Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.356
      1 /*	$NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_dtrace.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #include <sys/cpu.h>
     84 #include <sys/pserialize.h>
     85 #include <sys/resource.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/rwlock.h>
     88 #include <sys/sched.h>
     89 #include <sys/syscall_stats.h>
     90 #include <sys/sleepq.h>
     91 #include <sys/lockdebug.h>
     92 #include <sys/evcnt.h>
     93 #include <sys/intr.h>
     94 #include <sys/lwpctl.h>
     95 #include <sys/atomic.h>
     96 #include <sys/syslog.h>
     97 
     98 #include <uvm/uvm_extern.h>
     99 
    100 #include <dev/lockstat.h>
    101 
    102 #include <sys/dtrace_bsd.h>
    103 int                             dtrace_vtime_active=0;
    104 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    105 
    106 static void	sched_unsleep(struct lwp *, bool);
    107 static void	sched_changepri(struct lwp *, pri_t);
    108 static void	sched_lendpri(struct lwp *, pri_t);
    109 
    110 syncobj_t sleep_syncobj = {
    111 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    112 	.sobj_unsleep	= sleepq_unsleep,
    113 	.sobj_changepri	= sleepq_changepri,
    114 	.sobj_lendpri	= sleepq_lendpri,
    115 	.sobj_owner	= syncobj_noowner,
    116 };
    117 
    118 syncobj_t sched_syncobj = {
    119 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    120 	.sobj_unsleep	= sched_unsleep,
    121 	.sobj_changepri	= sched_changepri,
    122 	.sobj_lendpri	= sched_lendpri,
    123 	.sobj_owner	= syncobj_noowner,
    124 };
    125 
    126 syncobj_t kpause_syncobj = {
    127 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
    128 	.sobj_unsleep	= sleepq_unsleep,
    129 	.sobj_changepri	= sleepq_changepri,
    130 	.sobj_lendpri	= sleepq_lendpri,
    131 	.sobj_owner	= syncobj_noowner,
    132 };
    133 
    134 /* "Lightning bolt": once a second sleep address. */
    135 kcondvar_t		lbolt			__cacheline_aligned;
    136 
    137 u_int			sched_pstats_ticks	__cacheline_aligned;
    138 
    139 /* Preemption event counters. */
    140 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    141 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    142 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    143 
    144 void
    145 synch_init(void)
    146 {
    147 
    148 	cv_init(&lbolt, "lbolt");
    149 
    150 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    151 	   "kpreempt", "defer: critical section");
    152 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    153 	   "kpreempt", "defer: kernel_lock");
    154 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    155 	   "kpreempt", "immediate");
    156 }
    157 
    158 /*
    159  * OBSOLETE INTERFACE
    160  *
    161  * General sleep call.  Suspends the current LWP until a wakeup is
    162  * performed on the specified identifier.  The LWP will then be made
    163  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    164  * means no timeout).  If pri includes PCATCH flag, signals are checked
    165  * before and after sleeping, else signals are not checked.  Returns 0 if
    166  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    167  * signal needs to be delivered, ERESTART is returned if the current system
    168  * call should be restarted if possible, and EINTR is returned if the system
    169  * call should be interrupted by the signal (return EINTR).
    170  */
    171 int
    172 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    173 {
    174 	struct lwp *l = curlwp;
    175 	sleepq_t *sq;
    176 	kmutex_t *mp;
    177 	bool catch_p;
    178 
    179 	KASSERT((l->l_pflag & LP_INTR) == 0);
    180 	KASSERT(ident != &lbolt);
    181 	//KASSERT(KERNEL_LOCKED_P());
    182 
    183 	if (sleepq_dontsleep(l)) {
    184 		(void)sleepq_abort(NULL, 0);
    185 		return 0;
    186 	}
    187 
    188 	l->l_kpriority = true;
    189 	catch_p = priority & PCATCH;
    190 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    191 	sleepq_enter(sq, l, mp);
    192 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    193 	return sleepq_block(timo, catch_p, &sleep_syncobj);
    194 }
    195 
    196 int
    197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    198 	kmutex_t *mtx)
    199 {
    200 	struct lwp *l = curlwp;
    201 	sleepq_t *sq;
    202 	kmutex_t *mp;
    203 	bool catch_p;
    204 	int error;
    205 
    206 	KASSERT((l->l_pflag & LP_INTR) == 0);
    207 	KASSERT(ident != &lbolt);
    208 
    209 	if (sleepq_dontsleep(l)) {
    210 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    211 		return 0;
    212 	}
    213 
    214 	l->l_kpriority = true;
    215 	catch_p = priority & PCATCH;
    216 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    217 	sleepq_enter(sq, l, mp);
    218 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    219 	mutex_exit(mtx);
    220 	error = sleepq_block(timo, catch_p, &sleep_syncobj);
    221 
    222 	if ((priority & PNORELOCK) == 0)
    223 		mutex_enter(mtx);
    224 
    225 	return error;
    226 }
    227 
    228 /*
    229  * General sleep call for situations where a wake-up is not expected.
    230  */
    231 int
    232 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    233 {
    234 	struct lwp *l = curlwp;
    235 	int error;
    236 
    237 	KASSERT(timo != 0 || intr);
    238 
    239 	if (sleepq_dontsleep(l))
    240 		return sleepq_abort(NULL, 0);
    241 
    242 	if (mtx != NULL)
    243 		mutex_exit(mtx);
    244 	l->l_kpriority = true;
    245 	lwp_lock(l);
    246 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
    247 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
    248 	error = sleepq_block(timo, intr, &kpause_syncobj);
    249 	if (mtx != NULL)
    250 		mutex_enter(mtx);
    251 
    252 	return error;
    253 }
    254 
    255 /*
    256  * OBSOLETE INTERFACE
    257  *
    258  * Make all LWPs sleeping on the specified identifier runnable.
    259  */
    260 void
    261 wakeup(wchan_t ident)
    262 {
    263 	sleepq_t *sq;
    264 	kmutex_t *mp;
    265 
    266 	if (__predict_false(cold))
    267 		return;
    268 
    269 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    270 	sleepq_wake(sq, ident, (u_int)-1, mp);
    271 }
    272 
    273 /*
    274  * General yield call.  Puts the current LWP back on its run queue and
    275  * performs a context switch.
    276  */
    277 void
    278 yield(void)
    279 {
    280 	struct lwp *l = curlwp;
    281 
    282 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    283 	lwp_lock(l);
    284 
    285 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    286 	KASSERT(l->l_stat == LSONPROC);
    287 
    288 	/* Voluntary - ditch kpriority boost. */
    289 	l->l_kpriority = false;
    290 	spc_lock(l->l_cpu);
    291 	mi_switch(l);
    292 	KERNEL_LOCK(l->l_biglocks, l);
    293 }
    294 
    295 /*
    296  * General preemption call.  Puts the current LWP back on its run queue
    297  * and performs an involuntary context switch.  Different from yield()
    298  * in that:
    299  *
    300  * - It's counted differently (involuntary vs. voluntary).
    301  * - Realtime threads go to the head of their runqueue vs. tail for yield().
    302  * - Priority boost is retained unless LWP has exceeded timeslice.
    303  */
    304 void
    305 preempt(void)
    306 {
    307 	struct lwp *l = curlwp;
    308 
    309 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    310 	lwp_lock(l);
    311 
    312 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    313 	KASSERT(l->l_stat == LSONPROC);
    314 
    315 	spc_lock(l->l_cpu);
    316 	/* Involuntary - keep kpriority boost unless a CPU hog. */
    317 	if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
    318 		l->l_kpriority = false;
    319 	}
    320 	l->l_pflag |= LP_PREEMPTING;
    321 	mi_switch(l);
    322 	KERNEL_LOCK(l->l_biglocks, l);
    323 }
    324 
    325 /*
    326  * Return true if the current LWP should yield the processor.  Intended to
    327  * be used by long-running code in kernel.
    328  */
    329 inline bool
    330 preempt_needed(void)
    331 {
    332 	lwp_t *l = curlwp;
    333 	int needed;
    334 
    335 	KPREEMPT_DISABLE(l);
    336 	needed = l->l_cpu->ci_want_resched;
    337 	KPREEMPT_ENABLE(l);
    338 
    339 	return (needed != 0);
    340 }
    341 
    342 /*
    343  * A breathing point for long running code in kernel.
    344  */
    345 void
    346 preempt_point(void)
    347 {
    348 
    349 	if (__predict_false(preempt_needed())) {
    350 		preempt();
    351 	}
    352 }
    353 
    354 /*
    355  * Handle a request made by another agent to preempt the current LWP
    356  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    357  *
    358  * Character addresses for lockstat only.
    359  */
    360 static char	kpreempt_is_disabled;
    361 static char	kernel_lock_held;
    362 static char	is_softint_lwp;
    363 static char	spl_is_raised;
    364 
    365 bool
    366 kpreempt(uintptr_t where)
    367 {
    368 	uintptr_t failed;
    369 	lwp_t *l;
    370 	int s, dop, lsflag;
    371 
    372 	l = curlwp;
    373 	failed = 0;
    374 	while ((dop = l->l_dopreempt) != 0) {
    375 		if (l->l_stat != LSONPROC) {
    376 			/*
    377 			 * About to block (or die), let it happen.
    378 			 * Doesn't really count as "preemption has
    379 			 * been blocked", since we're going to
    380 			 * context switch.
    381 			 */
    382 			atomic_swap_uint(&l->l_dopreempt, 0);
    383 			return true;
    384 		}
    385 		KASSERT((l->l_flag & LW_IDLE) == 0);
    386 		if (__predict_false(l->l_nopreempt != 0)) {
    387 			/* LWP holds preemption disabled, explicitly. */
    388 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    389 				kpreempt_ev_crit.ev_count++;
    390 			}
    391 			failed = (uintptr_t)&kpreempt_is_disabled;
    392 			break;
    393 		}
    394 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    395 			/* Can't preempt soft interrupts yet. */
    396 			atomic_swap_uint(&l->l_dopreempt, 0);
    397 			failed = (uintptr_t)&is_softint_lwp;
    398 			break;
    399 		}
    400 		s = splsched();
    401 		if (__predict_false(l->l_blcnt != 0 ||
    402 		    curcpu()->ci_biglock_wanted != NULL)) {
    403 			/* Hold or want kernel_lock, code is not MT safe. */
    404 			splx(s);
    405 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    406 				kpreempt_ev_klock.ev_count++;
    407 			}
    408 			failed = (uintptr_t)&kernel_lock_held;
    409 			break;
    410 		}
    411 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    412 			/*
    413 			 * It may be that the IPL is too high.
    414 			 * kpreempt_enter() can schedule an
    415 			 * interrupt to retry later.
    416 			 */
    417 			splx(s);
    418 			failed = (uintptr_t)&spl_is_raised;
    419 			break;
    420 		}
    421 		/* Do it! */
    422 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    423 			kpreempt_ev_immed.ev_count++;
    424 		}
    425 		lwp_lock(l);
    426 		/* Involuntary - keep kpriority boost. */
    427 		l->l_pflag |= LP_PREEMPTING;
    428 		spc_lock(l->l_cpu);
    429 		mi_switch(l);
    430 		l->l_nopreempt++;
    431 		splx(s);
    432 
    433 		/* Take care of any MD cleanup. */
    434 		cpu_kpreempt_exit(where);
    435 		l->l_nopreempt--;
    436 	}
    437 
    438 	if (__predict_true(!failed)) {
    439 		return false;
    440 	}
    441 
    442 	/* Record preemption failure for reporting via lockstat. */
    443 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    444 	lsflag = 0;
    445 	LOCKSTAT_ENTER(lsflag);
    446 	if (__predict_false(lsflag)) {
    447 		if (where == 0) {
    448 			where = (uintptr_t)__builtin_return_address(0);
    449 		}
    450 		/* Preemption is on, might recurse, so make it atomic. */
    451 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    452 		    (void *)where) == NULL) {
    453 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    454 			l->l_pfaillock = failed;
    455 		}
    456 	}
    457 	LOCKSTAT_EXIT(lsflag);
    458 	return true;
    459 }
    460 
    461 /*
    462  * Return true if preemption is explicitly disabled.
    463  */
    464 bool
    465 kpreempt_disabled(void)
    466 {
    467 	const lwp_t *l = curlwp;
    468 
    469 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    470 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    471 	    cpu_kpreempt_disabled();
    472 }
    473 
    474 /*
    475  * Disable kernel preemption.
    476  */
    477 void
    478 kpreempt_disable(void)
    479 {
    480 
    481 	KPREEMPT_DISABLE(curlwp);
    482 }
    483 
    484 /*
    485  * Reenable kernel preemption.
    486  */
    487 void
    488 kpreempt_enable(void)
    489 {
    490 
    491 	KPREEMPT_ENABLE(curlwp);
    492 }
    493 
    494 /*
    495  * Compute the amount of time during which the current lwp was running.
    496  *
    497  * - update l_rtime unless it's an idle lwp.
    498  */
    499 
    500 void
    501 updatertime(lwp_t *l, const struct bintime *now)
    502 {
    503 
    504 	if (__predict_false(l->l_flag & LW_IDLE))
    505 		return;
    506 
    507 	/* rtime += now - stime */
    508 	bintime_add(&l->l_rtime, now);
    509 	bintime_sub(&l->l_rtime, &l->l_stime);
    510 }
    511 
    512 /*
    513  * Select next LWP from the current CPU to run..
    514  */
    515 static inline lwp_t *
    516 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    517 {
    518 	lwp_t *newl;
    519 
    520 	/*
    521 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    522 	 * If no LWP is runnable, select the idle LWP.
    523 	 *
    524 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
    525 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
    526 	 * which may or may not be held here.  On exit from this code block,
    527 	 * in all cases newl is locked by spc_lwplock.
    528 	 */
    529 	newl = sched_nextlwp();
    530 	if (newl != NULL) {
    531 		sched_dequeue(newl);
    532 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    533 		KASSERT(newl->l_cpu == ci);
    534 		newl->l_stat = LSONPROC;
    535 		newl->l_pflag |= LP_RUNNING;
    536 		spc->spc_curpriority = lwp_eprio(newl);
    537 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    538 		lwp_setlock(newl, spc->spc_lwplock);
    539 	} else {
    540 		/*
    541 		 * The idle LWP does not get set to LSONPROC, because
    542 		 * otherwise it screws up the output from top(1) etc.
    543 		 */
    544 		newl = ci->ci_data.cpu_idlelwp;
    545 		newl->l_pflag |= LP_RUNNING;
    546 		spc->spc_curpriority = PRI_IDLE;
    547 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    548 		    SPCF_IDLE;
    549 	}
    550 
    551 	/*
    552 	 * Only clear want_resched if there are no pending (slow) software
    553 	 * interrupts.  We can do this without an atomic, because no new
    554 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    555 	 * the update to ci_want_resched will become globally visible before
    556 	 * the release of spc_mutex becomes globally visible.
    557 	 */
    558 	if (ci->ci_data.cpu_softints == 0)
    559 		ci->ci_want_resched = 0;
    560 
    561 	return newl;
    562 }
    563 
    564 /*
    565  * The machine independent parts of context switch.
    566  *
    567  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    568  * changes its own l_cpu (that would screw up curcpu on many ports and could
    569  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    570  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    571  * is checked under lock).
    572  */
    573 void
    574 mi_switch(lwp_t *l)
    575 {
    576 	struct cpu_info *ci;
    577 	struct schedstate_percpu *spc;
    578 	struct lwp *newl;
    579 	kmutex_t *lock;
    580 	int oldspl;
    581 	struct bintime bt;
    582 	bool returning;
    583 
    584 	KASSERT(lwp_locked(l, NULL));
    585 	KASSERT(kpreempt_disabled());
    586 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    587 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    588 
    589 	kstack_check_magic(l);
    590 
    591 	binuptime(&bt);
    592 
    593 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    594 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    595 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    596 	ci = curcpu();
    597 	spc = &ci->ci_schedstate;
    598 	returning = false;
    599 	newl = NULL;
    600 
    601 	/*
    602 	 * If we have been asked to switch to a specific LWP, then there
    603 	 * is no need to inspect the run queues.  If a soft interrupt is
    604 	 * blocking, then return to the interrupted thread without adjusting
    605 	 * VM context or its start time: neither have been changed in order
    606 	 * to take the interrupt.
    607 	 */
    608 	if (l->l_switchto != NULL) {
    609 		if ((l->l_pflag & LP_INTR) != 0) {
    610 			returning = true;
    611 			softint_block(l);
    612 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    613 				updatertime(l, &bt);
    614 		}
    615 		newl = l->l_switchto;
    616 		l->l_switchto = NULL;
    617 	}
    618 #ifndef __HAVE_FAST_SOFTINTS
    619 	else if (ci->ci_data.cpu_softints != 0) {
    620 		/* There are pending soft interrupts, so pick one. */
    621 		newl = softint_picklwp();
    622 		newl->l_stat = LSONPROC;
    623 		newl->l_pflag |= LP_RUNNING;
    624 	}
    625 #endif	/* !__HAVE_FAST_SOFTINTS */
    626 
    627 	/*
    628 	 * If on the CPU and we have gotten this far, then we must yield.
    629 	 */
    630 	if (l->l_stat == LSONPROC && l != newl) {
    631 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    632 		KASSERT((l->l_flag & LW_IDLE) == 0);
    633 		l->l_stat = LSRUN;
    634 		lwp_setlock(l, spc->spc_mutex);
    635 		sched_enqueue(l);
    636 		sched_preempted(l);
    637 
    638 		/*
    639 		 * Handle migration.  Note that "migrating LWP" may
    640 		 * be reset here, if interrupt/preemption happens
    641 		 * early in idle LWP.
    642 		 */
    643 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    644 			KASSERT((l->l_pflag & LP_INTR) == 0);
    645 			spc->spc_migrating = l;
    646 		}
    647 	}
    648 
    649 	/* Pick new LWP to run. */
    650 	if (newl == NULL) {
    651 		newl = nextlwp(ci, spc);
    652 	}
    653 
    654 	/* Items that must be updated with the CPU locked. */
    655 	if (!returning) {
    656 		/* Count time spent in current system call */
    657 		SYSCALL_TIME_SLEEP(l);
    658 
    659 		updatertime(l, &bt);
    660 
    661 		/* Update the new LWP's start time. */
    662 		newl->l_stime = bt;
    663 
    664 		/*
    665 		 * ci_curlwp changes when a fast soft interrupt occurs.
    666 		 * We use ci_onproc to keep track of which kernel or
    667 		 * user thread is running 'underneath' the software
    668 		 * interrupt.  This is important for time accounting,
    669 		 * itimers and forcing user threads to preempt (aston).
    670 		 */
    671 		ci->ci_onproc = newl;
    672 	}
    673 
    674 	/*
    675 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    676 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    677 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    678 	 * cleared by the LWP itself (us) with atomics when not under lock.
    679 	 */
    680 	l->l_dopreempt = 0;
    681 	if (__predict_false(l->l_pfailaddr != 0)) {
    682 		LOCKSTAT_FLAG(lsflag);
    683 		LOCKSTAT_ENTER(lsflag);
    684 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    685 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    686 		    1, l->l_pfailtime, l->l_pfailaddr);
    687 		LOCKSTAT_EXIT(lsflag);
    688 		l->l_pfailtime = 0;
    689 		l->l_pfaillock = 0;
    690 		l->l_pfailaddr = 0;
    691 	}
    692 
    693 	if (l != newl) {
    694 		struct lwp *prevlwp;
    695 
    696 		/* Release all locks, but leave the current LWP locked */
    697 		if (l->l_mutex == spc->spc_mutex) {
    698 			/*
    699 			 * Drop spc_lwplock, if the current LWP has been moved
    700 			 * to the run queue (it is now locked by spc_mutex).
    701 			 */
    702 			mutex_spin_exit(spc->spc_lwplock);
    703 		} else {
    704 			/*
    705 			 * Otherwise, drop the spc_mutex, we are done with the
    706 			 * run queues.
    707 			 */
    708 			mutex_spin_exit(spc->spc_mutex);
    709 		}
    710 
    711 		/* We're down to only one lock, so do debug checks. */
    712 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    713 
    714 		/* Count the context switch. */
    715 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    716 		l->l_ncsw++;
    717 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    718 			l->l_nivcsw++;
    719 			l->l_pflag &= ~LP_PREEMPTING;
    720 		}
    721 
    722 		/*
    723 		 * Increase the count of spin-mutexes before the release
    724 		 * of the last lock - we must remain at IPL_SCHED after
    725 		 * releasing the lock.
    726 		 */
    727 		KASSERTMSG(ci->ci_mtx_count == -1,
    728 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    729 		    "(block with spin-mutex held)",
    730 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    731 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    732 		ci->ci_mtx_count = -2;
    733 
    734 		/* Update status for lwpctl, if present. */
    735 		if (l->l_lwpctl != NULL) {
    736 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    737 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    738 		}
    739 
    740 		/*
    741 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    742 		 * other side to unlock - we're returning into an assembly
    743 		 * trampoline.  Unlock now.  This is safe because this is a
    744 		 * kernel LWP and is bound to current CPU: the worst anyone
    745 		 * else will do to it, is to put it back onto this CPU's run
    746 		 * queue (and the CPU is busy here right now!).
    747 		 */
    748 		if (returning) {
    749 			/* Keep IPL_SCHED after this; MD code will fix up. */
    750 			l->l_pflag &= ~LP_RUNNING;
    751 			lwp_unlock(l);
    752 		} else {
    753 			/* A normal LWP: save old VM context. */
    754 			pmap_deactivate(l);
    755 		}
    756 
    757 		/*
    758 		 * If DTrace has set the active vtime enum to anything
    759 		 * other than INACTIVE (0), then it should have set the
    760 		 * function to call.
    761 		 */
    762 		if (__predict_false(dtrace_vtime_active)) {
    763 			(*dtrace_vtime_switch_func)(newl);
    764 		}
    765 
    766 		/*
    767 		 * We must ensure not to come here from inside a read section.
    768 		 */
    769 		KASSERT(pserialize_not_in_read_section());
    770 
    771 		/* Switch to the new LWP.. */
    772 #ifdef MULTIPROCESSOR
    773 		KASSERT(curlwp == ci->ci_curlwp);
    774 #endif
    775 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    776 		prevlwp = cpu_switchto(l, newl, returning);
    777 		ci = curcpu();
    778 #ifdef MULTIPROCESSOR
    779 		KASSERT(curlwp == ci->ci_curlwp);
    780 #endif
    781 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    782 		    l, curlwp, prevlwp);
    783 		KASSERT(prevlwp != NULL);
    784 		KASSERT(l->l_cpu == ci);
    785 		KASSERT(ci->ci_mtx_count == -2);
    786 
    787 		/*
    788 		 * Immediately mark the previous LWP as no longer running
    789 		 * and unlock (to keep lock wait times short as possible).
    790 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    791 		 * don't touch after clearing LP_RUNNING as it could be
    792 		 * reaped by another CPU.  Issue a memory barrier to ensure
    793 		 * this.
    794 		 *
    795 		 * atomic_store_release matches atomic_load_acquire in
    796 		 * lwp_free.
    797 		 */
    798 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    799 		lock = prevlwp->l_mutex;
    800 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    801 			atomic_store_release(&prevlwp->l_pflag,
    802 			    prevlwp->l_pflag & ~LP_RUNNING);
    803 		} else {
    804 			prevlwp->l_pflag &= ~LP_RUNNING;
    805 		}
    806 		mutex_spin_exit(lock);
    807 
    808 		/*
    809 		 * Switched away - we have new curlwp.
    810 		 * Restore VM context and IPL.
    811 		 */
    812 		pmap_activate(l);
    813 		pcu_switchpoint(l);
    814 
    815 		/* Update status for lwpctl, if present. */
    816 		if (l->l_lwpctl != NULL) {
    817 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    818 			l->l_lwpctl->lc_pctr++;
    819 		}
    820 
    821 		/*
    822 		 * Normalize the spin mutex count and restore the previous
    823 		 * SPL.  Note that, unless the caller disabled preemption,
    824 		 * we can be preempted at any time after this splx().
    825 		 */
    826 		KASSERT(l->l_cpu == ci);
    827 		KASSERT(ci->ci_mtx_count == -1);
    828 		ci->ci_mtx_count = 0;
    829 		splx(oldspl);
    830 	} else {
    831 		/* Nothing to do - just unlock and return. */
    832 		mutex_spin_exit(spc->spc_mutex);
    833 		l->l_pflag &= ~LP_PREEMPTING;
    834 		lwp_unlock(l);
    835 	}
    836 
    837 	KASSERT(l == curlwp);
    838 	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
    839 
    840 	SYSCALL_TIME_WAKEUP(l);
    841 	LOCKDEBUG_BARRIER(NULL, 1);
    842 }
    843 
    844 /*
    845  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    846  *
    847  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    848  */
    849 void
    850 setrunnable(struct lwp *l)
    851 {
    852 	struct proc *p = l->l_proc;
    853 	struct cpu_info *ci;
    854 	kmutex_t *oldlock;
    855 
    856 	KASSERT((l->l_flag & LW_IDLE) == 0);
    857 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    858 	KASSERT(mutex_owned(p->p_lock));
    859 	KASSERT(lwp_locked(l, NULL));
    860 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    861 
    862 	switch (l->l_stat) {
    863 	case LSSTOP:
    864 		/*
    865 		 * If we're being traced (possibly because someone attached us
    866 		 * while we were stopped), check for a signal from the debugger.
    867 		 */
    868 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    869 			signotify(l);
    870 		p->p_nrlwps++;
    871 		break;
    872 	case LSSUSPENDED:
    873 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    874 		l->l_flag &= ~LW_WSUSPEND;
    875 		p->p_nrlwps++;
    876 		cv_broadcast(&p->p_lwpcv);
    877 		break;
    878 	case LSSLEEP:
    879 		KASSERT(l->l_wchan != NULL);
    880 		break;
    881 	case LSIDL:
    882 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    883 		break;
    884 	default:
    885 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    886 	}
    887 
    888 	/*
    889 	 * If the LWP was sleeping, start it again.
    890 	 */
    891 	if (l->l_wchan != NULL) {
    892 		l->l_stat = LSSLEEP;
    893 		/* lwp_unsleep() will release the lock. */
    894 		lwp_unsleep(l, true);
    895 		return;
    896 	}
    897 
    898 	/*
    899 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    900 	 * about to call mi_switch(), in which case it will yield.
    901 	 */
    902 	if ((l->l_pflag & LP_RUNNING) != 0) {
    903 		l->l_stat = LSONPROC;
    904 		l->l_slptime = 0;
    905 		lwp_unlock(l);
    906 		return;
    907 	}
    908 
    909 	/*
    910 	 * Look for a CPU to run.
    911 	 * Set the LWP runnable.
    912 	 */
    913 	ci = sched_takecpu(l);
    914 	l->l_cpu = ci;
    915 	spc_lock(ci);
    916 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    917 	sched_setrunnable(l);
    918 	l->l_stat = LSRUN;
    919 	l->l_slptime = 0;
    920 	sched_enqueue(l);
    921 	sched_resched_lwp(l, true);
    922 	/* SPC & LWP now unlocked. */
    923 	mutex_spin_exit(oldlock);
    924 }
    925 
    926 /*
    927  * suspendsched:
    928  *
    929  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    930  */
    931 void
    932 suspendsched(void)
    933 {
    934 	CPU_INFO_ITERATOR cii;
    935 	struct cpu_info *ci;
    936 	struct lwp *l;
    937 	struct proc *p;
    938 
    939 	/*
    940 	 * We do this by process in order not to violate the locking rules.
    941 	 */
    942 	mutex_enter(&proc_lock);
    943 	PROCLIST_FOREACH(p, &allproc) {
    944 		mutex_enter(p->p_lock);
    945 		if ((p->p_flag & PK_SYSTEM) != 0) {
    946 			mutex_exit(p->p_lock);
    947 			continue;
    948 		}
    949 
    950 		if (p->p_stat != SSTOP) {
    951 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    952 				p->p_pptr->p_nstopchild++;
    953 				p->p_waited = 0;
    954 			}
    955 			p->p_stat = SSTOP;
    956 		}
    957 
    958 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    959 			if (l == curlwp)
    960 				continue;
    961 
    962 			lwp_lock(l);
    963 
    964 			/*
    965 			 * Set L_WREBOOT so that the LWP will suspend itself
    966 			 * when it tries to return to user mode.  We want to
    967 			 * try and get to get as many LWPs as possible to
    968 			 * the user / kernel boundary, so that they will
    969 			 * release any locks that they hold.
    970 			 */
    971 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    972 
    973 			if (l->l_stat == LSSLEEP &&
    974 			    (l->l_flag & LW_SINTR) != 0) {
    975 				/* setrunnable() will release the lock. */
    976 				setrunnable(l);
    977 				continue;
    978 			}
    979 
    980 			lwp_unlock(l);
    981 		}
    982 
    983 		mutex_exit(p->p_lock);
    984 	}
    985 	mutex_exit(&proc_lock);
    986 
    987 	/*
    988 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    989 	 * They'll trap into the kernel and suspend themselves in userret().
    990 	 *
    991 	 * Unusually, we don't hold any other scheduler object locked, which
    992 	 * would keep preemption off for sched_resched_cpu(), so disable it
    993 	 * explicitly.
    994 	 */
    995 	kpreempt_disable();
    996 	for (CPU_INFO_FOREACH(cii, ci)) {
    997 		spc_lock(ci);
    998 		sched_resched_cpu(ci, PRI_KERNEL, true);
    999 		/* spc now unlocked */
   1000 	}
   1001 	kpreempt_enable();
   1002 }
   1003 
   1004 /*
   1005  * sched_unsleep:
   1006  *
   1007  *	The is called when the LWP has not been awoken normally but instead
   1008  *	interrupted: for example, if the sleep timed out.  Because of this,
   1009  *	it's not a valid action for running or idle LWPs.
   1010  */
   1011 static void
   1012 sched_unsleep(struct lwp *l, bool cleanup)
   1013 {
   1014 
   1015 	lwp_unlock(l);
   1016 	panic("sched_unsleep");
   1017 }
   1018 
   1019 static void
   1020 sched_changepri(struct lwp *l, pri_t pri)
   1021 {
   1022 	struct schedstate_percpu *spc;
   1023 	struct cpu_info *ci;
   1024 
   1025 	KASSERT(lwp_locked(l, NULL));
   1026 
   1027 	ci = l->l_cpu;
   1028 	spc = &ci->ci_schedstate;
   1029 
   1030 	if (l->l_stat == LSRUN) {
   1031 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1032 		sched_dequeue(l);
   1033 		l->l_priority = pri;
   1034 		sched_enqueue(l);
   1035 		sched_resched_lwp(l, false);
   1036 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1037 		/* On priority drop, only evict realtime LWPs. */
   1038 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1039 		l->l_priority = pri;
   1040 		spc_lock(ci);
   1041 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1042 		/* spc now unlocked */
   1043 	} else {
   1044 		l->l_priority = pri;
   1045 	}
   1046 }
   1047 
   1048 static void
   1049 sched_lendpri(struct lwp *l, pri_t pri)
   1050 {
   1051 	struct schedstate_percpu *spc;
   1052 	struct cpu_info *ci;
   1053 
   1054 	KASSERT(lwp_locked(l, NULL));
   1055 
   1056 	ci = l->l_cpu;
   1057 	spc = &ci->ci_schedstate;
   1058 
   1059 	if (l->l_stat == LSRUN) {
   1060 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1061 		sched_dequeue(l);
   1062 		l->l_inheritedprio = pri;
   1063 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1064 		sched_enqueue(l);
   1065 		sched_resched_lwp(l, false);
   1066 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1067 		/* On priority drop, only evict realtime LWPs. */
   1068 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1069 		l->l_inheritedprio = pri;
   1070 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1071 		spc_lock(ci);
   1072 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1073 		/* spc now unlocked */
   1074 	} else {
   1075 		l->l_inheritedprio = pri;
   1076 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1077 	}
   1078 }
   1079 
   1080 struct lwp *
   1081 syncobj_noowner(wchan_t wchan)
   1082 {
   1083 
   1084 	return NULL;
   1085 }
   1086 
   1087 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1088 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1089 
   1090 /*
   1091  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1092  * 5 second intervals.
   1093  */
   1094 static const fixpt_t cexp[ ] = {
   1095 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1096 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1097 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1098 };
   1099 
   1100 /*
   1101  * sched_pstats:
   1102  *
   1103  * => Update process statistics and check CPU resource allocation.
   1104  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1105  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1106  */
   1107 void
   1108 sched_pstats(void)
   1109 {
   1110 	struct loadavg *avg = &averunnable;
   1111 	const int clkhz = (stathz != 0 ? stathz : hz);
   1112 	static bool backwards = false;
   1113 	static u_int lavg_count = 0;
   1114 	struct proc *p;
   1115 	int nrun;
   1116 
   1117 	sched_pstats_ticks++;
   1118 	if (++lavg_count >= 5) {
   1119 		lavg_count = 0;
   1120 		nrun = 0;
   1121 	}
   1122 	mutex_enter(&proc_lock);
   1123 	PROCLIST_FOREACH(p, &allproc) {
   1124 		struct lwp *l;
   1125 		struct rlimit *rlim;
   1126 		time_t runtm;
   1127 		int sig;
   1128 
   1129 		/* Increment sleep time (if sleeping), ignore overflow. */
   1130 		mutex_enter(p->p_lock);
   1131 		runtm = p->p_rtime.sec;
   1132 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1133 			fixpt_t lpctcpu;
   1134 			u_int lcpticks;
   1135 
   1136 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1137 				continue;
   1138 			lwp_lock(l);
   1139 			runtm += l->l_rtime.sec;
   1140 			l->l_swtime++;
   1141 			sched_lwp_stats(l);
   1142 
   1143 			/* For load average calculation. */
   1144 			if (__predict_false(lavg_count == 0) &&
   1145 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1146 				switch (l->l_stat) {
   1147 				case LSSLEEP:
   1148 					if (l->l_slptime > 1) {
   1149 						break;
   1150 					}
   1151 					/* FALLTHROUGH */
   1152 				case LSRUN:
   1153 				case LSONPROC:
   1154 				case LSIDL:
   1155 					nrun++;
   1156 				}
   1157 			}
   1158 			lwp_unlock(l);
   1159 
   1160 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1161 			if (l->l_slptime != 0)
   1162 				continue;
   1163 
   1164 			lpctcpu = l->l_pctcpu;
   1165 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1166 			lpctcpu += ((FSCALE - ccpu) *
   1167 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1168 			l->l_pctcpu = lpctcpu;
   1169 		}
   1170 		/* Calculating p_pctcpu only for ps(1) */
   1171 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1172 
   1173 		if (__predict_false(runtm < 0)) {
   1174 			if (!backwards) {
   1175 				backwards = true;
   1176 				printf("WARNING: negative runtime; "
   1177 				    "monotonic clock has gone backwards\n");
   1178 			}
   1179 			mutex_exit(p->p_lock);
   1180 			continue;
   1181 		}
   1182 
   1183 		/*
   1184 		 * Check if the process exceeds its CPU resource allocation.
   1185 		 * If over the hard limit, kill it with SIGKILL.
   1186 		 * If over the soft limit, send SIGXCPU and raise
   1187 		 * the soft limit a little.
   1188 		 */
   1189 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1190 		sig = 0;
   1191 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1192 			if (runtm >= rlim->rlim_max) {
   1193 				sig = SIGKILL;
   1194 				log(LOG_NOTICE,
   1195 				    "pid %d, command %s, is killed: %s\n",
   1196 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1197 				uprintf("pid %d, command %s, is killed: %s\n",
   1198 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1199 			} else {
   1200 				sig = SIGXCPU;
   1201 				if (rlim->rlim_cur < rlim->rlim_max)
   1202 					rlim->rlim_cur += 5;
   1203 			}
   1204 		}
   1205 		mutex_exit(p->p_lock);
   1206 		if (__predict_false(sig)) {
   1207 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1208 			psignal(p, sig);
   1209 		}
   1210 	}
   1211 
   1212 	/* Load average calculation. */
   1213 	if (__predict_false(lavg_count == 0)) {
   1214 		int i;
   1215 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1216 		for (i = 0; i < __arraycount(cexp); i++) {
   1217 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1218 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1219 		}
   1220 	}
   1221 
   1222 	/* Lightning bolt. */
   1223 	cv_broadcast(&lbolt);
   1224 
   1225 	mutex_exit(&proc_lock);
   1226 }
   1227