kern_synch.c revision 1.344 1 /* $NetBSD: kern_synch.c,v 1.344 2020/03/14 20:23:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.344 2020/03/14 20:23:51 ad Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/syslog.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 #include <sys/dtrace_bsd.h>
102 int dtrace_vtime_active=0;
103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
104
105 static void sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 syncobj_t kpause_syncobj = {
126 .sobj_flag = SOBJ_SLEEPQ_NULL,
127 .sobj_unsleep = sleepq_unsleep,
128 .sobj_changepri = sleepq_changepri,
129 .sobj_lendpri = sleepq_lendpri,
130 .sobj_owner = syncobj_noowner,
131 };
132
133 /* "Lightning bolt": once a second sleep address. */
134 kcondvar_t lbolt __cacheline_aligned;
135
136 u_int sched_pstats_ticks __cacheline_aligned;
137
138 /* Preemption event counters. */
139 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
140 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
141 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
142
143 void
144 synch_init(void)
145 {
146
147 cv_init(&lbolt, "lbolt");
148
149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "defer: critical section");
151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 "kpreempt", "defer: kernel_lock");
153 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "immediate");
155 }
156
157 /*
158 * OBSOLETE INTERFACE
159 *
160 * General sleep call. Suspends the current LWP until a wakeup is
161 * performed on the specified identifier. The LWP will then be made
162 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
163 * means no timeout). If pri includes PCATCH flag, signals are checked
164 * before and after sleeping, else signals are not checked. Returns 0 if
165 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
166 * signal needs to be delivered, ERESTART is returned if the current system
167 * call should be restarted if possible, and EINTR is returned if the system
168 * call should be interrupted by the signal (return EINTR).
169 */
170 int
171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
172 {
173 struct lwp *l = curlwp;
174 sleepq_t *sq;
175 kmutex_t *mp;
176
177 KASSERT((l->l_pflag & LP_INTR) == 0);
178 KASSERT(ident != &lbolt);
179
180 if (sleepq_dontsleep(l)) {
181 (void)sleepq_abort(NULL, 0);
182 return 0;
183 }
184
185 l->l_kpriority = true;
186 sq = sleeptab_lookup(&sleeptab, ident, &mp);
187 sleepq_enter(sq, l, mp);
188 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
189 return sleepq_block(timo, priority & PCATCH);
190 }
191
192 int
193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
194 kmutex_t *mtx)
195 {
196 struct lwp *l = curlwp;
197 sleepq_t *sq;
198 kmutex_t *mp;
199 int error;
200
201 KASSERT((l->l_pflag & LP_INTR) == 0);
202 KASSERT(ident != &lbolt);
203
204 if (sleepq_dontsleep(l)) {
205 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
206 return 0;
207 }
208
209 l->l_kpriority = true;
210 sq = sleeptab_lookup(&sleeptab, ident, &mp);
211 sleepq_enter(sq, l, mp);
212 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
213 mutex_exit(mtx);
214 error = sleepq_block(timo, priority & PCATCH);
215
216 if ((priority & PNORELOCK) == 0)
217 mutex_enter(mtx);
218
219 return error;
220 }
221
222 /*
223 * General sleep call for situations where a wake-up is not expected.
224 */
225 int
226 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
227 {
228 struct lwp *l = curlwp;
229 int error;
230
231 KASSERT(!(timo == 0 && intr == false));
232
233 if (sleepq_dontsleep(l))
234 return sleepq_abort(NULL, 0);
235
236 if (mtx != NULL)
237 mutex_exit(mtx);
238 l->l_kpriority = true;
239 lwp_lock(l);
240 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
241 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj);
242 error = sleepq_block(timo, intr);
243 if (mtx != NULL)
244 mutex_enter(mtx);
245
246 return error;
247 }
248
249 /*
250 * OBSOLETE INTERFACE
251 *
252 * Make all LWPs sleeping on the specified identifier runnable.
253 */
254 void
255 wakeup(wchan_t ident)
256 {
257 sleepq_t *sq;
258 kmutex_t *mp;
259
260 if (__predict_false(cold))
261 return;
262
263 sq = sleeptab_lookup(&sleeptab, ident, &mp);
264 sleepq_wake(sq, ident, (u_int)-1, mp);
265 }
266
267 /*
268 * General yield call. Puts the current LWP back on its run queue and
269 * performs a context switch.
270 */
271 void
272 yield(void)
273 {
274 struct lwp *l = curlwp;
275
276 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
277 lwp_lock(l);
278
279 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
280 KASSERT(l->l_stat == LSONPROC);
281
282 /* Voluntary - ditch kpriority boost. */
283 l->l_kpriority = false;
284 spc_lock(l->l_cpu);
285 mi_switch(l);
286 KERNEL_LOCK(l->l_biglocks, l);
287 }
288
289 /*
290 * General preemption call. Puts the current LWP back on its run queue
291 * and performs an involuntary context switch. Different from yield()
292 * in that:
293 *
294 * - It's counted differently (involuntary vs. voluntary).
295 * - Realtime threads go to the head of their runqueue vs. tail for yield().
296 * - Priority boost is retained unless LWP has exceeded timeslice.
297 */
298 void
299 preempt(void)
300 {
301 struct lwp *l = curlwp;
302
303 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 lwp_lock(l);
305
306 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
307 KASSERT(l->l_stat == LSONPROC);
308
309 spc_lock(l->l_cpu);
310 /* Involuntary - keep kpriority boost unless a CPU hog. */
311 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
312 l->l_kpriority = false;
313 }
314 l->l_pflag |= LP_PREEMPTING;
315 mi_switch(l);
316 KERNEL_LOCK(l->l_biglocks, l);
317 }
318
319 /*
320 * A breathing point for long running code in kernel.
321 */
322 void
323 preempt_point(void)
324 {
325 lwp_t *l = curlwp;
326 int needed;
327
328 KPREEMPT_DISABLE(l);
329 needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD;
330 #ifndef __HAVE_FAST_SOFTINTS
331 needed |= l->l_cpu->ci_data.cpu_softints;
332 #endif
333 KPREEMPT_ENABLE(l);
334
335 if (__predict_false(needed)) {
336 preempt();
337 }
338 }
339
340 /*
341 * Check the SPCF_SHOULDYIELD flag.
342 */
343 bool
344 preempt_needed(void)
345 {
346 lwp_t *l = curlwp;
347 int needed;
348
349 KPREEMPT_DISABLE(l);
350 needed = l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD;
351 #ifndef __HAVE_FAST_SOFTINTS
352 needed |= l->l_cpu->ci_data.cpu_softints;
353 #endif
354 KPREEMPT_ENABLE(l);
355
356 return (bool)needed;
357 }
358
359 /*
360 * Handle a request made by another agent to preempt the current LWP
361 * in-kernel. Usually called when l_dopreempt may be non-zero.
362 *
363 * Character addresses for lockstat only.
364 */
365 static char kpreempt_is_disabled;
366 static char kernel_lock_held;
367 static char is_softint_lwp;
368 static char spl_is_raised;
369
370 bool
371 kpreempt(uintptr_t where)
372 {
373 uintptr_t failed;
374 lwp_t *l;
375 int s, dop, lsflag;
376
377 l = curlwp;
378 failed = 0;
379 while ((dop = l->l_dopreempt) != 0) {
380 if (l->l_stat != LSONPROC) {
381 /*
382 * About to block (or die), let it happen.
383 * Doesn't really count as "preemption has
384 * been blocked", since we're going to
385 * context switch.
386 */
387 atomic_swap_uint(&l->l_dopreempt, 0);
388 return true;
389 }
390 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
391 /* Can't preempt idle loop, don't count as failure. */
392 atomic_swap_uint(&l->l_dopreempt, 0);
393 return true;
394 }
395 if (__predict_false(l->l_nopreempt != 0)) {
396 /* LWP holds preemption disabled, explicitly. */
397 if ((dop & DOPREEMPT_COUNTED) == 0) {
398 kpreempt_ev_crit.ev_count++;
399 }
400 failed = (uintptr_t)&kpreempt_is_disabled;
401 break;
402 }
403 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
404 /* Can't preempt soft interrupts yet. */
405 atomic_swap_uint(&l->l_dopreempt, 0);
406 failed = (uintptr_t)&is_softint_lwp;
407 break;
408 }
409 s = splsched();
410 if (__predict_false(l->l_blcnt != 0 ||
411 curcpu()->ci_biglock_wanted != NULL)) {
412 /* Hold or want kernel_lock, code is not MT safe. */
413 splx(s);
414 if ((dop & DOPREEMPT_COUNTED) == 0) {
415 kpreempt_ev_klock.ev_count++;
416 }
417 failed = (uintptr_t)&kernel_lock_held;
418 break;
419 }
420 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
421 /*
422 * It may be that the IPL is too high.
423 * kpreempt_enter() can schedule an
424 * interrupt to retry later.
425 */
426 splx(s);
427 failed = (uintptr_t)&spl_is_raised;
428 break;
429 }
430 /* Do it! */
431 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
432 kpreempt_ev_immed.ev_count++;
433 }
434 lwp_lock(l);
435 /* Involuntary - keep kpriority boost. */
436 l->l_pflag |= LP_PREEMPTING;
437 spc_lock(l->l_cpu);
438 mi_switch(l);
439 l->l_nopreempt++;
440 splx(s);
441
442 /* Take care of any MD cleanup. */
443 cpu_kpreempt_exit(where);
444 l->l_nopreempt--;
445 }
446
447 if (__predict_true(!failed)) {
448 return false;
449 }
450
451 /* Record preemption failure for reporting via lockstat. */
452 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
453 lsflag = 0;
454 LOCKSTAT_ENTER(lsflag);
455 if (__predict_false(lsflag)) {
456 if (where == 0) {
457 where = (uintptr_t)__builtin_return_address(0);
458 }
459 /* Preemption is on, might recurse, so make it atomic. */
460 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
461 (void *)where) == NULL) {
462 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
463 l->l_pfaillock = failed;
464 }
465 }
466 LOCKSTAT_EXIT(lsflag);
467 return true;
468 }
469
470 /*
471 * Return true if preemption is explicitly disabled.
472 */
473 bool
474 kpreempt_disabled(void)
475 {
476 const lwp_t *l = curlwp;
477
478 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
479 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
480 cpu_kpreempt_disabled();
481 }
482
483 /*
484 * Disable kernel preemption.
485 */
486 void
487 kpreempt_disable(void)
488 {
489
490 KPREEMPT_DISABLE(curlwp);
491 }
492
493 /*
494 * Reenable kernel preemption.
495 */
496 void
497 kpreempt_enable(void)
498 {
499
500 KPREEMPT_ENABLE(curlwp);
501 }
502
503 /*
504 * Compute the amount of time during which the current lwp was running.
505 *
506 * - update l_rtime unless it's an idle lwp.
507 */
508
509 void
510 updatertime(lwp_t *l, const struct bintime *now)
511 {
512
513 if (__predict_false(l->l_flag & LW_IDLE))
514 return;
515
516 /* rtime += now - stime */
517 bintime_add(&l->l_rtime, now);
518 bintime_sub(&l->l_rtime, &l->l_stime);
519 }
520
521 /*
522 * Select next LWP from the current CPU to run..
523 */
524 static inline lwp_t *
525 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
526 {
527 lwp_t *newl;
528
529 /*
530 * Let sched_nextlwp() select the LWP to run the CPU next.
531 * If no LWP is runnable, select the idle LWP.
532 *
533 * On arrival here LWPs on a run queue are locked by spc_mutex which
534 * is currently held. Idle LWPs are always locked by spc_lwplock,
535 * which may or may not be held here. On exit from this code block,
536 * in all cases newl is locked by spc_lwplock.
537 */
538 newl = sched_nextlwp();
539 if (newl != NULL) {
540 sched_dequeue(newl);
541 KASSERT(lwp_locked(newl, spc->spc_mutex));
542 KASSERT(newl->l_cpu == ci);
543 newl->l_stat = LSONPROC;
544 newl->l_pflag |= LP_RUNNING;
545 spc->spc_curpriority = lwp_eprio(newl);
546 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
547 lwp_setlock(newl, spc->spc_lwplock);
548 } else {
549 /*
550 * Updates to newl here are unlocked, but newl is the idle
551 * LWP and thus sheltered from outside interference, so no
552 * harm is going to come of it.
553 */
554 newl = ci->ci_data.cpu_idlelwp;
555 newl->l_stat = LSONPROC;
556 newl->l_pflag |= LP_RUNNING;
557 spc->spc_curpriority = PRI_IDLE;
558 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
559 SPCF_IDLE;
560 }
561
562 /*
563 * Only clear want_resched if there are no pending (slow) software
564 * interrupts. We can do this without an atomic, because no new
565 * LWPs can appear in the queue due to our hold on spc_mutex, and
566 * the update to ci_want_resched will become globally visible before
567 * the release of spc_mutex becomes globally visible.
568 */
569 ci->ci_want_resched = ci->ci_data.cpu_softints;
570
571 return newl;
572 }
573
574 /*
575 * The machine independent parts of context switch.
576 *
577 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
578 * changes its own l_cpu (that would screw up curcpu on many ports and could
579 * cause all kinds of other evil stuff). l_cpu is always changed by some
580 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
581 * is checked under lock).
582 */
583 void
584 mi_switch(lwp_t *l)
585 {
586 struct cpu_info *ci;
587 struct schedstate_percpu *spc;
588 struct lwp *newl;
589 kmutex_t *lock;
590 int oldspl;
591 struct bintime bt;
592 bool returning;
593
594 KASSERT(lwp_locked(l, NULL));
595 KASSERT(kpreempt_disabled());
596 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
597 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
598
599 kstack_check_magic(l);
600
601 binuptime(&bt);
602
603 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
604 KASSERT((l->l_pflag & LP_RUNNING) != 0);
605 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
606 ci = curcpu();
607 spc = &ci->ci_schedstate;
608 returning = false;
609 newl = NULL;
610
611 /*
612 * If we have been asked to switch to a specific LWP, then there
613 * is no need to inspect the run queues. If a soft interrupt is
614 * blocking, then return to the interrupted thread without adjusting
615 * VM context or its start time: neither have been changed in order
616 * to take the interrupt.
617 */
618 if (l->l_switchto != NULL) {
619 if ((l->l_pflag & LP_INTR) != 0) {
620 returning = true;
621 softint_block(l);
622 if ((l->l_pflag & LP_TIMEINTR) != 0)
623 updatertime(l, &bt);
624 }
625 newl = l->l_switchto;
626 l->l_switchto = NULL;
627 }
628 #ifndef __HAVE_FAST_SOFTINTS
629 else if (ci->ci_data.cpu_softints != 0) {
630 /* There are pending soft interrupts, so pick one. */
631 newl = softint_picklwp();
632 newl->l_stat = LSONPROC;
633 newl->l_pflag |= LP_RUNNING;
634 }
635 #endif /* !__HAVE_FAST_SOFTINTS */
636
637 /*
638 * If on the CPU and we have gotten this far, then we must yield.
639 */
640 if (l->l_stat == LSONPROC && l != newl) {
641 KASSERT(lwp_locked(l, spc->spc_lwplock));
642 KASSERT((l->l_flag & LW_IDLE) == 0);
643 l->l_stat = LSRUN;
644 lwp_setlock(l, spc->spc_mutex);
645 sched_enqueue(l);
646 sched_preempted(l);
647
648 /*
649 * Handle migration. Note that "migrating LWP" may
650 * be reset here, if interrupt/preemption happens
651 * early in idle LWP.
652 */
653 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
654 KASSERT((l->l_pflag & LP_INTR) == 0);
655 spc->spc_migrating = l;
656 }
657 }
658
659 /* Pick new LWP to run. */
660 if (newl == NULL) {
661 newl = nextlwp(ci, spc);
662 }
663
664 /* Items that must be updated with the CPU locked. */
665 if (!returning) {
666 /* Count time spent in current system call */
667 SYSCALL_TIME_SLEEP(l);
668
669 updatertime(l, &bt);
670
671 /* Update the new LWP's start time. */
672 newl->l_stime = bt;
673
674 /*
675 * ci_curlwp changes when a fast soft interrupt occurs.
676 * We use ci_onproc to keep track of which kernel or
677 * user thread is running 'underneath' the software
678 * interrupt. This is important for time accounting,
679 * itimers and forcing user threads to preempt (aston).
680 */
681 ci->ci_onproc = newl;
682 }
683
684 /*
685 * Preemption related tasks. Must be done holding spc_mutex. Clear
686 * l_dopreempt without an atomic - it's only ever set non-zero by
687 * sched_resched_cpu() which also holds spc_mutex, and only ever
688 * cleared by the LWP itself (us) with atomics when not under lock.
689 */
690 l->l_dopreempt = 0;
691 if (__predict_false(l->l_pfailaddr != 0)) {
692 LOCKSTAT_FLAG(lsflag);
693 LOCKSTAT_ENTER(lsflag);
694 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
695 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
696 1, l->l_pfailtime, l->l_pfailaddr);
697 LOCKSTAT_EXIT(lsflag);
698 l->l_pfailtime = 0;
699 l->l_pfaillock = 0;
700 l->l_pfailaddr = 0;
701 }
702
703 if (l != newl) {
704 struct lwp *prevlwp;
705
706 /* Release all locks, but leave the current LWP locked */
707 if (l->l_mutex == spc->spc_mutex) {
708 /*
709 * Drop spc_lwplock, if the current LWP has been moved
710 * to the run queue (it is now locked by spc_mutex).
711 */
712 mutex_spin_exit(spc->spc_lwplock);
713 } else {
714 /*
715 * Otherwise, drop the spc_mutex, we are done with the
716 * run queues.
717 */
718 mutex_spin_exit(spc->spc_mutex);
719 }
720
721 /* We're down to only one lock, so do debug checks. */
722 LOCKDEBUG_BARRIER(l->l_mutex, 1);
723
724 /* Count the context switch. */
725 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
726 l->l_ncsw++;
727 if ((l->l_pflag & LP_PREEMPTING) != 0) {
728 l->l_nivcsw++;
729 l->l_pflag &= ~LP_PREEMPTING;
730 }
731
732 /*
733 * Increase the count of spin-mutexes before the release
734 * of the last lock - we must remain at IPL_SCHED after
735 * releasing the lock.
736 */
737 KASSERTMSG(ci->ci_mtx_count == -1,
738 "%s: cpu%u: ci_mtx_count (%d) != -1 "
739 "(block with spin-mutex held)",
740 __func__, cpu_index(ci), ci->ci_mtx_count);
741 oldspl = MUTEX_SPIN_OLDSPL(ci);
742 ci->ci_mtx_count = -2;
743
744 /* Update status for lwpctl, if present. */
745 if (l->l_lwpctl != NULL) {
746 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
747 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
748 }
749
750 /*
751 * If curlwp is a soft interrupt LWP, there's nobody on the
752 * other side to unlock - we're returning into an assembly
753 * trampoline. Unlock now. This is safe because this is a
754 * kernel LWP and is bound to current CPU: the worst anyone
755 * else will do to it, is to put it back onto this CPU's run
756 * queue (and the CPU is busy here right now!).
757 */
758 if (returning) {
759 /* Keep IPL_SCHED after this; MD code will fix up. */
760 l->l_pflag &= ~LP_RUNNING;
761 lwp_unlock(l);
762 } else {
763 /* A normal LWP: save old VM context. */
764 pmap_deactivate(l);
765 }
766
767 /*
768 * If DTrace has set the active vtime enum to anything
769 * other than INACTIVE (0), then it should have set the
770 * function to call.
771 */
772 if (__predict_false(dtrace_vtime_active)) {
773 (*dtrace_vtime_switch_func)(newl);
774 }
775
776 /*
777 * We must ensure not to come here from inside a read section.
778 */
779 KASSERT(pserialize_not_in_read_section());
780
781 /* Switch to the new LWP.. */
782 #ifdef MULTIPROCESSOR
783 KASSERT(curlwp == ci->ci_curlwp);
784 #endif
785 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
786 prevlwp = cpu_switchto(l, newl, returning);
787 ci = curcpu();
788 #ifdef MULTIPROCESSOR
789 KASSERT(curlwp == ci->ci_curlwp);
790 #endif
791 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
792 l, curlwp, prevlwp);
793 KASSERT(prevlwp != NULL);
794 KASSERT(l->l_cpu == ci);
795 KASSERT(ci->ci_mtx_count == -2);
796
797 /*
798 * Immediately mark the previous LWP as no longer running
799 * and unlock (to keep lock wait times short as possible).
800 * We'll still be at IPL_SCHED afterwards. If a zombie,
801 * don't touch after clearing LP_RUNNING as it could be
802 * reaped by another CPU. Issue a memory barrier to ensure
803 * this.
804 */
805 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
806 lock = prevlwp->l_mutex;
807 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
808 membar_sync();
809 }
810 prevlwp->l_pflag &= ~LP_RUNNING;
811 mutex_spin_exit(lock);
812
813 /*
814 * Switched away - we have new curlwp.
815 * Restore VM context and IPL.
816 */
817 pmap_activate(l);
818 pcu_switchpoint(l);
819
820 /* Update status for lwpctl, if present. */
821 if (l->l_lwpctl != NULL) {
822 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
823 l->l_lwpctl->lc_pctr++;
824 }
825
826 /*
827 * Normalize the spin mutex count and restore the previous
828 * SPL. Note that, unless the caller disabled preemption,
829 * we can be preempted at any time after this splx().
830 */
831 KASSERT(l->l_cpu == ci);
832 KASSERT(ci->ci_mtx_count == -1);
833 ci->ci_mtx_count = 0;
834 splx(oldspl);
835 } else {
836 /* Nothing to do - just unlock and return. */
837 mutex_spin_exit(spc->spc_mutex);
838 l->l_pflag &= ~LP_PREEMPTING;
839 lwp_unlock(l);
840 }
841
842 KASSERT(l == curlwp);
843 KASSERT(l->l_stat == LSONPROC);
844
845 SYSCALL_TIME_WAKEUP(l);
846 LOCKDEBUG_BARRIER(NULL, 1);
847 }
848
849 /*
850 * setrunnable: change LWP state to be runnable, placing it on the run queue.
851 *
852 * Call with the process and LWP locked. Will return with the LWP unlocked.
853 */
854 void
855 setrunnable(struct lwp *l)
856 {
857 struct proc *p = l->l_proc;
858 struct cpu_info *ci;
859 kmutex_t *oldlock;
860
861 KASSERT((l->l_flag & LW_IDLE) == 0);
862 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
863 KASSERT(mutex_owned(p->p_lock));
864 KASSERT(lwp_locked(l, NULL));
865 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
866
867 switch (l->l_stat) {
868 case LSSTOP:
869 /*
870 * If we're being traced (possibly because someone attached us
871 * while we were stopped), check for a signal from the debugger.
872 */
873 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
874 signotify(l);
875 p->p_nrlwps++;
876 break;
877 case LSSUSPENDED:
878 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
879 l->l_flag &= ~LW_WSUSPEND;
880 p->p_nrlwps++;
881 cv_broadcast(&p->p_lwpcv);
882 break;
883 case LSSLEEP:
884 KASSERT(l->l_wchan != NULL);
885 break;
886 case LSIDL:
887 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
888 break;
889 default:
890 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
891 }
892
893 /*
894 * If the LWP was sleeping, start it again.
895 */
896 if (l->l_wchan != NULL) {
897 l->l_stat = LSSLEEP;
898 /* lwp_unsleep() will release the lock. */
899 lwp_unsleep(l, true);
900 return;
901 }
902
903 /*
904 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
905 * about to call mi_switch(), in which case it will yield.
906 */
907 if ((l->l_pflag & LP_RUNNING) != 0) {
908 l->l_stat = LSONPROC;
909 l->l_slptime = 0;
910 lwp_unlock(l);
911 return;
912 }
913
914 /*
915 * Look for a CPU to run.
916 * Set the LWP runnable.
917 */
918 ci = sched_takecpu(l);
919 l->l_cpu = ci;
920 spc_lock(ci);
921 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
922 sched_setrunnable(l);
923 l->l_stat = LSRUN;
924 l->l_slptime = 0;
925 sched_enqueue(l);
926 sched_resched_lwp(l, true);
927 /* SPC & LWP now unlocked. */
928 mutex_spin_exit(oldlock);
929 }
930
931 /*
932 * suspendsched:
933 *
934 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
935 */
936 void
937 suspendsched(void)
938 {
939 CPU_INFO_ITERATOR cii;
940 struct cpu_info *ci;
941 struct lwp *l;
942 struct proc *p;
943
944 /*
945 * We do this by process in order not to violate the locking rules.
946 */
947 mutex_enter(proc_lock);
948 PROCLIST_FOREACH(p, &allproc) {
949 mutex_enter(p->p_lock);
950 if ((p->p_flag & PK_SYSTEM) != 0) {
951 mutex_exit(p->p_lock);
952 continue;
953 }
954
955 if (p->p_stat != SSTOP) {
956 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
957 p->p_pptr->p_nstopchild++;
958 p->p_waited = 0;
959 }
960 p->p_stat = SSTOP;
961 }
962
963 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
964 if (l == curlwp)
965 continue;
966
967 lwp_lock(l);
968
969 /*
970 * Set L_WREBOOT so that the LWP will suspend itself
971 * when it tries to return to user mode. We want to
972 * try and get to get as many LWPs as possible to
973 * the user / kernel boundary, so that they will
974 * release any locks that they hold.
975 */
976 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
977
978 if (l->l_stat == LSSLEEP &&
979 (l->l_flag & LW_SINTR) != 0) {
980 /* setrunnable() will release the lock. */
981 setrunnable(l);
982 continue;
983 }
984
985 lwp_unlock(l);
986 }
987
988 mutex_exit(p->p_lock);
989 }
990 mutex_exit(proc_lock);
991
992 /*
993 * Kick all CPUs to make them preempt any LWPs running in user mode.
994 * They'll trap into the kernel and suspend themselves in userret().
995 *
996 * Unusually, we don't hold any other scheduler object locked, which
997 * would keep preemption off for sched_resched_cpu(), so disable it
998 * explicitly.
999 */
1000 kpreempt_disable();
1001 for (CPU_INFO_FOREACH(cii, ci)) {
1002 spc_lock(ci);
1003 sched_resched_cpu(ci, PRI_KERNEL, true);
1004 /* spc now unlocked */
1005 }
1006 kpreempt_enable();
1007 }
1008
1009 /*
1010 * sched_unsleep:
1011 *
1012 * The is called when the LWP has not been awoken normally but instead
1013 * interrupted: for example, if the sleep timed out. Because of this,
1014 * it's not a valid action for running or idle LWPs.
1015 */
1016 static void
1017 sched_unsleep(struct lwp *l, bool cleanup)
1018 {
1019
1020 lwp_unlock(l);
1021 panic("sched_unsleep");
1022 }
1023
1024 static void
1025 sched_changepri(struct lwp *l, pri_t pri)
1026 {
1027 struct schedstate_percpu *spc;
1028 struct cpu_info *ci;
1029
1030 KASSERT(lwp_locked(l, NULL));
1031
1032 ci = l->l_cpu;
1033 spc = &ci->ci_schedstate;
1034
1035 if (l->l_stat == LSRUN) {
1036 KASSERT(lwp_locked(l, spc->spc_mutex));
1037 sched_dequeue(l);
1038 l->l_priority = pri;
1039 sched_enqueue(l);
1040 sched_resched_lwp(l, false);
1041 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1042 /* On priority drop, only evict realtime LWPs. */
1043 KASSERT(lwp_locked(l, spc->spc_lwplock));
1044 l->l_priority = pri;
1045 spc_lock(ci);
1046 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1047 /* spc now unlocked */
1048 } else {
1049 l->l_priority = pri;
1050 }
1051 }
1052
1053 static void
1054 sched_lendpri(struct lwp *l, pri_t pri)
1055 {
1056 struct schedstate_percpu *spc;
1057 struct cpu_info *ci;
1058
1059 KASSERT(lwp_locked(l, NULL));
1060
1061 ci = l->l_cpu;
1062 spc = &ci->ci_schedstate;
1063
1064 if (l->l_stat == LSRUN) {
1065 KASSERT(lwp_locked(l, spc->spc_mutex));
1066 sched_dequeue(l);
1067 l->l_inheritedprio = pri;
1068 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1069 sched_enqueue(l);
1070 sched_resched_lwp(l, false);
1071 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1072 /* On priority drop, only evict realtime LWPs. */
1073 KASSERT(lwp_locked(l, spc->spc_lwplock));
1074 l->l_inheritedprio = pri;
1075 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1076 spc_lock(ci);
1077 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1078 /* spc now unlocked */
1079 } else {
1080 l->l_inheritedprio = pri;
1081 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1082 }
1083 }
1084
1085 struct lwp *
1086 syncobj_noowner(wchan_t wchan)
1087 {
1088
1089 return NULL;
1090 }
1091
1092 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1093 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1094
1095 /*
1096 * Constants for averages over 1, 5 and 15 minutes when sampling at
1097 * 5 second intervals.
1098 */
1099 static const fixpt_t cexp[ ] = {
1100 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1101 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1102 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1103 };
1104
1105 /*
1106 * sched_pstats:
1107 *
1108 * => Update process statistics and check CPU resource allocation.
1109 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1110 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1111 */
1112 void
1113 sched_pstats(void)
1114 {
1115 extern struct loadavg averunnable;
1116 struct loadavg *avg = &averunnable;
1117 const int clkhz = (stathz != 0 ? stathz : hz);
1118 static bool backwards = false;
1119 static u_int lavg_count = 0;
1120 struct proc *p;
1121 int nrun;
1122
1123 sched_pstats_ticks++;
1124 if (++lavg_count >= 5) {
1125 lavg_count = 0;
1126 nrun = 0;
1127 }
1128 mutex_enter(proc_lock);
1129 PROCLIST_FOREACH(p, &allproc) {
1130 struct lwp *l;
1131 struct rlimit *rlim;
1132 time_t runtm;
1133 int sig;
1134
1135 /* Increment sleep time (if sleeping), ignore overflow. */
1136 mutex_enter(p->p_lock);
1137 runtm = p->p_rtime.sec;
1138 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1139 fixpt_t lpctcpu;
1140 u_int lcpticks;
1141
1142 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1143 continue;
1144 lwp_lock(l);
1145 runtm += l->l_rtime.sec;
1146 l->l_swtime++;
1147 sched_lwp_stats(l);
1148
1149 /* For load average calculation. */
1150 if (__predict_false(lavg_count == 0) &&
1151 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1152 switch (l->l_stat) {
1153 case LSSLEEP:
1154 if (l->l_slptime > 1) {
1155 break;
1156 }
1157 /* FALLTHROUGH */
1158 case LSRUN:
1159 case LSONPROC:
1160 case LSIDL:
1161 nrun++;
1162 }
1163 }
1164 lwp_unlock(l);
1165
1166 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1167 if (l->l_slptime != 0)
1168 continue;
1169
1170 lpctcpu = l->l_pctcpu;
1171 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1172 lpctcpu += ((FSCALE - ccpu) *
1173 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1174 l->l_pctcpu = lpctcpu;
1175 }
1176 /* Calculating p_pctcpu only for ps(1) */
1177 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1178
1179 if (__predict_false(runtm < 0)) {
1180 if (!backwards) {
1181 backwards = true;
1182 printf("WARNING: negative runtime; "
1183 "monotonic clock has gone backwards\n");
1184 }
1185 mutex_exit(p->p_lock);
1186 continue;
1187 }
1188
1189 /*
1190 * Check if the process exceeds its CPU resource allocation.
1191 * If over the hard limit, kill it with SIGKILL.
1192 * If over the soft limit, send SIGXCPU and raise
1193 * the soft limit a little.
1194 */
1195 rlim = &p->p_rlimit[RLIMIT_CPU];
1196 sig = 0;
1197 if (__predict_false(runtm >= rlim->rlim_cur)) {
1198 if (runtm >= rlim->rlim_max) {
1199 sig = SIGKILL;
1200 log(LOG_NOTICE,
1201 "pid %d, command %s, is killed: %s\n",
1202 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1203 uprintf("pid %d, command %s, is killed: %s\n",
1204 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1205 } else {
1206 sig = SIGXCPU;
1207 if (rlim->rlim_cur < rlim->rlim_max)
1208 rlim->rlim_cur += 5;
1209 }
1210 }
1211 mutex_exit(p->p_lock);
1212 if (__predict_false(sig)) {
1213 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1214 psignal(p, sig);
1215 }
1216 }
1217
1218 /* Load average calculation. */
1219 if (__predict_false(lavg_count == 0)) {
1220 int i;
1221 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1222 for (i = 0; i < __arraycount(cexp); i++) {
1223 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1224 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1225 }
1226 }
1227
1228 /* Lightning bolt. */
1229 cv_broadcast(&lbolt);
1230
1231 mutex_exit(proc_lock);
1232 }
1233