= ~LW_WSUSPEND;
    873 		p->p_nrlwps++;
    874 		cv_broadcast(&p->p_lwpcv);
    875 		break;
    876 	case LSSLEEP:
    877 		KASSERT(l->l_wchan != NULL);
    878 		break;
    879 	case LSIDL:
    880 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    881 		break;
    882 	default:
    883 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    884 	}
    885 
    886 	/*
    887 	 * If the LWP was sleeping, start it again.
    888 	 */
    889 	if (l->l_wchan != NULL) {
    890 		l->l_stat = LSSLEEP;
    891 		/* lwp_unsleep() will release the lock. */
    892 		lwp_unsleep(l, true);
    893 		return;
    894 	}
    895 
    896 	/*
    897 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    898 	 * about to call mi_switch(), in which case it will yield.
    899 	 */
    900 	if ((l->l_pflag & LP_RUNNING) != 0) {
    901 		l->l_stat = LSONPROC;
    902 		l->l_slptime = 0;
    903 		lwp_unlock(l);
    904 		return;
    905 	}
    906 
    907 	/*
    908 	 * Look for a CPU to run.
    909 	 * Set the LWP runnable.
    910 	 */
    911 	ci = sched_takecpu(l);
    912 	l->l_cpu = ci;
    913 	spc_lock(ci);
    914 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    915 	sched_setrunnable(l);
    916 	l->l_stat = LSRUN;
    917 	l->l_slptime = 0;
    918 	sched_enqueue(l);
    919 	sched_resched_lwp(l, true);
    920 	/* SPC & LWP now unlocked. */
    921 	mutex_spin_exit(oldlock);
    922 }
    923 
    924 /*
    925  * suspendsched:
    926  *
    927  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    928  */
    929 void
    930 suspendsched(void)
    931 {
    932 	CPU_INFO_ITERATOR cii;
    933 	struct cpu_info *ci;
    934 	struct lwp *l;
    935 	struct proc *p;
    936 
    937 	/*
    938 	 * We do this by process in order not to violate the locking rules.
    939 	 */
    940 	mutex_enter(proc_lock);
    941 	PROCLIST_FOREACH(p, &allproc) {
    942 		mutex_enter(p->p_lock);
    943 		if ((p->p_flag & PK_SYSTEM) != 0) {
    944 			mutex_exit(p->p_lock);
    945 			continue;
    946 		}
    947 
    948 		if (p->p_stat != SSTOP) {
    949 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    950 				p->p_pptr->p_nstopchild++;
    951 				p->p_waited = 0;
    952 			}
    953 			p->p_stat = SSTOP;
    954 		}
    955 
    956 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    957 			if (l == curlwp)
    958 				continue;
    959 
    960 			lwp_lock(l);
    961 
    962 			/*
    963 			 * Set L_WREBOOT so that the LWP will suspend itself
    964 			 * when it tries to return to user mode.  We want to
    965 			 * try and get to get as many LWPs as possible to
    966 			 * the user / kernel boundary, so that they will
    967 			 * release any locks that they hold.
    968 			 */
    969 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    970 
    971 			if (l->l_stat == LSSLEEP &&
    972 			    (l->l_flag & LW_SINTR) != 0) {
    973 				/* setrunnable() will release the lock. */
    974 				setrunnable(l);
    975 				continue;
    976 			}
    977 
    978 			lwp_unlock(l);
    979 		}
    980 
    981 		mutex_exit(p->p_lock);
    982 	}
    983 	mutex_exit(proc_lock);
    984 
    985 	/*
    986 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    987 	 * They'll trap into the kernel and suspend themselves in userret().
    988 	 *
    989 	 * Unusually, we don't hold any other scheduler object locked, which
    990 	 * would keep preemption off for sched_resched_cpu(), so disable it
    991 	 * explicitly.
    992 	 */
    993 	kpreempt_disable();
    994 	for (CPU_INFO_FOREACH(cii, ci)) {
    995 		spc_lock(ci);
    996 		sched_resched_cpu(ci, PRI_KERNEL, true);
    997 		/* spc now unlocked */
    998 	}
    999 	kpreempt_enable();
   1000 }
   1001 
   1002 /*
   1003  * sched_unsleep:
   1004  *
   1005  *	The is called when the LWP has not been awoken normally but instead
   1006  *	interrupted: for example, if the sleep timed out.  Because of this,
   1007  *	it's not a valid action for running or idle LWPs.
   1008  */
   1009 static void
   1010 sched_unsleep(struct lwp *l, bool cleanup)
   1011 {
   1012 
   1013 	lwp_unlock(l);
   1014 	panic("sched_unsleep");
   1015 }
   1016 
   1017 static void
   1018 sched_changepri(struct lwp *l, pri_t pri)
   1019 {
   1020 	struct schedstate_percpu *spc;
   1021 	struct cpu_info *ci;
   1022 
   1023 	KASSERT(lwp_locked(l, NULL));
   1024 
   1025 	ci = l->l_cpu;
   1026 	spc = &ci->ci_schedstate;
   1027 
   1028 	if (l->l_stat == LSRUN) {
   1029 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1030 		sched_dequeue(l);
   1031 		l->l_priority = pri;
   1032 		sched_enqueue(l);
   1033 		sched_resched_lwp(l, false);
   1034 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1035 		/* On priority drop, only evict realtime LWPs. */
   1036 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1037 		l->l_priority = pri;
   1038 		spc_lock(ci);
   1039 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1040 		/* spc now unlocked */
   1041 	} else {
   1042 		l->l_priority = pri;
   1043 	}
   1044 }
   1045 
   1046 static void
   1047 sched_lendpri(struct lwp *l, pri_t pri)
   1048 {
   1049 	struct schedstate_percpu *spc;
   1050 	struct cpu_info *ci;
   1051 
   1052 	KASSERT(lwp_locked(l, NULL));
   1053 
   1054 	ci = l->l_cpu;
   1055 	spc = &ci->ci_schedstate;
   1056 
   1057 	if (l->l_stat == LSRUN) {
   1058 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1059 		sched_dequeue(l);
   1060 		l->l_inheritedprio = pri;
   1061 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1062 		sched_enqueue(l);
   1063 		sched_resched_lwp(l, false);
   1064 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1065 		/* On priority drop, only evict realtime LWPs. */
   1066 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1067 		l->l_inheritedprio = pri;
   1068 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1069 		spc_lock(ci);
   1070 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1071 		/* spc now unlocked */
   1072 	} else {
   1073 		l->l_inheritedprio = pri;
   1074 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1075 	}
   1076 }
   1077 
   1078 struct lwp *
   1079 syncobj_noowner(wchan_t wchan)
   1080 {
   1081 
   1082 	return NULL;
   1083 }
   1084 
   1085 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1086 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1087 
   1088 /*
   1089  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1090  * 5 second intervals.
   1091  */
   1092 static const fixpt_t cexp[ ] = {
   1093 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1094 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1095 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1096 };
   1097 
   1098 /*
   1099  * sched_pstats:
   1100  *
   1101  * => Update process statistics and check CPU resource allocation.
   1102  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1103  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1104  */
   1105 void
   1106 sched_pstats(void)
   1107 {
   1108 	extern struct loadavg averunnable;
   1109 	struct loadavg *avg = &averunnable;
   1110 	const int clkhz = (stathz != 0 ? stathz : hz);
   1111 	static bool backwards = false;
   1112 	static u_int lavg_count = 0;
   1113 	struct proc *p;
   1114 	int nrun;
   1115 
   1116 	sched_pstats_ticks++;
   1117 	if (++lavg_count >= 5) {
   1118 		lavg_count = 0;
   1119 		nrun = 0;
   1120 	}
   1121 	mutex_enter(proc_lock);
   1122 	PROCLIST_FOREACH(p, &allproc) {
   1123 		struct lwp *l;
   1124 		struct rlimit *rlim;
   1125 		time_t runtm;
   1126 		int sig;
   1127 
   1128 		/* Increment sleep time (if sleeping), ignore overflow. */
   1129 		mutex_enter(p->p_lock);
   1130 		runtm = p->p_rtime.sec;
   1131 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1132 			fixpt_t lpctcpu;
   1133 			u_int lcpticks;
   1134 
   1135 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1136 				continue;
   1137 			lwp_lock(l);
   1138 			runtm += l->l_rtime.sec;
   1139 			l->l_swtime++;
   1140 			sched_lwp_stats(l);
   1141 
   1142 			/* For load average calculation. */
   1143 			if (__predict_false(lavg_count == 0) &&
   1144 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1145 				switch (l->l_stat) {
   1146 				case LSSLEEP:
   1147 					if (l->l_slptime > 1) {
   1148 						break;
   1149 					}
   1150 					/* FALLTHROUGH */
   1151 				case LSRUN:
   1152 				case LSONPROC:
   1153 				case LSIDL:
   1154 					nrun++;
   1155 				}
   1156 			}
   1157 			lwp_unlock(l);
   1158 
   1159 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1160 			if (l->l_slptime != 0)
   1161 				continue;
   1162 
   1163 			lpctcpu = l->l_pctcpu;
   1164 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1165 			lpctcpu += ((FSCALE - ccpu) *
   1166 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1167 			l->l_pctcpu = lpctcpu;
   1168 		}
   1169 		/* Calculating p_pctcpu only for ps(1) */
   1170 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1171 
   1172 		if (__predict_false(runtm < 0)) {
   1173 			if (!backwards) {
   1174 				backwards = true;
   1175 				printf("WARNING: negative runtime; "
   1176 				    "monotonic clock has gone backwards\n");
   1177 			}
   1178 			mutex_exit(p->p_lock);
   1179 			continue;
   1180 		}
   1181 
   1182 		/*
   1183 		 * Check if the process exceeds its CPU resource allocation.
   1184 		 * If over the hard limit, kill it with SIGKILL.
   1185 		 * If over the soft limit, send SIGXCPU and raise
   1186 		 * the soft limit a little.
   1187 		 */
   1188 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1189 		sig = 0;
   1190 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1191 			if (runtm >= rlim->rlim_max) {
   1192 				sig = SIGKILL;
   1193 				log(LOG_NOTICE,
   1194 				    "pid %d, command %s, is killed: %s\n",
   1195 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1196 				uprintf("pid %d, command %s, is killed: %s\n",
   1197 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1198 			} else {
   1199 				sig = SIGXCPU;
   1200 				if (rlim->rlim_cur < rlim->rlim_max)
   1201 					rlim->rlim_cur += 5;
   1202 			}
   1203 		}
   1204 		mutex_exit(p->p_lock);
   1205 		if (__predict_false(sig)) {
   1206 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1207 			psignal(p, sig);
   1208 		}
   1209 	}
   1210 
   1211 	/* Load average calculation. */
   1212 	if (__predict_false(lavg_count == 0)) {
   1213 		int i;
   1214 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1215 		for (i = 0; i < __arraycount(cexp); i++) {
   1216 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1217 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1218 		}
   1219 	}
   1220 
   1221 	/* Lightning bolt. */
   1222 	cv_broadcast(&lbolt);
   1223 
   1224 	mutex_exit(proc_lock);
   1225 }
   1226