Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.344
      1 /*	$NetBSD: kern_synch.c,v 1.344 2020/03/14 20:23:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.344 2020/03/14 20:23:51 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/rwlock.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/syslog.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 #include <sys/dtrace_bsd.h>
    102 int                             dtrace_vtime_active=0;
    103 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    104 
    105 static void	sched_unsleep(struct lwp *, bool);
    106 static void	sched_changepri(struct lwp *, pri_t);
    107 static void	sched_lendpri(struct lwp *, pri_t);
    108 
    109 syncobj_t sleep_syncobj = {
    110 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    111 	.sobj_unsleep	= sleepq_unsleep,
    112 	.sobj_changepri	= sleepq_changepri,
    113 	.sobj_lendpri	= sleepq_lendpri,
    114 	.sobj_owner	= syncobj_noowner,
    115 };
    116 
    117 syncobj_t sched_syncobj = {
    118 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    119 	.sobj_unsleep	= sched_unsleep,
    120 	.sobj_changepri	= sched_changepri,
    121 	.sobj_lendpri	= sched_lendpri,
    122 	.sobj_owner	= syncobj_noowner,
    123 };
    124 
    125 syncobj_t kpause_syncobj = {
    126 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
    127 	.sobj_unsleep	= sleepq_unsleep,
    128 	.sobj_changepri	= sleepq_changepri,
    129 	.sobj_lendpri	= sleepq_lendpri,
    130 	.sobj_owner	= syncobj_noowner,
    131 };
    132 
    133 /* "Lightning bolt": once a second sleep address. */
    134 kcondvar_t		lbolt			__cacheline_aligned;
    135 
    136 u_int			sched_pstats_ticks	__cacheline_aligned;
    137 
    138 /* Preemption event counters. */
    139 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    140 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    141 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    142 
    143 void
    144 synch_init(void)
    145 {
    146 
    147 	cv_init(&lbolt, "lbolt");
    148 
    149 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150 	   "kpreempt", "defer: critical section");
    151 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: kernel_lock");
    153 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "immediate");
    155 }
    156 
    157 /*
    158  * OBSOLETE INTERFACE
    159  *
    160  * General sleep call.  Suspends the current LWP until a wakeup is
    161  * performed on the specified identifier.  The LWP will then be made
    162  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    163  * means no timeout).  If pri includes PCATCH flag, signals are checked
    164  * before and after sleeping, else signals are not checked.  Returns 0 if
    165  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    166  * signal needs to be delivered, ERESTART is returned if the current system
    167  * call should be restarted if possible, and EINTR is returned if the system
    168  * call should be interrupted by the signal (return EINTR).
    169  */
    170 int
    171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    172 {
    173 	struct lwp *l = curlwp;
    174 	sleepq_t *sq;
    175 	kmutex_t *mp;
    176 
    177 	KASSERT((l->l_pflag & LP_INTR) == 0);
    178 	KASSERT(ident != &lbolt);
    179 
    180 	if (sleepq_dontsleep(l)) {
    181 		(void)sleepq_abort(NULL, 0);
    182 		return 0;
    183 	}
    184 
    185 	l->l_kpriority = true;
    186 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    187 	sleepq_enter(sq, l, mp);
    188 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    189 	return sleepq_block(timo, priority & PCATCH);
    190 }
    191 
    192 int
    193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    194 	kmutex_t *mtx)
    195 {
    196 	struct lwp *l = curlwp;
    197 	sleepq_t *sq;
    198 	kmutex_t *mp;
    199 	int error;
    200 
    201 	KASSERT((l->l_pflag & LP_INTR) == 0);
    202 	KASSERT(ident != &lbolt);
    203 
    204 	if (sleepq_dontsleep(l)) {
    205 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    206 		return 0;
    207 	}
    208 
    209 	l->l_kpriority = true;
    210 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    211 	sleepq_enter(sq, l, mp);
    212 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    213 	mutex_exit(mtx);
    214 	error = sleepq_block(timo, priority & PCATCH);
    215 
    216 	if ((priority & PNORELOCK) == 0)
    217 		mutex_enter(mtx);
    218 
    219 	return error;
    220 }
    221 
    222 /*
    223  * General sleep call for situations where a wake-up is not expected.
    224  */
    225 int
    226 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    227 {
    228 	struct lwp *l = curlwp;
    229 	int error;
    230 
    231 	KASSERT(!(timo == 0 && intr == false));
    232 
    233 	if (sleepq_dontsleep(l))
    234 		return sleepq_abort(NULL, 0);
    235 
    236 	if (mtx != NULL)
    237 		mutex_exit(mtx);
    238 	l->l_kpriority = true;
    239 	lwp_lock(l);
    240 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
    241 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj);
    242 	error = sleepq_block(timo, intr);
    243 	if (mtx != NULL)
    244 		mutex_enter(mtx);
    245 
    246 	return error;
    247 }
    248 
    249 /*
    250  * OBSOLETE INTERFACE
    251  *
    252  * Make all LWPs sleeping on the specified identifier runnable.
    253  */
    254 void
    255 wakeup(wchan_t ident)
    256 {
    257 	sleepq_t *sq;
    258 	kmutex_t *mp;
    259 
    260 	if (__predict_false(cold))
    261 		return;
    262 
    263 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    264 	sleepq_wake(sq, ident, (u_int)-1, mp);
    265 }
    266 
    267 /*
    268  * General yield call.  Puts the current LWP back on its run queue and
    269  * performs a context switch.
    270  */
    271 void
    272 yield(void)
    273 {
    274 	struct lwp *l = curlwp;
    275 
    276 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    277 	lwp_lock(l);
    278 
    279 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    280 	KASSERT(l->l_stat == LSONPROC);
    281 
    282 	/* Voluntary - ditch kpriority boost. */
    283 	l->l_kpriority = false;
    284 	spc_lock(l->l_cpu);
    285 	mi_switch(l);
    286 	KERNEL_LOCK(l->l_biglocks, l);
    287 }
    288 
    289 /*
    290  * General preemption call.  Puts the current LWP back on its run queue
    291  * and performs an involuntary context switch.  Different from yield()
    292  * in that:
    293  *
    294  * - It's counted differently (involuntary vs. voluntary).
    295  * - Realtime threads go to the head of their runqueue vs. tail for yield().
    296  * - Priority boost is retained unless LWP has exceeded timeslice.
    297  */
    298 void
    299 preempt(void)
    300 {
    301 	struct lwp *l = curlwp;
    302 
    303 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304 	lwp_lock(l);
    305 
    306 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    307 	KASSERT(l->l_stat == LSONPROC);
    308 
    309 	spc_lock(l->l_cpu);
    310 	/* Involuntary - keep kpriority boost unless a CPU hog. */
    311 	if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
    312 		l->l_kpriority = false;
    313 	}
    314 	l->l_pflag |= LP_PREEMPTING;
    315 	mi_switch(l);
    316 	KERNEL_LOCK(l->l_biglocks, l);
    317 }
    318 
    319 /*
    320  * A breathing point for long running code in kernel.
    321  */
    322 void
    323 preempt_point(void)
    324 {
    325 	lwp_t *l = curlwp;
    326 	int needed;
    327 
    328 	KPREEMPT_DISABLE(l);
    329 	needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD;
    330 #ifndef __HAVE_FAST_SOFTINTS
    331 	needed |= l->l_cpu->ci_data.cpu_softints;
    332 #endif
    333 	KPREEMPT_ENABLE(l);
    334 
    335 	if (__predict_false(needed)) {
    336 		preempt();
    337 	}
    338 }
    339 
    340 /*
    341  * Check the SPCF_SHOULDYIELD flag.
    342  */
    343 bool
    344 preempt_needed(void)
    345 {
    346 	lwp_t *l = curlwp;
    347 	int needed;
    348 
    349 	KPREEMPT_DISABLE(l);
    350 	needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD;
    351 #ifndef __HAVE_FAST_SOFTINTS
    352 	needed |= l->l_cpu->ci_data.cpu_softints;
    353 #endif
    354 	KPREEMPT_ENABLE(l);
    355 
    356 	return (bool)needed;
    357 }
    358 
    359 /*
    360  * Handle a request made by another agent to preempt the current LWP
    361  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    362  *
    363  * Character addresses for lockstat only.
    364  */
    365 static char	kpreempt_is_disabled;
    366 static char	kernel_lock_held;
    367 static char	is_softint_lwp;
    368 static char	spl_is_raised;
    369 
    370 bool
    371 kpreempt(uintptr_t where)
    372 {
    373 	uintptr_t failed;
    374 	lwp_t *l;
    375 	int s, dop, lsflag;
    376 
    377 	l = curlwp;
    378 	failed = 0;
    379 	while ((dop = l->l_dopreempt) != 0) {
    380 		if (l->l_stat != LSONPROC) {
    381 			/*
    382 			 * About to block (or die), let it happen.
    383 			 * Doesn't really count as "preemption has
    384 			 * been blocked", since we're going to
    385 			 * context switch.
    386 			 */
    387 			atomic_swap_uint(&l->l_dopreempt, 0);
    388 			return true;
    389 		}
    390 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    391 			/* Can't preempt idle loop, don't count as failure. */
    392 			atomic_swap_uint(&l->l_dopreempt, 0);
    393 			return true;
    394 		}
    395 		if (__predict_false(l->l_nopreempt != 0)) {
    396 			/* LWP holds preemption disabled, explicitly. */
    397 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    398 				kpreempt_ev_crit.ev_count++;
    399 			}
    400 			failed = (uintptr_t)&kpreempt_is_disabled;
    401 			break;
    402 		}
    403 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    404 			/* Can't preempt soft interrupts yet. */
    405 			atomic_swap_uint(&l->l_dopreempt, 0);
    406 			failed = (uintptr_t)&is_softint_lwp;
    407 			break;
    408 		}
    409 		s = splsched();
    410 		if (__predict_false(l->l_blcnt != 0 ||
    411 		    curcpu()->ci_biglock_wanted != NULL)) {
    412 			/* Hold or want kernel_lock, code is not MT safe. */
    413 			splx(s);
    414 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    415 				kpreempt_ev_klock.ev_count++;
    416 			}
    417 			failed = (uintptr_t)&kernel_lock_held;
    418 			break;
    419 		}
    420 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    421 			/*
    422 			 * It may be that the IPL is too high.
    423 			 * kpreempt_enter() can schedule an
    424 			 * interrupt to retry later.
    425 			 */
    426 			splx(s);
    427 			failed = (uintptr_t)&spl_is_raised;
    428 			break;
    429 		}
    430 		/* Do it! */
    431 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    432 			kpreempt_ev_immed.ev_count++;
    433 		}
    434 		lwp_lock(l);
    435 		/* Involuntary - keep kpriority boost. */
    436 		l->l_pflag |= LP_PREEMPTING;
    437 		spc_lock(l->l_cpu);
    438 		mi_switch(l);
    439 		l->l_nopreempt++;
    440 		splx(s);
    441 
    442 		/* Take care of any MD cleanup. */
    443 		cpu_kpreempt_exit(where);
    444 		l->l_nopreempt--;
    445 	}
    446 
    447 	if (__predict_true(!failed)) {
    448 		return false;
    449 	}
    450 
    451 	/* Record preemption failure for reporting via lockstat. */
    452 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    453 	lsflag = 0;
    454 	LOCKSTAT_ENTER(lsflag);
    455 	if (__predict_false(lsflag)) {
    456 		if (where == 0) {
    457 			where = (uintptr_t)__builtin_return_address(0);
    458 		}
    459 		/* Preemption is on, might recurse, so make it atomic. */
    460 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    461 		    (void *)where) == NULL) {
    462 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    463 			l->l_pfaillock = failed;
    464 		}
    465 	}
    466 	LOCKSTAT_EXIT(lsflag);
    467 	return true;
    468 }
    469 
    470 /*
    471  * Return true if preemption is explicitly disabled.
    472  */
    473 bool
    474 kpreempt_disabled(void)
    475 {
    476 	const lwp_t *l = curlwp;
    477 
    478 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    479 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    480 	    cpu_kpreempt_disabled();
    481 }
    482 
    483 /*
    484  * Disable kernel preemption.
    485  */
    486 void
    487 kpreempt_disable(void)
    488 {
    489 
    490 	KPREEMPT_DISABLE(curlwp);
    491 }
    492 
    493 /*
    494  * Reenable kernel preemption.
    495  */
    496 void
    497 kpreempt_enable(void)
    498 {
    499 
    500 	KPREEMPT_ENABLE(curlwp);
    501 }
    502 
    503 /*
    504  * Compute the amount of time during which the current lwp was running.
    505  *
    506  * - update l_rtime unless it's an idle lwp.
    507  */
    508 
    509 void
    510 updatertime(lwp_t *l, const struct bintime *now)
    511 {
    512 
    513 	if (__predict_false(l->l_flag & LW_IDLE))
    514 		return;
    515 
    516 	/* rtime += now - stime */
    517 	bintime_add(&l->l_rtime, now);
    518 	bintime_sub(&l->l_rtime, &l->l_stime);
    519 }
    520 
    521 /*
    522  * Select next LWP from the current CPU to run..
    523  */
    524 static inline lwp_t *
    525 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    526 {
    527 	lwp_t *newl;
    528 
    529 	/*
    530 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    531 	 * If no LWP is runnable, select the idle LWP.
    532 	 *
    533 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
    534 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
    535 	 * which may or may not be held here.  On exit from this code block,
    536 	 * in all cases newl is locked by spc_lwplock.
    537 	 */
    538 	newl = sched_nextlwp();
    539 	if (newl != NULL) {
    540 		sched_dequeue(newl);
    541 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    542 		KASSERT(newl->l_cpu == ci);
    543 		newl->l_stat = LSONPROC;
    544 		newl->l_pflag |= LP_RUNNING;
    545 		spc->spc_curpriority = lwp_eprio(newl);
    546 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    547 		lwp_setlock(newl, spc->spc_lwplock);
    548 	} else {
    549 		/*
    550 		 * Updates to newl here are unlocked, but newl is the idle
    551 		 * LWP and thus sheltered from outside interference, so no
    552 		 * harm is going to come of it.
    553 		 */
    554 		newl = ci->ci_data.cpu_idlelwp;
    555 		newl->l_stat = LSONPROC;
    556 		newl->l_pflag |= LP_RUNNING;
    557 		spc->spc_curpriority = PRI_IDLE;
    558 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    559 		    SPCF_IDLE;
    560 	}
    561 
    562 	/*
    563 	 * Only clear want_resched if there are no pending (slow) software
    564 	 * interrupts.  We can do this without an atomic, because no new
    565 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    566 	 * the update to ci_want_resched will become globally visible before
    567 	 * the release of spc_mutex becomes globally visible.
    568 	 */
    569 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    570 
    571 	return newl;
    572 }
    573 
    574 /*
    575  * The machine independent parts of context switch.
    576  *
    577  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    578  * changes its own l_cpu (that would screw up curcpu on many ports and could
    579  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    580  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    581  * is checked under lock).
    582  */
    583 void
    584 mi_switch(lwp_t *l)
    585 {
    586 	struct cpu_info *ci;
    587 	struct schedstate_percpu *spc;
    588 	struct lwp *newl;
    589 	kmutex_t *lock;
    590 	int oldspl;
    591 	struct bintime bt;
    592 	bool returning;
    593 
    594 	KASSERT(lwp_locked(l, NULL));
    595 	KASSERT(kpreempt_disabled());
    596 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    597 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    598 
    599 	kstack_check_magic(l);
    600 
    601 	binuptime(&bt);
    602 
    603 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    604 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    605 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    606 	ci = curcpu();
    607 	spc = &ci->ci_schedstate;
    608 	returning = false;
    609 	newl = NULL;
    610 
    611 	/*
    612 	 * If we have been asked to switch to a specific LWP, then there
    613 	 * is no need to inspect the run queues.  If a soft interrupt is
    614 	 * blocking, then return to the interrupted thread without adjusting
    615 	 * VM context or its start time: neither have been changed in order
    616 	 * to take the interrupt.
    617 	 */
    618 	if (l->l_switchto != NULL) {
    619 		if ((l->l_pflag & LP_INTR) != 0) {
    620 			returning = true;
    621 			softint_block(l);
    622 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    623 				updatertime(l, &bt);
    624 		}
    625 		newl = l->l_switchto;
    626 		l->l_switchto = NULL;
    627 	}
    628 #ifndef __HAVE_FAST_SOFTINTS
    629 	else if (ci->ci_data.cpu_softints != 0) {
    630 		/* There are pending soft interrupts, so pick one. */
    631 		newl = softint_picklwp();
    632 		newl->l_stat = LSONPROC;
    633 		newl->l_pflag |= LP_RUNNING;
    634 	}
    635 #endif	/* !__HAVE_FAST_SOFTINTS */
    636 
    637 	/*
    638 	 * If on the CPU and we have gotten this far, then we must yield.
    639 	 */
    640 	if (l->l_stat == LSONPROC && l != newl) {
    641 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    642 		KASSERT((l->l_flag & LW_IDLE) == 0);
    643 		l->l_stat = LSRUN;
    644 		lwp_setlock(l, spc->spc_mutex);
    645 		sched_enqueue(l);
    646 		sched_preempted(l);
    647 
    648 		/*
    649 		 * Handle migration.  Note that "migrating LWP" may
    650 		 * be reset here, if interrupt/preemption happens
    651 		 * early in idle LWP.
    652 		 */
    653 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    654 			KASSERT((l->l_pflag & LP_INTR) == 0);
    655 			spc->spc_migrating = l;
    656 		}
    657 	}
    658 
    659 	/* Pick new LWP to run. */
    660 	if (newl == NULL) {
    661 		newl = nextlwp(ci, spc);
    662 	}
    663 
    664 	/* Items that must be updated with the CPU locked. */
    665 	if (!returning) {
    666 		/* Count time spent in current system call */
    667 		SYSCALL_TIME_SLEEP(l);
    668 
    669 		updatertime(l, &bt);
    670 
    671 		/* Update the new LWP's start time. */
    672 		newl->l_stime = bt;
    673 
    674 		/*
    675 		 * ci_curlwp changes when a fast soft interrupt occurs.
    676 		 * We use ci_onproc to keep track of which kernel or
    677 		 * user thread is running 'underneath' the software
    678 		 * interrupt.  This is important for time accounting,
    679 		 * itimers and forcing user threads to preempt (aston).
    680 		 */
    681 		ci->ci_onproc = newl;
    682 	}
    683 
    684 	/*
    685 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    686 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    687 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    688 	 * cleared by the LWP itself (us) with atomics when not under lock.
    689 	 */
    690 	l->l_dopreempt = 0;
    691 	if (__predict_false(l->l_pfailaddr != 0)) {
    692 		LOCKSTAT_FLAG(lsflag);
    693 		LOCKSTAT_ENTER(lsflag);
    694 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    695 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    696 		    1, l->l_pfailtime, l->l_pfailaddr);
    697 		LOCKSTAT_EXIT(lsflag);
    698 		l->l_pfailtime = 0;
    699 		l->l_pfaillock = 0;
    700 		l->l_pfailaddr = 0;
    701 	}
    702 
    703 	if (l != newl) {
    704 		struct lwp *prevlwp;
    705 
    706 		/* Release all locks, but leave the current LWP locked */
    707 		if (l->l_mutex == spc->spc_mutex) {
    708 			/*
    709 			 * Drop spc_lwplock, if the current LWP has been moved
    710 			 * to the run queue (it is now locked by spc_mutex).
    711 			 */
    712 			mutex_spin_exit(spc->spc_lwplock);
    713 		} else {
    714 			/*
    715 			 * Otherwise, drop the spc_mutex, we are done with the
    716 			 * run queues.
    717 			 */
    718 			mutex_spin_exit(spc->spc_mutex);
    719 		}
    720 
    721 		/* We're down to only one lock, so do debug checks. */
    722 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    723 
    724 		/* Count the context switch. */
    725 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    726 		l->l_ncsw++;
    727 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    728 			l->l_nivcsw++;
    729 			l->l_pflag &= ~LP_PREEMPTING;
    730 		}
    731 
    732 		/*
    733 		 * Increase the count of spin-mutexes before the release
    734 		 * of the last lock - we must remain at IPL_SCHED after
    735 		 * releasing the lock.
    736 		 */
    737 		KASSERTMSG(ci->ci_mtx_count == -1,
    738 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    739 		    "(block with spin-mutex held)",
    740 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    741 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    742 		ci->ci_mtx_count = -2;
    743 
    744 		/* Update status for lwpctl, if present. */
    745 		if (l->l_lwpctl != NULL) {
    746 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    747 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    748 		}
    749 
    750 		/*
    751 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    752 		 * other side to unlock - we're returning into an assembly
    753 		 * trampoline.  Unlock now.  This is safe because this is a
    754 		 * kernel LWP and is bound to current CPU: the worst anyone
    755 		 * else will do to it, is to put it back onto this CPU's run
    756 		 * queue (and the CPU is busy here right now!).
    757 		 */
    758 		if (returning) {
    759 			/* Keep IPL_SCHED after this; MD code will fix up. */
    760 			l->l_pflag &= ~LP_RUNNING;
    761 			lwp_unlock(l);
    762 		} else {
    763 			/* A normal LWP: save old VM context. */
    764 			pmap_deactivate(l);
    765 		}
    766 
    767 		/*
    768 		 * If DTrace has set the active vtime enum to anything
    769 		 * other than INACTIVE (0), then it should have set the
    770 		 * function to call.
    771 		 */
    772 		if (__predict_false(dtrace_vtime_active)) {
    773 			(*dtrace_vtime_switch_func)(newl);
    774 		}
    775 
    776 		/*
    777 		 * We must ensure not to come here from inside a read section.
    778 		 */
    779 		KASSERT(pserialize_not_in_read_section());
    780 
    781 		/* Switch to the new LWP.. */
    782 #ifdef MULTIPROCESSOR
    783 		KASSERT(curlwp == ci->ci_curlwp);
    784 #endif
    785 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    786 		prevlwp = cpu_switchto(l, newl, returning);
    787 		ci = curcpu();
    788 #ifdef MULTIPROCESSOR
    789 		KASSERT(curlwp == ci->ci_curlwp);
    790 #endif
    791 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    792 		    l, curlwp, prevlwp);
    793 		KASSERT(prevlwp != NULL);
    794 		KASSERT(l->l_cpu == ci);
    795 		KASSERT(ci->ci_mtx_count == -2);
    796 
    797 		/*
    798 		 * Immediately mark the previous LWP as no longer running
    799 		 * and unlock (to keep lock wait times short as possible).
    800 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    801 		 * don't touch after clearing LP_RUNNING as it could be
    802 		 * reaped by another CPU.  Issue a memory barrier to ensure
    803 		 * this.
    804 		 */
    805 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    806 		lock = prevlwp->l_mutex;
    807 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    808 			membar_sync();
    809 		}
    810 		prevlwp->l_pflag &= ~LP_RUNNING;
    811 		mutex_spin_exit(lock);
    812 
    813 		/*
    814 		 * Switched away - we have new curlwp.
    815 		 * Restore VM context and IPL.
    816 		 */
    817 		pmap_activate(l);
    818 		pcu_switchpoint(l);
    819 
    820 		/* Update status for lwpctl, if present. */
    821 		if (l->l_lwpctl != NULL) {
    822 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    823 			l->l_lwpctl->lc_pctr++;
    824 		}
    825 
    826 		/*
    827 		 * Normalize the spin mutex count and restore the previous
    828 		 * SPL.  Note that, unless the caller disabled preemption,
    829 		 * we can be preempted at any time after this splx().
    830 		 */
    831 		KASSERT(l->l_cpu == ci);
    832 		KASSERT(ci->ci_mtx_count == -1);
    833 		ci->ci_mtx_count = 0;
    834 		splx(oldspl);
    835 	} else {
    836 		/* Nothing to do - just unlock and return. */
    837 		mutex_spin_exit(spc->spc_mutex);
    838 		l->l_pflag &= ~LP_PREEMPTING;
    839 		lwp_unlock(l);
    840 	}
    841 
    842 	KASSERT(l == curlwp);
    843 	KASSERT(l->l_stat == LSONPROC);
    844 
    845 	SYSCALL_TIME_WAKEUP(l);
    846 	LOCKDEBUG_BARRIER(NULL, 1);
    847 }
    848 
    849 /*
    850  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    851  *
    852  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    853  */
    854 void
    855 setrunnable(struct lwp *l)
    856 {
    857 	struct proc *p = l->l_proc;
    858 	struct cpu_info *ci;
    859 	kmutex_t *oldlock;
    860 
    861 	KASSERT((l->l_flag & LW_IDLE) == 0);
    862 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    863 	KASSERT(mutex_owned(p->p_lock));
    864 	KASSERT(lwp_locked(l, NULL));
    865 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    866 
    867 	switch (l->l_stat) {
    868 	case LSSTOP:
    869 		/*
    870 		 * If we're being traced (possibly because someone attached us
    871 		 * while we were stopped), check for a signal from the debugger.
    872 		 */
    873 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    874 			signotify(l);
    875 		p->p_nrlwps++;
    876 		break;
    877 	case LSSUSPENDED:
    878 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    879 		l->l_flag &= ~LW_WSUSPEND;
    880 		p->p_nrlwps++;
    881 		cv_broadcast(&p->p_lwpcv);
    882 		break;
    883 	case LSSLEEP:
    884 		KASSERT(l->l_wchan != NULL);
    885 		break;
    886 	case LSIDL:
    887 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    888 		break;
    889 	default:
    890 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    891 	}
    892 
    893 	/*
    894 	 * If the LWP was sleeping, start it again.
    895 	 */
    896 	if (l->l_wchan != NULL) {
    897 		l->l_stat = LSSLEEP;
    898 		/* lwp_unsleep() will release the lock. */
    899 		lwp_unsleep(l, true);
    900 		return;
    901 	}
    902 
    903 	/*
    904 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    905 	 * about to call mi_switch(), in which case it will yield.
    906 	 */
    907 	if ((l->l_pflag & LP_RUNNING) != 0) {
    908 		l->l_stat = LSONPROC;
    909 		l->l_slptime = 0;
    910 		lwp_unlock(l);
    911 		return;
    912 	}
    913 
    914 	/*
    915 	 * Look for a CPU to run.
    916 	 * Set the LWP runnable.
    917 	 */
    918 	ci = sched_takecpu(l);
    919 	l->l_cpu = ci;
    920 	spc_lock(ci);
    921 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    922 	sched_setrunnable(l);
    923 	l->l_stat = LSRUN;
    924 	l->l_slptime = 0;
    925 	sched_enqueue(l);
    926 	sched_resched_lwp(l, true);
    927 	/* SPC & LWP now unlocked. */
    928 	mutex_spin_exit(oldlock);
    929 }
    930 
    931 /*
    932  * suspendsched:
    933  *
    934  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    935  */
    936 void
    937 suspendsched(void)
    938 {
    939 	CPU_INFO_ITERATOR cii;
    940 	struct cpu_info *ci;
    941 	struct lwp *l;
    942 	struct proc *p;
    943 
    944 	/*
    945 	 * We do this by process in order not to violate the locking rules.
    946 	 */
    947 	mutex_enter(proc_lock);
    948 	PROCLIST_FOREACH(p, &allproc) {
    949 		mutex_enter(p->p_lock);
    950 		if ((p->p_flag & PK_SYSTEM) != 0) {
    951 			mutex_exit(p->p_lock);
    952 			continue;
    953 		}
    954 
    955 		if (p->p_stat != SSTOP) {
    956 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    957 				p->p_pptr->p_nstopchild++;
    958 				p->p_waited = 0;
    959 			}
    960 			p->p_stat = SSTOP;
    961 		}
    962 
    963 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    964 			if (l == curlwp)
    965 				continue;
    966 
    967 			lwp_lock(l);
    968 
    969 			/*
    970 			 * Set L_WREBOOT so that the LWP will suspend itself
    971 			 * when it tries to return to user mode.  We want to
    972 			 * try and get to get as many LWPs as possible to
    973 			 * the user / kernel boundary, so that they will
    974 			 * release any locks that they hold.
    975 			 */
    976 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    977 
    978 			if (l->l_stat == LSSLEEP &&
    979 			    (l->l_flag & LW_SINTR) != 0) {
    980 				/* setrunnable() will release the lock. */
    981 				setrunnable(l);
    982 				continue;
    983 			}
    984 
    985 			lwp_unlock(l);
    986 		}
    987 
    988 		mutex_exit(p->p_lock);
    989 	}
    990 	mutex_exit(proc_lock);
    991 
    992 	/*
    993 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    994 	 * They'll trap into the kernel and suspend themselves in userret().
    995 	 *
    996 	 * Unusually, we don't hold any other scheduler object locked, which
    997 	 * would keep preemption off for sched_resched_cpu(), so disable it
    998 	 * explicitly.
    999 	 */
   1000 	kpreempt_disable();
   1001 	for (CPU_INFO_FOREACH(cii, ci)) {
   1002 		spc_lock(ci);
   1003 		sched_resched_cpu(ci, PRI_KERNEL, true);
   1004 		/* spc now unlocked */
   1005 	}
   1006 	kpreempt_enable();
   1007 }
   1008 
   1009 /*
   1010  * sched_unsleep:
   1011  *
   1012  *	The is called when the LWP has not been awoken normally but instead
   1013  *	interrupted: for example, if the sleep timed out.  Because of this,
   1014  *	it's not a valid action for running or idle LWPs.
   1015  */
   1016 static void
   1017 sched_unsleep(struct lwp *l, bool cleanup)
   1018 {
   1019 
   1020 	lwp_unlock(l);
   1021 	panic("sched_unsleep");
   1022 }
   1023 
   1024 static void
   1025 sched_changepri(struct lwp *l, pri_t pri)
   1026 {
   1027 	struct schedstate_percpu *spc;
   1028 	struct cpu_info *ci;
   1029 
   1030 	KASSERT(lwp_locked(l, NULL));
   1031 
   1032 	ci = l->l_cpu;
   1033 	spc = &ci->ci_schedstate;
   1034 
   1035 	if (l->l_stat == LSRUN) {
   1036 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1037 		sched_dequeue(l);
   1038 		l->l_priority = pri;
   1039 		sched_enqueue(l);
   1040 		sched_resched_lwp(l, false);
   1041 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1042 		/* On priority drop, only evict realtime LWPs. */
   1043 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1044 		l->l_priority = pri;
   1045 		spc_lock(ci);
   1046 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1047 		/* spc now unlocked */
   1048 	} else {
   1049 		l->l_priority = pri;
   1050 	}
   1051 }
   1052 
   1053 static void
   1054 sched_lendpri(struct lwp *l, pri_t pri)
   1055 {
   1056 	struct schedstate_percpu *spc;
   1057 	struct cpu_info *ci;
   1058 
   1059 	KASSERT(lwp_locked(l, NULL));
   1060 
   1061 	ci = l->l_cpu;
   1062 	spc = &ci->ci_schedstate;
   1063 
   1064 	if (l->l_stat == LSRUN) {
   1065 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1066 		sched_dequeue(l);
   1067 		l->l_inheritedprio = pri;
   1068 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1069 		sched_enqueue(l);
   1070 		sched_resched_lwp(l, false);
   1071 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1072 		/* On priority drop, only evict realtime LWPs. */
   1073 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1074 		l->l_inheritedprio = pri;
   1075 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1076 		spc_lock(ci);
   1077 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1078 		/* spc now unlocked */
   1079 	} else {
   1080 		l->l_inheritedprio = pri;
   1081 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1082 	}
   1083 }
   1084 
   1085 struct lwp *
   1086 syncobj_noowner(wchan_t wchan)
   1087 {
   1088 
   1089 	return NULL;
   1090 }
   1091 
   1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1094 
   1095 /*
   1096  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1097  * 5 second intervals.
   1098  */
   1099 static const fixpt_t cexp[ ] = {
   1100 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1101 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1102 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1103 };
   1104 
   1105 /*
   1106  * sched_pstats:
   1107  *
   1108  * => Update process statistics and check CPU resource allocation.
   1109  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1110  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1111  */
   1112 void
   1113 sched_pstats(void)
   1114 {
   1115 	extern struct loadavg averunnable;
   1116 	struct loadavg *avg = &averunnable;
   1117 	const int clkhz = (stathz != 0 ? stathz : hz);
   1118 	static bool backwards = false;
   1119 	static u_int lavg_count = 0;
   1120 	struct proc *p;
   1121 	int nrun;
   1122 
   1123 	sched_pstats_ticks++;
   1124 	if (++lavg_count >= 5) {
   1125 		lavg_count = 0;
   1126 		nrun = 0;
   1127 	}
   1128 	mutex_enter(proc_lock);
   1129 	PROCLIST_FOREACH(p, &allproc) {
   1130 		struct lwp *l;
   1131 		struct rlimit *rlim;
   1132 		time_t runtm;
   1133 		int sig;
   1134 
   1135 		/* Increment sleep time (if sleeping), ignore overflow. */
   1136 		mutex_enter(p->p_lock);
   1137 		runtm = p->p_rtime.sec;
   1138 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1139 			fixpt_t lpctcpu;
   1140 			u_int lcpticks;
   1141 
   1142 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1143 				continue;
   1144 			lwp_lock(l);
   1145 			runtm += l->l_rtime.sec;
   1146 			l->l_swtime++;
   1147 			sched_lwp_stats(l);
   1148 
   1149 			/* For load average calculation. */
   1150 			if (__predict_false(lavg_count == 0) &&
   1151 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1152 				switch (l->l_stat) {
   1153 				case LSSLEEP:
   1154 					if (l->l_slptime > 1) {
   1155 						break;
   1156 					}
   1157 					/* FALLTHROUGH */
   1158 				case LSRUN:
   1159 				case LSONPROC:
   1160 				case LSIDL:
   1161 					nrun++;
   1162 				}
   1163 			}
   1164 			lwp_unlock(l);
   1165 
   1166 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1167 			if (l->l_slptime != 0)
   1168 				continue;
   1169 
   1170 			lpctcpu = l->l_pctcpu;
   1171 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1172 			lpctcpu += ((FSCALE - ccpu) *
   1173 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1174 			l->l_pctcpu = lpctcpu;
   1175 		}
   1176 		/* Calculating p_pctcpu only for ps(1) */
   1177 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1178 
   1179 		if (__predict_false(runtm < 0)) {
   1180 			if (!backwards) {
   1181 				backwards = true;
   1182 				printf("WARNING: negative runtime; "
   1183 				    "monotonic clock has gone backwards\n");
   1184 			}
   1185 			mutex_exit(p->p_lock);
   1186 			continue;
   1187 		}
   1188 
   1189 		/*
   1190 		 * Check if the process exceeds its CPU resource allocation.
   1191 		 * If over the hard limit, kill it with SIGKILL.
   1192 		 * If over the soft limit, send SIGXCPU and raise
   1193 		 * the soft limit a little.
   1194 		 */
   1195 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1196 		sig = 0;
   1197 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1198 			if (runtm >= rlim->rlim_max) {
   1199 				sig = SIGKILL;
   1200 				log(LOG_NOTICE,
   1201 				    "pid %d, command %s, is killed: %s\n",
   1202 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1203 				uprintf("pid %d, command %s, is killed: %s\n",
   1204 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1205 			} else {
   1206 				sig = SIGXCPU;
   1207 				if (rlim->rlim_cur < rlim->rlim_max)
   1208 					rlim->rlim_cur += 5;
   1209 			}
   1210 		}
   1211 		mutex_exit(p->p_lock);
   1212 		if (__predict_false(sig)) {
   1213 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1214 			psignal(p, sig);
   1215 		}
   1216 	}
   1217 
   1218 	/* Load average calculation. */
   1219 	if (__predict_false(lavg_count == 0)) {
   1220 		int i;
   1221 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1222 		for (i = 0; i < __arraycount(cexp); i++) {
   1223 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1224 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1225 		}
   1226 	}
   1227 
   1228 	/* Lightning bolt. */
   1229 	cv_broadcast(&lbolt);
   1230 
   1231 	mutex_exit(proc_lock);
   1232 }
   1233