Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.348
      1 /*	$NetBSD: kern_synch.c,v 1.348 2020/05/20 20:59:31 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.348 2020/05/20 20:59:31 maxv Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/rwlock.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/syslog.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 #include <sys/dtrace_bsd.h>
    102 int                             dtrace_vtime_active=0;
    103 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    104 
    105 static void	sched_unsleep(struct lwp *, bool);
    106 static void	sched_changepri(struct lwp *, pri_t);
    107 static void	sched_lendpri(struct lwp *, pri_t);
    108 
    109 syncobj_t sleep_syncobj = {
    110 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    111 	.sobj_unsleep	= sleepq_unsleep,
    112 	.sobj_changepri	= sleepq_changepri,
    113 	.sobj_lendpri	= sleepq_lendpri,
    114 	.sobj_owner	= syncobj_noowner,
    115 };
    116 
    117 syncobj_t sched_syncobj = {
    118 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    119 	.sobj_unsleep	= sched_unsleep,
    120 	.sobj_changepri	= sched_changepri,
    121 	.sobj_lendpri	= sched_lendpri,
    122 	.sobj_owner	= syncobj_noowner,
    123 };
    124 
    125 syncobj_t kpause_syncobj = {
    126 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
    127 	.sobj_unsleep	= sleepq_unsleep,
    128 	.sobj_changepri	= sleepq_changepri,
    129 	.sobj_lendpri	= sleepq_lendpri,
    130 	.sobj_owner	= syncobj_noowner,
    131 };
    132 
    133 /* "Lightning bolt": once a second sleep address. */
    134 kcondvar_t		lbolt			__cacheline_aligned;
    135 
    136 u_int			sched_pstats_ticks	__cacheline_aligned;
    137 
    138 /* Preemption event counters. */
    139 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    140 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    141 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    142 
    143 void
    144 synch_init(void)
    145 {
    146 
    147 	cv_init(&lbolt, "lbolt");
    148 
    149 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150 	   "kpreempt", "defer: critical section");
    151 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: kernel_lock");
    153 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "immediate");
    155 }
    156 
    157 /*
    158  * OBSOLETE INTERFACE
    159  *
    160  * General sleep call.  Suspends the current LWP until a wakeup is
    161  * performed on the specified identifier.  The LWP will then be made
    162  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    163  * means no timeout).  If pri includes PCATCH flag, signals are checked
    164  * before and after sleeping, else signals are not checked.  Returns 0 if
    165  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    166  * signal needs to be delivered, ERESTART is returned if the current system
    167  * call should be restarted if possible, and EINTR is returned if the system
    168  * call should be interrupted by the signal (return EINTR).
    169  */
    170 int
    171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    172 {
    173 	struct lwp *l = curlwp;
    174 	sleepq_t *sq;
    175 	kmutex_t *mp;
    176 	bool catch_p;
    177 
    178 	KASSERT((l->l_pflag & LP_INTR) == 0);
    179 	KASSERT(ident != &lbolt);
    180 
    181 	if (sleepq_dontsleep(l)) {
    182 		(void)sleepq_abort(NULL, 0);
    183 		return 0;
    184 	}
    185 
    186 	l->l_kpriority = true;
    187 	catch_p = priority & PCATCH;
    188 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    189 	sleepq_enter(sq, l, mp);
    190 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    191 	return sleepq_block(timo, catch_p);
    192 }
    193 
    194 int
    195 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    196 	kmutex_t *mtx)
    197 {
    198 	struct lwp *l = curlwp;
    199 	sleepq_t *sq;
    200 	kmutex_t *mp;
    201 	bool catch_p;
    202 	int error;
    203 
    204 	KASSERT((l->l_pflag & LP_INTR) == 0);
    205 	KASSERT(ident != &lbolt);
    206 
    207 	if (sleepq_dontsleep(l)) {
    208 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    209 		return 0;
    210 	}
    211 
    212 	l->l_kpriority = true;
    213 	catch_p = priority & PCATCH;
    214 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    215 	sleepq_enter(sq, l, mp);
    216 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    217 	mutex_exit(mtx);
    218 	error = sleepq_block(timo, catch_p);
    219 
    220 	if ((priority & PNORELOCK) == 0)
    221 		mutex_enter(mtx);
    222 
    223 	return error;
    224 }
    225 
    226 /*
    227  * General sleep call for situations where a wake-up is not expected.
    228  */
    229 int
    230 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    231 {
    232 	struct lwp *l = curlwp;
    233 	int error;
    234 
    235 	KASSERT(!(timo == 0 && intr == false));
    236 
    237 	if (sleepq_dontsleep(l))
    238 		return sleepq_abort(NULL, 0);
    239 
    240 	if (mtx != NULL)
    241 		mutex_exit(mtx);
    242 	l->l_kpriority = true;
    243 	lwp_lock(l);
    244 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
    245 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
    246 	error = sleepq_block(timo, intr);
    247 	if (mtx != NULL)
    248 		mutex_enter(mtx);
    249 
    250 	return error;
    251 }
    252 
    253 /*
    254  * OBSOLETE INTERFACE
    255  *
    256  * Make all LWPs sleeping on the specified identifier runnable.
    257  */
    258 void
    259 wakeup(wchan_t ident)
    260 {
    261 	sleepq_t *sq;
    262 	kmutex_t *mp;
    263 
    264 	if (__predict_false(cold))
    265 		return;
    266 
    267 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    268 	sleepq_wake(sq, ident, (u_int)-1, mp);
    269 }
    270 
    271 /*
    272  * General yield call.  Puts the current LWP back on its run queue and
    273  * performs a context switch.
    274  */
    275 void
    276 yield(void)
    277 {
    278 	struct lwp *l = curlwp;
    279 
    280 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    281 	lwp_lock(l);
    282 
    283 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    284 	KASSERT(l->l_stat == LSONPROC);
    285 
    286 	/* Voluntary - ditch kpriority boost. */
    287 	l->l_kpriority = false;
    288 	spc_lock(l->l_cpu);
    289 	mi_switch(l);
    290 	KERNEL_LOCK(l->l_biglocks, l);
    291 }
    292 
    293 /*
    294  * General preemption call.  Puts the current LWP back on its run queue
    295  * and performs an involuntary context switch.  Different from yield()
    296  * in that:
    297  *
    298  * - It's counted differently (involuntary vs. voluntary).
    299  * - Realtime threads go to the head of their runqueue vs. tail for yield().
    300  * - Priority boost is retained unless LWP has exceeded timeslice.
    301  */
    302 void
    303 preempt(void)
    304 {
    305 	struct lwp *l = curlwp;
    306 
    307 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    308 	lwp_lock(l);
    309 
    310 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    311 	KASSERT(l->l_stat == LSONPROC);
    312 
    313 	spc_lock(l->l_cpu);
    314 	/* Involuntary - keep kpriority boost unless a CPU hog. */
    315 	if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
    316 		l->l_kpriority = false;
    317 	}
    318 	l->l_pflag |= LP_PREEMPTING;
    319 	mi_switch(l);
    320 	KERNEL_LOCK(l->l_biglocks, l);
    321 }
    322 
    323 /*
    324  * Return true if the current LWP should yield the processor.  Intended to
    325  * be used by long-running code in kernel.
    326  */
    327 inline bool
    328 preempt_needed(void)
    329 {
    330 	lwp_t *l = curlwp;
    331 	int needed;
    332 
    333 	KPREEMPT_DISABLE(l);
    334 	needed = l->l_cpu->ci_want_resched;
    335 	KPREEMPT_ENABLE(l);
    336 
    337 	return (needed != 0);
    338 }
    339 
    340 /*
    341  * A breathing point for long running code in kernel.
    342  */
    343 void
    344 preempt_point(void)
    345 {
    346 
    347 	if (__predict_false(preempt_needed())) {
    348 		preempt();
    349 	}
    350 }
    351 
    352 /*
    353  * Handle a request made by another agent to preempt the current LWP
    354  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    355  *
    356  * Character addresses for lockstat only.
    357  */
    358 static char	kpreempt_is_disabled;
    359 static char	kernel_lock_held;
    360 static char	is_softint_lwp;
    361 static char	spl_is_raised;
    362 
    363 bool
    364 kpreempt(uintptr_t where)
    365 {
    366 	uintptr_t failed;
    367 	lwp_t *l;
    368 	int s, dop, lsflag;
    369 
    370 	l = curlwp;
    371 	failed = 0;
    372 	while ((dop = l->l_dopreempt) != 0) {
    373 		if (l->l_stat != LSONPROC) {
    374 			/*
    375 			 * About to block (or die), let it happen.
    376 			 * Doesn't really count as "preemption has
    377 			 * been blocked", since we're going to
    378 			 * context switch.
    379 			 */
    380 			atomic_swap_uint(&l->l_dopreempt, 0);
    381 			return true;
    382 		}
    383 		KASSERT((l->l_flag & LW_IDLE) == 0);
    384 		if (__predict_false(l->l_nopreempt != 0)) {
    385 			/* LWP holds preemption disabled, explicitly. */
    386 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    387 				kpreempt_ev_crit.ev_count++;
    388 			}
    389 			failed = (uintptr_t)&kpreempt_is_disabled;
    390 			break;
    391 		}
    392 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    393 			/* Can't preempt soft interrupts yet. */
    394 			atomic_swap_uint(&l->l_dopreempt, 0);
    395 			failed = (uintptr_t)&is_softint_lwp;
    396 			break;
    397 		}
    398 		s = splsched();
    399 		if (__predict_false(l->l_blcnt != 0 ||
    400 		    curcpu()->ci_biglock_wanted != NULL)) {
    401 			/* Hold or want kernel_lock, code is not MT safe. */
    402 			splx(s);
    403 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    404 				kpreempt_ev_klock.ev_count++;
    405 			}
    406 			failed = (uintptr_t)&kernel_lock_held;
    407 			break;
    408 		}
    409 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    410 			/*
    411 			 * It may be that the IPL is too high.
    412 			 * kpreempt_enter() can schedule an
    413 			 * interrupt to retry later.
    414 			 */
    415 			splx(s);
    416 			failed = (uintptr_t)&spl_is_raised;
    417 			break;
    418 		}
    419 		/* Do it! */
    420 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    421 			kpreempt_ev_immed.ev_count++;
    422 		}
    423 		lwp_lock(l);
    424 		/* Involuntary - keep kpriority boost. */
    425 		l->l_pflag |= LP_PREEMPTING;
    426 		spc_lock(l->l_cpu);
    427 		mi_switch(l);
    428 		l->l_nopreempt++;
    429 		splx(s);
    430 
    431 		/* Take care of any MD cleanup. */
    432 		cpu_kpreempt_exit(where);
    433 		l->l_nopreempt--;
    434 	}
    435 
    436 	if (__predict_true(!failed)) {
    437 		return false;
    438 	}
    439 
    440 	/* Record preemption failure for reporting via lockstat. */
    441 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    442 	lsflag = 0;
    443 	LOCKSTAT_ENTER(lsflag);
    444 	if (__predict_false(lsflag)) {
    445 		if (where == 0) {
    446 			where = (uintptr_t)__builtin_return_address(0);
    447 		}
    448 		/* Preemption is on, might recurse, so make it atomic. */
    449 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    450 		    (void *)where) == NULL) {
    451 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    452 			l->l_pfaillock = failed;
    453 		}
    454 	}
    455 	LOCKSTAT_EXIT(lsflag);
    456 	return true;
    457 }
    458 
    459 /*
    460  * Return true if preemption is explicitly disabled.
    461  */
    462 bool
    463 kpreempt_disabled(void)
    464 {
    465 	const lwp_t *l = curlwp;
    466 
    467 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    468 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    469 	    cpu_kpreempt_disabled();
    470 }
    471 
    472 /*
    473  * Disable kernel preemption.
    474  */
    475 void
    476 kpreempt_disable(void)
    477 {
    478 
    479 	KPREEMPT_DISABLE(curlwp);
    480 }
    481 
    482 /*
    483  * Reenable kernel preemption.
    484  */
    485 void
    486 kpreempt_enable(void)
    487 {
    488 
    489 	KPREEMPT_ENABLE(curlwp);
    490 }
    491 
    492 /*
    493  * Compute the amount of time during which the current lwp was running.
    494  *
    495  * - update l_rtime unless it's an idle lwp.
    496  */
    497 
    498 void
    499 updatertime(lwp_t *l, const struct bintime *now)
    500 {
    501 
    502 	if (__predict_false(l->l_flag & LW_IDLE))
    503 		return;
    504 
    505 	/* rtime += now - stime */
    506 	bintime_add(&l->l_rtime, now);
    507 	bintime_sub(&l->l_rtime, &l->l_stime);
    508 }
    509 
    510 /*
    511  * Select next LWP from the current CPU to run..
    512  */
    513 static inline lwp_t *
    514 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    515 {
    516 	lwp_t *newl;
    517 
    518 	/*
    519 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    520 	 * If no LWP is runnable, select the idle LWP.
    521 	 *
    522 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
    523 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
    524 	 * which may or may not be held here.  On exit from this code block,
    525 	 * in all cases newl is locked by spc_lwplock.
    526 	 */
    527 	newl = sched_nextlwp();
    528 	if (newl != NULL) {
    529 		sched_dequeue(newl);
    530 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    531 		KASSERT(newl->l_cpu == ci);
    532 		newl->l_stat = LSONPROC;
    533 		newl->l_pflag |= LP_RUNNING;
    534 		spc->spc_curpriority = lwp_eprio(newl);
    535 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    536 		lwp_setlock(newl, spc->spc_lwplock);
    537 	} else {
    538 		/*
    539 		 * The idle LWP does not get set to LSONPROC, because
    540 		 * otherwise it screws up the output from top(1) etc.
    541 		 */
    542 		newl = ci->ci_data.cpu_idlelwp;
    543 		newl->l_pflag |= LP_RUNNING;
    544 		spc->spc_curpriority = PRI_IDLE;
    545 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    546 		    SPCF_IDLE;
    547 	}
    548 
    549 	/*
    550 	 * Only clear want_resched if there are no pending (slow) software
    551 	 * interrupts.  We can do this without an atomic, because no new
    552 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    553 	 * the update to ci_want_resched will become globally visible before
    554 	 * the release of spc_mutex becomes globally visible.
    555 	 */
    556 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    557 
    558 	return newl;
    559 }
    560 
    561 /*
    562  * The machine independent parts of context switch.
    563  *
    564  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    565  * changes its own l_cpu (that would screw up curcpu on many ports and could
    566  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    567  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    568  * is checked under lock).
    569  */
    570 void
    571 mi_switch(lwp_t *l)
    572 {
    573 	struct cpu_info *ci;
    574 	struct schedstate_percpu *spc;
    575 	struct lwp *newl;
    576 	kmutex_t *lock;
    577 	int oldspl;
    578 	struct bintime bt;
    579 	bool returning;
    580 
    581 	KASSERT(lwp_locked(l, NULL));
    582 	KASSERT(kpreempt_disabled());
    583 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    584 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    585 
    586 	kstack_check_magic(l);
    587 
    588 	binuptime(&bt);
    589 
    590 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    591 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    592 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    593 	ci = curcpu();
    594 	spc = &ci->ci_schedstate;
    595 	returning = false;
    596 	newl = NULL;
    597 
    598 	/*
    599 	 * If we have been asked to switch to a specific LWP, then there
    600 	 * is no need to inspect the run queues.  If a soft interrupt is
    601 	 * blocking, then return to the interrupted thread without adjusting
    602 	 * VM context or its start time: neither have been changed in order
    603 	 * to take the interrupt.
    604 	 */
    605 	if (l->l_switchto != NULL) {
    606 		if ((l->l_pflag & LP_INTR) != 0) {
    607 			returning = true;
    608 			softint_block(l);
    609 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    610 				updatertime(l, &bt);
    611 		}
    612 		newl = l->l_switchto;
    613 		l->l_switchto = NULL;
    614 	}
    615 #ifndef __HAVE_FAST_SOFTINTS
    616 	else if (ci->ci_data.cpu_softints != 0) {
    617 		/* There are pending soft interrupts, so pick one. */
    618 		newl = softint_picklwp();
    619 		newl->l_stat = LSONPROC;
    620 		newl->l_pflag |= LP_RUNNING;
    621 	}
    622 #endif	/* !__HAVE_FAST_SOFTINTS */
    623 
    624 	/*
    625 	 * If on the CPU and we have gotten this far, then we must yield.
    626 	 */
    627 	if (l->l_stat == LSONPROC && l != newl) {
    628 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    629 		KASSERT((l->l_flag & LW_IDLE) == 0);
    630 		l->l_stat = LSRUN;
    631 		lwp_setlock(l, spc->spc_mutex);
    632 		sched_enqueue(l);
    633 		sched_preempted(l);
    634 
    635 		/*
    636 		 * Handle migration.  Note that "migrating LWP" may
    637 		 * be reset here, if interrupt/preemption happens
    638 		 * early in idle LWP.
    639 		 */
    640 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    641 			KASSERT((l->l_pflag & LP_INTR) == 0);
    642 			spc->spc_migrating = l;
    643 		}
    644 	}
    645 
    646 	/* Pick new LWP to run. */
    647 	if (newl == NULL) {
    648 		newl = nextlwp(ci, spc);
    649 	}
    650 
    651 	/* Items that must be updated with the CPU locked. */
    652 	if (!returning) {
    653 		/* Count time spent in current system call */
    654 		SYSCALL_TIME_SLEEP(l);
    655 
    656 		updatertime(l, &bt);
    657 
    658 		/* Update the new LWP's start time. */
    659 		newl->l_stime = bt;
    660 
    661 		/*
    662 		 * ci_curlwp changes when a fast soft interrupt occurs.
    663 		 * We use ci_onproc to keep track of which kernel or
    664 		 * user thread is running 'underneath' the software
    665 		 * interrupt.  This is important for time accounting,
    666 		 * itimers and forcing user threads to preempt (aston).
    667 		 */
    668 		ci->ci_onproc = newl;
    669 	}
    670 
    671 	/*
    672 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    673 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    674 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    675 	 * cleared by the LWP itself (us) with atomics when not under lock.
    676 	 */
    677 	l->l_dopreempt = 0;
    678 	if (__predict_false(l->l_pfailaddr != 0)) {
    679 		LOCKSTAT_FLAG(lsflag);
    680 		LOCKSTAT_ENTER(lsflag);
    681 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    682 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    683 		    1, l->l_pfailtime, l->l_pfailaddr);
    684 		LOCKSTAT_EXIT(lsflag);
    685 		l->l_pfailtime = 0;
    686 		l->l_pfaillock = 0;
    687 		l->l_pfailaddr = 0;
    688 	}
    689 
    690 	if (l != newl) {
    691 		struct lwp *prevlwp;
    692 
    693 		/* Release all locks, but leave the current LWP locked */
    694 		if (l->l_mutex == spc->spc_mutex) {
    695 			/*
    696 			 * Drop spc_lwplock, if the current LWP has been moved
    697 			 * to the run queue (it is now locked by spc_mutex).
    698 			 */
    699 			mutex_spin_exit(spc->spc_lwplock);
    700 		} else {
    701 			/*
    702 			 * Otherwise, drop the spc_mutex, we are done with the
    703 			 * run queues.
    704 			 */
    705 			mutex_spin_exit(spc->spc_mutex);
    706 		}
    707 
    708 		/* We're down to only one lock, so do debug checks. */
    709 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    710 
    711 		/* Count the context switch. */
    712 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    713 		l->l_ncsw++;
    714 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    715 			l->l_nivcsw++;
    716 			l->l_pflag &= ~LP_PREEMPTING;
    717 		}
    718 
    719 		/*
    720 		 * Increase the count of spin-mutexes before the release
    721 		 * of the last lock - we must remain at IPL_SCHED after
    722 		 * releasing the lock.
    723 		 */
    724 		KASSERTMSG(ci->ci_mtx_count == -1,
    725 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    726 		    "(block with spin-mutex held)",
    727 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    728 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    729 		ci->ci_mtx_count = -2;
    730 
    731 		/* Update status for lwpctl, if present. */
    732 		if (l->l_lwpctl != NULL) {
    733 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    734 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    735 		}
    736 
    737 		/*
    738 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    739 		 * other side to unlock - we're returning into an assembly
    740 		 * trampoline.  Unlock now.  This is safe because this is a
    741 		 * kernel LWP and is bound to current CPU: the worst anyone
    742 		 * else will do to it, is to put it back onto this CPU's run
    743 		 * queue (and the CPU is busy here right now!).
    744 		 */
    745 		if (returning) {
    746 			/* Keep IPL_SCHED after this; MD code will fix up. */
    747 			l->l_pflag &= ~LP_RUNNING;
    748 			lwp_unlock(l);
    749 		} else {
    750 			/* A normal LWP: save old VM context. */
    751 			pmap_deactivate(l);
    752 		}
    753 
    754 		/*
    755 		 * If DTrace has set the active vtime enum to anything
    756 		 * other than INACTIVE (0), then it should have set the
    757 		 * function to call.
    758 		 */
    759 		if (__predict_false(dtrace_vtime_active)) {
    760 			(*dtrace_vtime_switch_func)(newl);
    761 		}
    762 
    763 		/*
    764 		 * We must ensure not to come here from inside a read section.
    765 		 */
    766 		KASSERT(pserialize_not_in_read_section());
    767 
    768 		/* Switch to the new LWP.. */
    769 #ifdef MULTIPROCESSOR
    770 		KASSERT(curlwp == ci->ci_curlwp);
    771 #endif
    772 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    773 		prevlwp = cpu_switchto(l, newl, returning);
    774 		ci = curcpu();
    775 #ifdef MULTIPROCESSOR
    776 		KASSERT(curlwp == ci->ci_curlwp);
    777 #endif
    778 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    779 		    l, curlwp, prevlwp);
    780 		KASSERT(prevlwp != NULL);
    781 		KASSERT(l->l_cpu == ci);
    782 		KASSERT(ci->ci_mtx_count == -2);
    783 
    784 		/*
    785 		 * Immediately mark the previous LWP as no longer running
    786 		 * and unlock (to keep lock wait times short as possible).
    787 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    788 		 * don't touch after clearing LP_RUNNING as it could be
    789 		 * reaped by another CPU.  Issue a memory barrier to ensure
    790 		 * this.
    791 		 */
    792 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    793 		lock = prevlwp->l_mutex;
    794 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    795 			membar_sync();
    796 		}
    797 		prevlwp->l_pflag &= ~LP_RUNNING;
    798 		mutex_spin_exit(lock);
    799 
    800 		/*
    801 		 * Switched away - we have new curlwp.
    802 		 * Restore VM context and IPL.
    803 		 */
    804 		pmap_activate(l);
    805 		pcu_switchpoint(l);
    806 
    807 		/* Update status for lwpctl, if present. */
    808 		if (l->l_lwpctl != NULL) {
    809 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    810 			l->l_lwpctl->lc_pctr++;
    811 		}
    812 
    813 		/*
    814 		 * Normalize the spin mutex count and restore the previous
    815 		 * SPL.  Note that, unless the caller disabled preemption,
    816 		 * we can be preempted at any time after this splx().
    817 		 */
    818 		KASSERT(l->l_cpu == ci);
    819 		KASSERT(ci->ci_mtx_count == -1);
    820 		ci->ci_mtx_count = 0;
    821 		splx(oldspl);
    822 	} else {
    823 		/* Nothing to do - just unlock and return. */
    824 		mutex_spin_exit(spc->spc_mutex);
    825 		l->l_pflag &= ~LP_PREEMPTING;
    826 		lwp_unlock(l);
    827 	}
    828 
    829 	KASSERT(l == curlwp);
    830 	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
    831 
    832 	SYSCALL_TIME_WAKEUP(l);
    833 	LOCKDEBUG_BARRIER(NULL, 1);
    834 }
    835 
    836 /*
    837  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    838  *
    839  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    840  */
    841 void
    842 setrunnable(struct lwp *l)
    843 {
    844 	struct proc *p = l->l_proc;
    845 	struct cpu_info *ci;
    846 	kmutex_t *oldlock;
    847 
    848 	KASSERT((l->l_flag & LW_IDLE) == 0);
    849 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    850 	KASSERT(mutex_owned(p->p_lock));
    851 	KASSERT(lwp_locked(l, NULL));
    852 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    853 
    854 	switch (l->l_stat) {
    855 	case LSSTOP:
    856 		/*
    857 		 * If we're being traced (possibly because someone attached us
    858 		 * while we were stopped), check for a signal from the debugger.
    859 		 */
    860 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    861 			signotify(l);
    862 		p->p_nrlwps++;
    863 		break;
    864 	case LSSUSPENDED:
    865 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    866 		l->l_flag &= ~LW_WSUSPEND;
    867 		p->p_nrlwps++;
    868 		cv_broadcast(&p->p_lwpcv);
    869 		break;
    870 	case LSSLEEP:
    871 		KASSERT(l->l_wchan != NULL);
    872 		break;
    873 	case LSIDL:
    874 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    875 		break;
    876 	default:
    877 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    878 	}
    879 
    880 	/*
    881 	 * If the LWP was sleeping, start it again.
    882 	 */
    883 	if (l->l_wchan != NULL) {
    884 		l->l_stat = LSSLEEP;
    885 		/* lwp_unsleep() will release the lock. */
    886 		lwp_unsleep(l, true);
    887 		return;
    888 	}
    889 
    890 	/*
    891 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    892 	 * about to call mi_switch(), in which case it will yield.
    893 	 */
    894 	if ((l->l_pflag & LP_RUNNING) != 0) {
    895 		l->l_stat = LSONPROC;
    896 		l->l_slptime = 0;
    897 		lwp_unlock(l);
    898 		return;
    899 	}
    900 
    901 	/*
    902 	 * Look for a CPU to run.
    903 	 * Set the LWP runnable.
    904 	 */
    905 	ci = sched_takecpu(l);
    906 	l->l_cpu = ci;
    907 	spc_lock(ci);
    908 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    909 	sched_setrunnable(l);
    910 	l->l_stat = LSRUN;
    911 	l->l_slptime = 0;
    912 	sched_enqueue(l);
    913 	sched_resched_lwp(l, true);
    914 	/* SPC & LWP now unlocked. */
    915 	mutex_spin_exit(oldlock);
    916 }
    917 
    918 /*
    919  * suspendsched:
    920  *
    921  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    922  */
    923 void
    924 suspendsched(void)
    925 {
    926 	CPU_INFO_ITERATOR cii;
    927 	struct cpu_info *ci;
    928 	struct lwp *l;
    929 	struct proc *p;
    930 
    931 	/*
    932 	 * We do this by process in order not to violate the locking rules.
    933 	 */
    934 	mutex_enter(proc_lock);
    935 	PROCLIST_FOREACH(p, &allproc) {
    936 		mutex_enter(p->p_lock);
    937 		if ((p->p_flag & PK_SYSTEM) != 0) {
    938 			mutex_exit(p->p_lock);
    939 			continue;
    940 		}
    941 
    942 		if (p->p_stat != SSTOP) {
    943 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    944 				p->p_pptr->p_nstopchild++;
    945 				p->p_waited = 0;
    946 			}
    947 			p->p_stat = SSTOP;
    948 		}
    949 
    950 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    951 			if (l == curlwp)
    952 				continue;
    953 
    954 			lwp_lock(l);
    955 
    956 			/*
    957 			 * Set L_WREBOOT so that the LWP will suspend itself
    958 			 * when it tries to return to user mode.  We want to
    959 			 * try and get to get as many LWPs as possible to
    960 			 * the user / kernel boundary, so that they will
    961 			 * release any locks that they hold.
    962 			 */
    963 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    964 
    965 			if (l->l_stat == LSSLEEP &&
    966 			    (l->l_flag & LW_SINTR) != 0) {
    967 				/* setrunnable() will release the lock. */
    968 				setrunnable(l);
    969 				continue;
    970 			}
    971 
    972 			lwp_unlock(l);
    973 		}
    974 
    975 		mutex_exit(p->p_lock);
    976 	}
    977 	mutex_exit(proc_lock);
    978 
    979 	/*
    980 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    981 	 * They'll trap into the kernel and suspend themselves in userret().
    982 	 *
    983 	 * Unusually, we don't hold any other scheduler object locked, which
    984 	 * would keep preemption off for sched_resched_cpu(), so disable it
    985 	 * explicitly.
    986 	 */
    987 	kpreempt_disable();
    988 	for (CPU_INFO_FOREACH(cii, ci)) {
    989 		spc_lock(ci);
    990 		sched_resched_cpu(ci, PRI_KERNEL, true);
    991 		/* spc now unlocked */
    992 	}
    993 	kpreempt_enable();
    994 }
    995 
    996 /*
    997  * sched_unsleep:
    998  *
    999  *	The is called when the LWP has not been awoken normally but instead
   1000  *	interrupted: for example, if the sleep timed out.  Because of this,
   1001  *	it's not a valid action for running or idle LWPs.
   1002  */
   1003 static void
   1004 sched_unsleep(struct lwp *l, bool cleanup)
   1005 {
   1006 
   1007 	lwp_unlock(l);
   1008 	panic("sched_unsleep");
   1009 }
   1010 
   1011 static void
   1012 sched_changepri(struct lwp *l, pri_t pri)
   1013 {
   1014 	struct schedstate_percpu *spc;
   1015 	struct cpu_info *ci;
   1016 
   1017 	KASSERT(lwp_locked(l, NULL));
   1018 
   1019 	ci = l->l_cpu;
   1020 	spc = &ci->ci_schedstate;
   1021 
   1022 	if (l->l_stat == LSRUN) {
   1023 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1024 		sched_dequeue(l);
   1025 		l->l_priority = pri;
   1026 		sched_enqueue(l);
   1027 		sched_resched_lwp(l, false);
   1028 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1029 		/* On priority drop, only evict realtime LWPs. */
   1030 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1031 		l->l_priority = pri;
   1032 		spc_lock(ci);
   1033 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1034 		/* spc now unlocked */
   1035 	} else {
   1036 		l->l_priority = pri;
   1037 	}
   1038 }
   1039 
   1040 static void
   1041 sched_lendpri(struct lwp *l, pri_t pri)
   1042 {
   1043 	struct schedstate_percpu *spc;
   1044 	struct cpu_info *ci;
   1045 
   1046 	KASSERT(lwp_locked(l, NULL));
   1047 
   1048 	ci = l->l_cpu;
   1049 	spc = &ci->ci_schedstate;
   1050 
   1051 	if (l->l_stat == LSRUN) {
   1052 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1053 		sched_dequeue(l);
   1054 		l->l_inheritedprio = pri;
   1055 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1056 		sched_enqueue(l);
   1057 		sched_resched_lwp(l, false);
   1058 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1059 		/* On priority drop, only evict realtime LWPs. */
   1060 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1061 		l->l_inheritedprio = pri;
   1062 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1063 		spc_lock(ci);
   1064 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1065 		/* spc now unlocked */
   1066 	} else {
   1067 		l->l_inheritedprio = pri;
   1068 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1069 	}
   1070 }
   1071 
   1072 struct lwp *
   1073 syncobj_noowner(wchan_t wchan)
   1074 {
   1075 
   1076 	return NULL;
   1077 }
   1078 
   1079 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1080 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1081 
   1082 /*
   1083  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1084  * 5 second intervals.
   1085  */
   1086 static const fixpt_t cexp[ ] = {
   1087 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1088 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1089 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1090 };
   1091 
   1092 /*
   1093  * sched_pstats:
   1094  *
   1095  * => Update process statistics and check CPU resource allocation.
   1096  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1097  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1098  */
   1099 void
   1100 sched_pstats(void)
   1101 {
   1102 	extern struct loadavg averunnable;
   1103 	struct loadavg *avg = &averunnable;
   1104 	const int clkhz = (stathz != 0 ? stathz : hz);
   1105 	static bool backwards = false;
   1106 	static u_int lavg_count = 0;
   1107 	struct proc *p;
   1108 	int nrun;
   1109 
   1110 	sched_pstats_ticks++;
   1111 	if (++lavg_count >= 5) {
   1112 		lavg_count = 0;
   1113 		nrun = 0;
   1114 	}
   1115 	mutex_enter(proc_lock);
   1116 	PROCLIST_FOREACH(p, &allproc) {
   1117 		struct lwp *l;
   1118 		struct rlimit *rlim;
   1119 		time_t runtm;
   1120 		int sig;
   1121 
   1122 		/* Increment sleep time (if sleeping), ignore overflow. */
   1123 		mutex_enter(p->p_lock);
   1124 		runtm = p->p_rtime.sec;
   1125 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1126 			fixpt_t lpctcpu;
   1127 			u_int lcpticks;
   1128 
   1129 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1130 				continue;
   1131 			lwp_lock(l);
   1132 			runtm += l->l_rtime.sec;
   1133 			l->l_swtime++;
   1134 			sched_lwp_stats(l);
   1135 
   1136 			/* For load average calculation. */
   1137 			if (__predict_false(lavg_count == 0) &&
   1138 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1139 				switch (l->l_stat) {
   1140 				case LSSLEEP:
   1141 					if (l->l_slptime > 1) {
   1142 						break;
   1143 					}
   1144 					/* FALLTHROUGH */
   1145 				case LSRUN:
   1146 				case LSONPROC:
   1147 				case LSIDL:
   1148 					nrun++;
   1149 				}
   1150 			}
   1151 			lwp_unlock(l);
   1152 
   1153 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1154 			if (l->l_slptime != 0)
   1155 				continue;
   1156 
   1157 			lpctcpu = l->l_pctcpu;
   1158 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1159 			lpctcpu += ((FSCALE - ccpu) *
   1160 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1161 			l->l_pctcpu = lpctcpu;
   1162 		}
   1163 		/* Calculating p_pctcpu only for ps(1) */
   1164 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1165 
   1166 		if (__predict_false(runtm < 0)) {
   1167 			if (!backwards) {
   1168 				backwards = true;
   1169 				printf("WARNING: negative runtime; "
   1170 				    "monotonic clock has gone backwards\n");
   1171 			}
   1172 			mutex_exit(p->p_lock);
   1173 			continue;
   1174 		}
   1175 
   1176 		/*
   1177 		 * Check if the process exceeds its CPU resource allocation.
   1178 		 * If over the hard limit, kill it with SIGKILL.
   1179 		 * If over the soft limit, send SIGXCPU and raise
   1180 		 * the soft limit a little.
   1181 		 */
   1182 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1183 		sig = 0;
   1184 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1185 			if (runtm >= rlim->rlim_max) {
   1186 				sig = SIGKILL;
   1187 				log(LOG_NOTICE,
   1188 				    "pid %d, command %s, is killed: %s\n",
   1189 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1190 				uprintf("pid %d, command %s, is killed: %s\n",
   1191 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1192 			} else {
   1193 				sig = SIGXCPU;
   1194 				if (rlim->rlim_cur < rlim->rlim_max)
   1195 					rlim->rlim_cur += 5;
   1196 			}
   1197 		}
   1198 		mutex_exit(p->p_lock);
   1199 		if (__predict_false(sig)) {
   1200 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1201 			psignal(p, sig);
   1202 		}
   1203 	}
   1204 
   1205 	/* Load average calculation. */
   1206 	if (__predict_false(lavg_count == 0)) {
   1207 		int i;
   1208 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1209 		for (i = 0; i < __arraycount(cexp); i++) {
   1210 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1211 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1212 		}
   1213 	}
   1214 
   1215 	/* Lightning bolt. */
   1216 	cv_broadcast(&lbolt);
   1217 
   1218 	mutex_exit(proc_lock);
   1219 }
   1220