kern_synch.c revision 1.348 1 /* $NetBSD: kern_synch.c,v 1.348 2020/05/20 20:59:31 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.348 2020/05/20 20:59:31 maxv Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/syslog.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 #include <sys/dtrace_bsd.h>
102 int dtrace_vtime_active=0;
103 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
104
105 static void sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108
109 syncobj_t sleep_syncobj = {
110 .sobj_flag = SOBJ_SLEEPQ_SORTED,
111 .sobj_unsleep = sleepq_unsleep,
112 .sobj_changepri = sleepq_changepri,
113 .sobj_lendpri = sleepq_lendpri,
114 .sobj_owner = syncobj_noowner,
115 };
116
117 syncobj_t sched_syncobj = {
118 .sobj_flag = SOBJ_SLEEPQ_SORTED,
119 .sobj_unsleep = sched_unsleep,
120 .sobj_changepri = sched_changepri,
121 .sobj_lendpri = sched_lendpri,
122 .sobj_owner = syncobj_noowner,
123 };
124
125 syncobj_t kpause_syncobj = {
126 .sobj_flag = SOBJ_SLEEPQ_NULL,
127 .sobj_unsleep = sleepq_unsleep,
128 .sobj_changepri = sleepq_changepri,
129 .sobj_lendpri = sleepq_lendpri,
130 .sobj_owner = syncobj_noowner,
131 };
132
133 /* "Lightning bolt": once a second sleep address. */
134 kcondvar_t lbolt __cacheline_aligned;
135
136 u_int sched_pstats_ticks __cacheline_aligned;
137
138 /* Preemption event counters. */
139 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
140 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
141 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
142
143 void
144 synch_init(void)
145 {
146
147 cv_init(&lbolt, "lbolt");
148
149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "defer: critical section");
151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 "kpreempt", "defer: kernel_lock");
153 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "immediate");
155 }
156
157 /*
158 * OBSOLETE INTERFACE
159 *
160 * General sleep call. Suspends the current LWP until a wakeup is
161 * performed on the specified identifier. The LWP will then be made
162 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
163 * means no timeout). If pri includes PCATCH flag, signals are checked
164 * before and after sleeping, else signals are not checked. Returns 0 if
165 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
166 * signal needs to be delivered, ERESTART is returned if the current system
167 * call should be restarted if possible, and EINTR is returned if the system
168 * call should be interrupted by the signal (return EINTR).
169 */
170 int
171 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
172 {
173 struct lwp *l = curlwp;
174 sleepq_t *sq;
175 kmutex_t *mp;
176 bool catch_p;
177
178 KASSERT((l->l_pflag & LP_INTR) == 0);
179 KASSERT(ident != &lbolt);
180
181 if (sleepq_dontsleep(l)) {
182 (void)sleepq_abort(NULL, 0);
183 return 0;
184 }
185
186 l->l_kpriority = true;
187 catch_p = priority & PCATCH;
188 sq = sleeptab_lookup(&sleeptab, ident, &mp);
189 sleepq_enter(sq, l, mp);
190 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
191 return sleepq_block(timo, catch_p);
192 }
193
194 int
195 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
196 kmutex_t *mtx)
197 {
198 struct lwp *l = curlwp;
199 sleepq_t *sq;
200 kmutex_t *mp;
201 bool catch_p;
202 int error;
203
204 KASSERT((l->l_pflag & LP_INTR) == 0);
205 KASSERT(ident != &lbolt);
206
207 if (sleepq_dontsleep(l)) {
208 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
209 return 0;
210 }
211
212 l->l_kpriority = true;
213 catch_p = priority & PCATCH;
214 sq = sleeptab_lookup(&sleeptab, ident, &mp);
215 sleepq_enter(sq, l, mp);
216 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
217 mutex_exit(mtx);
218 error = sleepq_block(timo, catch_p);
219
220 if ((priority & PNORELOCK) == 0)
221 mutex_enter(mtx);
222
223 return error;
224 }
225
226 /*
227 * General sleep call for situations where a wake-up is not expected.
228 */
229 int
230 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
231 {
232 struct lwp *l = curlwp;
233 int error;
234
235 KASSERT(!(timo == 0 && intr == false));
236
237 if (sleepq_dontsleep(l))
238 return sleepq_abort(NULL, 0);
239
240 if (mtx != NULL)
241 mutex_exit(mtx);
242 l->l_kpriority = true;
243 lwp_lock(l);
244 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
245 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
246 error = sleepq_block(timo, intr);
247 if (mtx != NULL)
248 mutex_enter(mtx);
249
250 return error;
251 }
252
253 /*
254 * OBSOLETE INTERFACE
255 *
256 * Make all LWPs sleeping on the specified identifier runnable.
257 */
258 void
259 wakeup(wchan_t ident)
260 {
261 sleepq_t *sq;
262 kmutex_t *mp;
263
264 if (__predict_false(cold))
265 return;
266
267 sq = sleeptab_lookup(&sleeptab, ident, &mp);
268 sleepq_wake(sq, ident, (u_int)-1, mp);
269 }
270
271 /*
272 * General yield call. Puts the current LWP back on its run queue and
273 * performs a context switch.
274 */
275 void
276 yield(void)
277 {
278 struct lwp *l = curlwp;
279
280 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
281 lwp_lock(l);
282
283 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
284 KASSERT(l->l_stat == LSONPROC);
285
286 /* Voluntary - ditch kpriority boost. */
287 l->l_kpriority = false;
288 spc_lock(l->l_cpu);
289 mi_switch(l);
290 KERNEL_LOCK(l->l_biglocks, l);
291 }
292
293 /*
294 * General preemption call. Puts the current LWP back on its run queue
295 * and performs an involuntary context switch. Different from yield()
296 * in that:
297 *
298 * - It's counted differently (involuntary vs. voluntary).
299 * - Realtime threads go to the head of their runqueue vs. tail for yield().
300 * - Priority boost is retained unless LWP has exceeded timeslice.
301 */
302 void
303 preempt(void)
304 {
305 struct lwp *l = curlwp;
306
307 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
308 lwp_lock(l);
309
310 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
311 KASSERT(l->l_stat == LSONPROC);
312
313 spc_lock(l->l_cpu);
314 /* Involuntary - keep kpriority boost unless a CPU hog. */
315 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
316 l->l_kpriority = false;
317 }
318 l->l_pflag |= LP_PREEMPTING;
319 mi_switch(l);
320 KERNEL_LOCK(l->l_biglocks, l);
321 }
322
323 /*
324 * Return true if the current LWP should yield the processor. Intended to
325 * be used by long-running code in kernel.
326 */
327 inline bool
328 preempt_needed(void)
329 {
330 lwp_t *l = curlwp;
331 int needed;
332
333 KPREEMPT_DISABLE(l);
334 needed = l->l_cpu->ci_want_resched;
335 KPREEMPT_ENABLE(l);
336
337 return (needed != 0);
338 }
339
340 /*
341 * A breathing point for long running code in kernel.
342 */
343 void
344 preempt_point(void)
345 {
346
347 if (__predict_false(preempt_needed())) {
348 preempt();
349 }
350 }
351
352 /*
353 * Handle a request made by another agent to preempt the current LWP
354 * in-kernel. Usually called when l_dopreempt may be non-zero.
355 *
356 * Character addresses for lockstat only.
357 */
358 static char kpreempt_is_disabled;
359 static char kernel_lock_held;
360 static char is_softint_lwp;
361 static char spl_is_raised;
362
363 bool
364 kpreempt(uintptr_t where)
365 {
366 uintptr_t failed;
367 lwp_t *l;
368 int s, dop, lsflag;
369
370 l = curlwp;
371 failed = 0;
372 while ((dop = l->l_dopreempt) != 0) {
373 if (l->l_stat != LSONPROC) {
374 /*
375 * About to block (or die), let it happen.
376 * Doesn't really count as "preemption has
377 * been blocked", since we're going to
378 * context switch.
379 */
380 atomic_swap_uint(&l->l_dopreempt, 0);
381 return true;
382 }
383 KASSERT((l->l_flag & LW_IDLE) == 0);
384 if (__predict_false(l->l_nopreempt != 0)) {
385 /* LWP holds preemption disabled, explicitly. */
386 if ((dop & DOPREEMPT_COUNTED) == 0) {
387 kpreempt_ev_crit.ev_count++;
388 }
389 failed = (uintptr_t)&kpreempt_is_disabled;
390 break;
391 }
392 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
393 /* Can't preempt soft interrupts yet. */
394 atomic_swap_uint(&l->l_dopreempt, 0);
395 failed = (uintptr_t)&is_softint_lwp;
396 break;
397 }
398 s = splsched();
399 if (__predict_false(l->l_blcnt != 0 ||
400 curcpu()->ci_biglock_wanted != NULL)) {
401 /* Hold or want kernel_lock, code is not MT safe. */
402 splx(s);
403 if ((dop & DOPREEMPT_COUNTED) == 0) {
404 kpreempt_ev_klock.ev_count++;
405 }
406 failed = (uintptr_t)&kernel_lock_held;
407 break;
408 }
409 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
410 /*
411 * It may be that the IPL is too high.
412 * kpreempt_enter() can schedule an
413 * interrupt to retry later.
414 */
415 splx(s);
416 failed = (uintptr_t)&spl_is_raised;
417 break;
418 }
419 /* Do it! */
420 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
421 kpreempt_ev_immed.ev_count++;
422 }
423 lwp_lock(l);
424 /* Involuntary - keep kpriority boost. */
425 l->l_pflag |= LP_PREEMPTING;
426 spc_lock(l->l_cpu);
427 mi_switch(l);
428 l->l_nopreempt++;
429 splx(s);
430
431 /* Take care of any MD cleanup. */
432 cpu_kpreempt_exit(where);
433 l->l_nopreempt--;
434 }
435
436 if (__predict_true(!failed)) {
437 return false;
438 }
439
440 /* Record preemption failure for reporting via lockstat. */
441 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
442 lsflag = 0;
443 LOCKSTAT_ENTER(lsflag);
444 if (__predict_false(lsflag)) {
445 if (where == 0) {
446 where = (uintptr_t)__builtin_return_address(0);
447 }
448 /* Preemption is on, might recurse, so make it atomic. */
449 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
450 (void *)where) == NULL) {
451 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
452 l->l_pfaillock = failed;
453 }
454 }
455 LOCKSTAT_EXIT(lsflag);
456 return true;
457 }
458
459 /*
460 * Return true if preemption is explicitly disabled.
461 */
462 bool
463 kpreempt_disabled(void)
464 {
465 const lwp_t *l = curlwp;
466
467 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
468 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
469 cpu_kpreempt_disabled();
470 }
471
472 /*
473 * Disable kernel preemption.
474 */
475 void
476 kpreempt_disable(void)
477 {
478
479 KPREEMPT_DISABLE(curlwp);
480 }
481
482 /*
483 * Reenable kernel preemption.
484 */
485 void
486 kpreempt_enable(void)
487 {
488
489 KPREEMPT_ENABLE(curlwp);
490 }
491
492 /*
493 * Compute the amount of time during which the current lwp was running.
494 *
495 * - update l_rtime unless it's an idle lwp.
496 */
497
498 void
499 updatertime(lwp_t *l, const struct bintime *now)
500 {
501
502 if (__predict_false(l->l_flag & LW_IDLE))
503 return;
504
505 /* rtime += now - stime */
506 bintime_add(&l->l_rtime, now);
507 bintime_sub(&l->l_rtime, &l->l_stime);
508 }
509
510 /*
511 * Select next LWP from the current CPU to run..
512 */
513 static inline lwp_t *
514 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
515 {
516 lwp_t *newl;
517
518 /*
519 * Let sched_nextlwp() select the LWP to run the CPU next.
520 * If no LWP is runnable, select the idle LWP.
521 *
522 * On arrival here LWPs on a run queue are locked by spc_mutex which
523 * is currently held. Idle LWPs are always locked by spc_lwplock,
524 * which may or may not be held here. On exit from this code block,
525 * in all cases newl is locked by spc_lwplock.
526 */
527 newl = sched_nextlwp();
528 if (newl != NULL) {
529 sched_dequeue(newl);
530 KASSERT(lwp_locked(newl, spc->spc_mutex));
531 KASSERT(newl->l_cpu == ci);
532 newl->l_stat = LSONPROC;
533 newl->l_pflag |= LP_RUNNING;
534 spc->spc_curpriority = lwp_eprio(newl);
535 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
536 lwp_setlock(newl, spc->spc_lwplock);
537 } else {
538 /*
539 * The idle LWP does not get set to LSONPROC, because
540 * otherwise it screws up the output from top(1) etc.
541 */
542 newl = ci->ci_data.cpu_idlelwp;
543 newl->l_pflag |= LP_RUNNING;
544 spc->spc_curpriority = PRI_IDLE;
545 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
546 SPCF_IDLE;
547 }
548
549 /*
550 * Only clear want_resched if there are no pending (slow) software
551 * interrupts. We can do this without an atomic, because no new
552 * LWPs can appear in the queue due to our hold on spc_mutex, and
553 * the update to ci_want_resched will become globally visible before
554 * the release of spc_mutex becomes globally visible.
555 */
556 ci->ci_want_resched = ci->ci_data.cpu_softints;
557
558 return newl;
559 }
560
561 /*
562 * The machine independent parts of context switch.
563 *
564 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
565 * changes its own l_cpu (that would screw up curcpu on many ports and could
566 * cause all kinds of other evil stuff). l_cpu is always changed by some
567 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
568 * is checked under lock).
569 */
570 void
571 mi_switch(lwp_t *l)
572 {
573 struct cpu_info *ci;
574 struct schedstate_percpu *spc;
575 struct lwp *newl;
576 kmutex_t *lock;
577 int oldspl;
578 struct bintime bt;
579 bool returning;
580
581 KASSERT(lwp_locked(l, NULL));
582 KASSERT(kpreempt_disabled());
583 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
584 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
585
586 kstack_check_magic(l);
587
588 binuptime(&bt);
589
590 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
591 KASSERT((l->l_pflag & LP_RUNNING) != 0);
592 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
593 ci = curcpu();
594 spc = &ci->ci_schedstate;
595 returning = false;
596 newl = NULL;
597
598 /*
599 * If we have been asked to switch to a specific LWP, then there
600 * is no need to inspect the run queues. If a soft interrupt is
601 * blocking, then return to the interrupted thread without adjusting
602 * VM context or its start time: neither have been changed in order
603 * to take the interrupt.
604 */
605 if (l->l_switchto != NULL) {
606 if ((l->l_pflag & LP_INTR) != 0) {
607 returning = true;
608 softint_block(l);
609 if ((l->l_pflag & LP_TIMEINTR) != 0)
610 updatertime(l, &bt);
611 }
612 newl = l->l_switchto;
613 l->l_switchto = NULL;
614 }
615 #ifndef __HAVE_FAST_SOFTINTS
616 else if (ci->ci_data.cpu_softints != 0) {
617 /* There are pending soft interrupts, so pick one. */
618 newl = softint_picklwp();
619 newl->l_stat = LSONPROC;
620 newl->l_pflag |= LP_RUNNING;
621 }
622 #endif /* !__HAVE_FAST_SOFTINTS */
623
624 /*
625 * If on the CPU and we have gotten this far, then we must yield.
626 */
627 if (l->l_stat == LSONPROC && l != newl) {
628 KASSERT(lwp_locked(l, spc->spc_lwplock));
629 KASSERT((l->l_flag & LW_IDLE) == 0);
630 l->l_stat = LSRUN;
631 lwp_setlock(l, spc->spc_mutex);
632 sched_enqueue(l);
633 sched_preempted(l);
634
635 /*
636 * Handle migration. Note that "migrating LWP" may
637 * be reset here, if interrupt/preemption happens
638 * early in idle LWP.
639 */
640 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
641 KASSERT((l->l_pflag & LP_INTR) == 0);
642 spc->spc_migrating = l;
643 }
644 }
645
646 /* Pick new LWP to run. */
647 if (newl == NULL) {
648 newl = nextlwp(ci, spc);
649 }
650
651 /* Items that must be updated with the CPU locked. */
652 if (!returning) {
653 /* Count time spent in current system call */
654 SYSCALL_TIME_SLEEP(l);
655
656 updatertime(l, &bt);
657
658 /* Update the new LWP's start time. */
659 newl->l_stime = bt;
660
661 /*
662 * ci_curlwp changes when a fast soft interrupt occurs.
663 * We use ci_onproc to keep track of which kernel or
664 * user thread is running 'underneath' the software
665 * interrupt. This is important for time accounting,
666 * itimers and forcing user threads to preempt (aston).
667 */
668 ci->ci_onproc = newl;
669 }
670
671 /*
672 * Preemption related tasks. Must be done holding spc_mutex. Clear
673 * l_dopreempt without an atomic - it's only ever set non-zero by
674 * sched_resched_cpu() which also holds spc_mutex, and only ever
675 * cleared by the LWP itself (us) with atomics when not under lock.
676 */
677 l->l_dopreempt = 0;
678 if (__predict_false(l->l_pfailaddr != 0)) {
679 LOCKSTAT_FLAG(lsflag);
680 LOCKSTAT_ENTER(lsflag);
681 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
682 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
683 1, l->l_pfailtime, l->l_pfailaddr);
684 LOCKSTAT_EXIT(lsflag);
685 l->l_pfailtime = 0;
686 l->l_pfaillock = 0;
687 l->l_pfailaddr = 0;
688 }
689
690 if (l != newl) {
691 struct lwp *prevlwp;
692
693 /* Release all locks, but leave the current LWP locked */
694 if (l->l_mutex == spc->spc_mutex) {
695 /*
696 * Drop spc_lwplock, if the current LWP has been moved
697 * to the run queue (it is now locked by spc_mutex).
698 */
699 mutex_spin_exit(spc->spc_lwplock);
700 } else {
701 /*
702 * Otherwise, drop the spc_mutex, we are done with the
703 * run queues.
704 */
705 mutex_spin_exit(spc->spc_mutex);
706 }
707
708 /* We're down to only one lock, so do debug checks. */
709 LOCKDEBUG_BARRIER(l->l_mutex, 1);
710
711 /* Count the context switch. */
712 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
713 l->l_ncsw++;
714 if ((l->l_pflag & LP_PREEMPTING) != 0) {
715 l->l_nivcsw++;
716 l->l_pflag &= ~LP_PREEMPTING;
717 }
718
719 /*
720 * Increase the count of spin-mutexes before the release
721 * of the last lock - we must remain at IPL_SCHED after
722 * releasing the lock.
723 */
724 KASSERTMSG(ci->ci_mtx_count == -1,
725 "%s: cpu%u: ci_mtx_count (%d) != -1 "
726 "(block with spin-mutex held)",
727 __func__, cpu_index(ci), ci->ci_mtx_count);
728 oldspl = MUTEX_SPIN_OLDSPL(ci);
729 ci->ci_mtx_count = -2;
730
731 /* Update status for lwpctl, if present. */
732 if (l->l_lwpctl != NULL) {
733 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
734 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
735 }
736
737 /*
738 * If curlwp is a soft interrupt LWP, there's nobody on the
739 * other side to unlock - we're returning into an assembly
740 * trampoline. Unlock now. This is safe because this is a
741 * kernel LWP and is bound to current CPU: the worst anyone
742 * else will do to it, is to put it back onto this CPU's run
743 * queue (and the CPU is busy here right now!).
744 */
745 if (returning) {
746 /* Keep IPL_SCHED after this; MD code will fix up. */
747 l->l_pflag &= ~LP_RUNNING;
748 lwp_unlock(l);
749 } else {
750 /* A normal LWP: save old VM context. */
751 pmap_deactivate(l);
752 }
753
754 /*
755 * If DTrace has set the active vtime enum to anything
756 * other than INACTIVE (0), then it should have set the
757 * function to call.
758 */
759 if (__predict_false(dtrace_vtime_active)) {
760 (*dtrace_vtime_switch_func)(newl);
761 }
762
763 /*
764 * We must ensure not to come here from inside a read section.
765 */
766 KASSERT(pserialize_not_in_read_section());
767
768 /* Switch to the new LWP.. */
769 #ifdef MULTIPROCESSOR
770 KASSERT(curlwp == ci->ci_curlwp);
771 #endif
772 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
773 prevlwp = cpu_switchto(l, newl, returning);
774 ci = curcpu();
775 #ifdef MULTIPROCESSOR
776 KASSERT(curlwp == ci->ci_curlwp);
777 #endif
778 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
779 l, curlwp, prevlwp);
780 KASSERT(prevlwp != NULL);
781 KASSERT(l->l_cpu == ci);
782 KASSERT(ci->ci_mtx_count == -2);
783
784 /*
785 * Immediately mark the previous LWP as no longer running
786 * and unlock (to keep lock wait times short as possible).
787 * We'll still be at IPL_SCHED afterwards. If a zombie,
788 * don't touch after clearing LP_RUNNING as it could be
789 * reaped by another CPU. Issue a memory barrier to ensure
790 * this.
791 */
792 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
793 lock = prevlwp->l_mutex;
794 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
795 membar_sync();
796 }
797 prevlwp->l_pflag &= ~LP_RUNNING;
798 mutex_spin_exit(lock);
799
800 /*
801 * Switched away - we have new curlwp.
802 * Restore VM context and IPL.
803 */
804 pmap_activate(l);
805 pcu_switchpoint(l);
806
807 /* Update status for lwpctl, if present. */
808 if (l->l_lwpctl != NULL) {
809 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
810 l->l_lwpctl->lc_pctr++;
811 }
812
813 /*
814 * Normalize the spin mutex count and restore the previous
815 * SPL. Note that, unless the caller disabled preemption,
816 * we can be preempted at any time after this splx().
817 */
818 KASSERT(l->l_cpu == ci);
819 KASSERT(ci->ci_mtx_count == -1);
820 ci->ci_mtx_count = 0;
821 splx(oldspl);
822 } else {
823 /* Nothing to do - just unlock and return. */
824 mutex_spin_exit(spc->spc_mutex);
825 l->l_pflag &= ~LP_PREEMPTING;
826 lwp_unlock(l);
827 }
828
829 KASSERT(l == curlwp);
830 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
831
832 SYSCALL_TIME_WAKEUP(l);
833 LOCKDEBUG_BARRIER(NULL, 1);
834 }
835
836 /*
837 * setrunnable: change LWP state to be runnable, placing it on the run queue.
838 *
839 * Call with the process and LWP locked. Will return with the LWP unlocked.
840 */
841 void
842 setrunnable(struct lwp *l)
843 {
844 struct proc *p = l->l_proc;
845 struct cpu_info *ci;
846 kmutex_t *oldlock;
847
848 KASSERT((l->l_flag & LW_IDLE) == 0);
849 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
850 KASSERT(mutex_owned(p->p_lock));
851 KASSERT(lwp_locked(l, NULL));
852 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
853
854 switch (l->l_stat) {
855 case LSSTOP:
856 /*
857 * If we're being traced (possibly because someone attached us
858 * while we were stopped), check for a signal from the debugger.
859 */
860 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
861 signotify(l);
862 p->p_nrlwps++;
863 break;
864 case LSSUSPENDED:
865 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
866 l->l_flag &= ~LW_WSUSPEND;
867 p->p_nrlwps++;
868 cv_broadcast(&p->p_lwpcv);
869 break;
870 case LSSLEEP:
871 KASSERT(l->l_wchan != NULL);
872 break;
873 case LSIDL:
874 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
875 break;
876 default:
877 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
878 }
879
880 /*
881 * If the LWP was sleeping, start it again.
882 */
883 if (l->l_wchan != NULL) {
884 l->l_stat = LSSLEEP;
885 /* lwp_unsleep() will release the lock. */
886 lwp_unsleep(l, true);
887 return;
888 }
889
890 /*
891 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
892 * about to call mi_switch(), in which case it will yield.
893 */
894 if ((l->l_pflag & LP_RUNNING) != 0) {
895 l->l_stat = LSONPROC;
896 l->l_slptime = 0;
897 lwp_unlock(l);
898 return;
899 }
900
901 /*
902 * Look for a CPU to run.
903 * Set the LWP runnable.
904 */
905 ci = sched_takecpu(l);
906 l->l_cpu = ci;
907 spc_lock(ci);
908 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
909 sched_setrunnable(l);
910 l->l_stat = LSRUN;
911 l->l_slptime = 0;
912 sched_enqueue(l);
913 sched_resched_lwp(l, true);
914 /* SPC & LWP now unlocked. */
915 mutex_spin_exit(oldlock);
916 }
917
918 /*
919 * suspendsched:
920 *
921 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
922 */
923 void
924 suspendsched(void)
925 {
926 CPU_INFO_ITERATOR cii;
927 struct cpu_info *ci;
928 struct lwp *l;
929 struct proc *p;
930
931 /*
932 * We do this by process in order not to violate the locking rules.
933 */
934 mutex_enter(proc_lock);
935 PROCLIST_FOREACH(p, &allproc) {
936 mutex_enter(p->p_lock);
937 if ((p->p_flag & PK_SYSTEM) != 0) {
938 mutex_exit(p->p_lock);
939 continue;
940 }
941
942 if (p->p_stat != SSTOP) {
943 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
944 p->p_pptr->p_nstopchild++;
945 p->p_waited = 0;
946 }
947 p->p_stat = SSTOP;
948 }
949
950 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
951 if (l == curlwp)
952 continue;
953
954 lwp_lock(l);
955
956 /*
957 * Set L_WREBOOT so that the LWP will suspend itself
958 * when it tries to return to user mode. We want to
959 * try and get to get as many LWPs as possible to
960 * the user / kernel boundary, so that they will
961 * release any locks that they hold.
962 */
963 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
964
965 if (l->l_stat == LSSLEEP &&
966 (l->l_flag & LW_SINTR) != 0) {
967 /* setrunnable() will release the lock. */
968 setrunnable(l);
969 continue;
970 }
971
972 lwp_unlock(l);
973 }
974
975 mutex_exit(p->p_lock);
976 }
977 mutex_exit(proc_lock);
978
979 /*
980 * Kick all CPUs to make them preempt any LWPs running in user mode.
981 * They'll trap into the kernel and suspend themselves in userret().
982 *
983 * Unusually, we don't hold any other scheduler object locked, which
984 * would keep preemption off for sched_resched_cpu(), so disable it
985 * explicitly.
986 */
987 kpreempt_disable();
988 for (CPU_INFO_FOREACH(cii, ci)) {
989 spc_lock(ci);
990 sched_resched_cpu(ci, PRI_KERNEL, true);
991 /* spc now unlocked */
992 }
993 kpreempt_enable();
994 }
995
996 /*
997 * sched_unsleep:
998 *
999 * The is called when the LWP has not been awoken normally but instead
1000 * interrupted: for example, if the sleep timed out. Because of this,
1001 * it's not a valid action for running or idle LWPs.
1002 */
1003 static void
1004 sched_unsleep(struct lwp *l, bool cleanup)
1005 {
1006
1007 lwp_unlock(l);
1008 panic("sched_unsleep");
1009 }
1010
1011 static void
1012 sched_changepri(struct lwp *l, pri_t pri)
1013 {
1014 struct schedstate_percpu *spc;
1015 struct cpu_info *ci;
1016
1017 KASSERT(lwp_locked(l, NULL));
1018
1019 ci = l->l_cpu;
1020 spc = &ci->ci_schedstate;
1021
1022 if (l->l_stat == LSRUN) {
1023 KASSERT(lwp_locked(l, spc->spc_mutex));
1024 sched_dequeue(l);
1025 l->l_priority = pri;
1026 sched_enqueue(l);
1027 sched_resched_lwp(l, false);
1028 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1029 /* On priority drop, only evict realtime LWPs. */
1030 KASSERT(lwp_locked(l, spc->spc_lwplock));
1031 l->l_priority = pri;
1032 spc_lock(ci);
1033 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1034 /* spc now unlocked */
1035 } else {
1036 l->l_priority = pri;
1037 }
1038 }
1039
1040 static void
1041 sched_lendpri(struct lwp *l, pri_t pri)
1042 {
1043 struct schedstate_percpu *spc;
1044 struct cpu_info *ci;
1045
1046 KASSERT(lwp_locked(l, NULL));
1047
1048 ci = l->l_cpu;
1049 spc = &ci->ci_schedstate;
1050
1051 if (l->l_stat == LSRUN) {
1052 KASSERT(lwp_locked(l, spc->spc_mutex));
1053 sched_dequeue(l);
1054 l->l_inheritedprio = pri;
1055 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1056 sched_enqueue(l);
1057 sched_resched_lwp(l, false);
1058 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1059 /* On priority drop, only evict realtime LWPs. */
1060 KASSERT(lwp_locked(l, spc->spc_lwplock));
1061 l->l_inheritedprio = pri;
1062 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1063 spc_lock(ci);
1064 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1065 /* spc now unlocked */
1066 } else {
1067 l->l_inheritedprio = pri;
1068 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1069 }
1070 }
1071
1072 struct lwp *
1073 syncobj_noowner(wchan_t wchan)
1074 {
1075
1076 return NULL;
1077 }
1078
1079 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1080 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1081
1082 /*
1083 * Constants for averages over 1, 5 and 15 minutes when sampling at
1084 * 5 second intervals.
1085 */
1086 static const fixpt_t cexp[ ] = {
1087 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1088 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1089 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1090 };
1091
1092 /*
1093 * sched_pstats:
1094 *
1095 * => Update process statistics and check CPU resource allocation.
1096 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1097 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1098 */
1099 void
1100 sched_pstats(void)
1101 {
1102 extern struct loadavg averunnable;
1103 struct loadavg *avg = &averunnable;
1104 const int clkhz = (stathz != 0 ? stathz : hz);
1105 static bool backwards = false;
1106 static u_int lavg_count = 0;
1107 struct proc *p;
1108 int nrun;
1109
1110 sched_pstats_ticks++;
1111 if (++lavg_count >= 5) {
1112 lavg_count = 0;
1113 nrun = 0;
1114 }
1115 mutex_enter(proc_lock);
1116 PROCLIST_FOREACH(p, &allproc) {
1117 struct lwp *l;
1118 struct rlimit *rlim;
1119 time_t runtm;
1120 int sig;
1121
1122 /* Increment sleep time (if sleeping), ignore overflow. */
1123 mutex_enter(p->p_lock);
1124 runtm = p->p_rtime.sec;
1125 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1126 fixpt_t lpctcpu;
1127 u_int lcpticks;
1128
1129 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1130 continue;
1131 lwp_lock(l);
1132 runtm += l->l_rtime.sec;
1133 l->l_swtime++;
1134 sched_lwp_stats(l);
1135
1136 /* For load average calculation. */
1137 if (__predict_false(lavg_count == 0) &&
1138 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1139 switch (l->l_stat) {
1140 case LSSLEEP:
1141 if (l->l_slptime > 1) {
1142 break;
1143 }
1144 /* FALLTHROUGH */
1145 case LSRUN:
1146 case LSONPROC:
1147 case LSIDL:
1148 nrun++;
1149 }
1150 }
1151 lwp_unlock(l);
1152
1153 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1154 if (l->l_slptime != 0)
1155 continue;
1156
1157 lpctcpu = l->l_pctcpu;
1158 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1159 lpctcpu += ((FSCALE - ccpu) *
1160 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1161 l->l_pctcpu = lpctcpu;
1162 }
1163 /* Calculating p_pctcpu only for ps(1) */
1164 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1165
1166 if (__predict_false(runtm < 0)) {
1167 if (!backwards) {
1168 backwards = true;
1169 printf("WARNING: negative runtime; "
1170 "monotonic clock has gone backwards\n");
1171 }
1172 mutex_exit(p->p_lock);
1173 continue;
1174 }
1175
1176 /*
1177 * Check if the process exceeds its CPU resource allocation.
1178 * If over the hard limit, kill it with SIGKILL.
1179 * If over the soft limit, send SIGXCPU and raise
1180 * the soft limit a little.
1181 */
1182 rlim = &p->p_rlimit[RLIMIT_CPU];
1183 sig = 0;
1184 if (__predict_false(runtm >= rlim->rlim_cur)) {
1185 if (runtm >= rlim->rlim_max) {
1186 sig = SIGKILL;
1187 log(LOG_NOTICE,
1188 "pid %d, command %s, is killed: %s\n",
1189 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1190 uprintf("pid %d, command %s, is killed: %s\n",
1191 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1192 } else {
1193 sig = SIGXCPU;
1194 if (rlim->rlim_cur < rlim->rlim_max)
1195 rlim->rlim_cur += 5;
1196 }
1197 }
1198 mutex_exit(p->p_lock);
1199 if (__predict_false(sig)) {
1200 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1201 psignal(p, sig);
1202 }
1203 }
1204
1205 /* Load average calculation. */
1206 if (__predict_false(lavg_count == 0)) {
1207 int i;
1208 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1209 for (i = 0; i < __arraycount(cexp); i++) {
1210 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1211 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1212 }
1213 }
1214
1215 /* Lightning bolt. */
1216 cv_broadcast(&lbolt);
1217
1218 mutex_exit(proc_lock);
1219 }
1220