kern_synch.c revision 1.356 1 /* $NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.356 2023/06/23 22:49:38 riastradh Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_dtrace.h"
76
77 #define __MUTEX_PRIVATE
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kernel.h>
83 #include <sys/cpu.h>
84 #include <sys/pserialize.h>
85 #include <sys/resource.h>
86 #include <sys/resourcevar.h>
87 #include <sys/rwlock.h>
88 #include <sys/sched.h>
89 #include <sys/syscall_stats.h>
90 #include <sys/sleepq.h>
91 #include <sys/lockdebug.h>
92 #include <sys/evcnt.h>
93 #include <sys/intr.h>
94 #include <sys/lwpctl.h>
95 #include <sys/atomic.h>
96 #include <sys/syslog.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #include <dev/lockstat.h>
101
102 #include <sys/dtrace_bsd.h>
103 int dtrace_vtime_active=0;
104 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
105
106 static void sched_unsleep(struct lwp *, bool);
107 static void sched_changepri(struct lwp *, pri_t);
108 static void sched_lendpri(struct lwp *, pri_t);
109
110 syncobj_t sleep_syncobj = {
111 .sobj_flag = SOBJ_SLEEPQ_SORTED,
112 .sobj_unsleep = sleepq_unsleep,
113 .sobj_changepri = sleepq_changepri,
114 .sobj_lendpri = sleepq_lendpri,
115 .sobj_owner = syncobj_noowner,
116 };
117
118 syncobj_t sched_syncobj = {
119 .sobj_flag = SOBJ_SLEEPQ_SORTED,
120 .sobj_unsleep = sched_unsleep,
121 .sobj_changepri = sched_changepri,
122 .sobj_lendpri = sched_lendpri,
123 .sobj_owner = syncobj_noowner,
124 };
125
126 syncobj_t kpause_syncobj = {
127 .sobj_flag = SOBJ_SLEEPQ_NULL,
128 .sobj_unsleep = sleepq_unsleep,
129 .sobj_changepri = sleepq_changepri,
130 .sobj_lendpri = sleepq_lendpri,
131 .sobj_owner = syncobj_noowner,
132 };
133
134 /* "Lightning bolt": once a second sleep address. */
135 kcondvar_t lbolt __cacheline_aligned;
136
137 u_int sched_pstats_ticks __cacheline_aligned;
138
139 /* Preemption event counters. */
140 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
141 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
142 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
143
144 void
145 synch_init(void)
146 {
147
148 cv_init(&lbolt, "lbolt");
149
150 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
151 "kpreempt", "defer: critical section");
152 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
153 "kpreempt", "defer: kernel_lock");
154 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
155 "kpreempt", "immediate");
156 }
157
158 /*
159 * OBSOLETE INTERFACE
160 *
161 * General sleep call. Suspends the current LWP until a wakeup is
162 * performed on the specified identifier. The LWP will then be made
163 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
164 * means no timeout). If pri includes PCATCH flag, signals are checked
165 * before and after sleeping, else signals are not checked. Returns 0 if
166 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
167 * signal needs to be delivered, ERESTART is returned if the current system
168 * call should be restarted if possible, and EINTR is returned if the system
169 * call should be interrupted by the signal (return EINTR).
170 */
171 int
172 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
173 {
174 struct lwp *l = curlwp;
175 sleepq_t *sq;
176 kmutex_t *mp;
177 bool catch_p;
178
179 KASSERT((l->l_pflag & LP_INTR) == 0);
180 KASSERT(ident != &lbolt);
181 //KASSERT(KERNEL_LOCKED_P());
182
183 if (sleepq_dontsleep(l)) {
184 (void)sleepq_abort(NULL, 0);
185 return 0;
186 }
187
188 l->l_kpriority = true;
189 catch_p = priority & PCATCH;
190 sq = sleeptab_lookup(&sleeptab, ident, &mp);
191 sleepq_enter(sq, l, mp);
192 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
193 return sleepq_block(timo, catch_p, &sleep_syncobj);
194 }
195
196 int
197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
198 kmutex_t *mtx)
199 {
200 struct lwp *l = curlwp;
201 sleepq_t *sq;
202 kmutex_t *mp;
203 bool catch_p;
204 int error;
205
206 KASSERT((l->l_pflag & LP_INTR) == 0);
207 KASSERT(ident != &lbolt);
208
209 if (sleepq_dontsleep(l)) {
210 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
211 return 0;
212 }
213
214 l->l_kpriority = true;
215 catch_p = priority & PCATCH;
216 sq = sleeptab_lookup(&sleeptab, ident, &mp);
217 sleepq_enter(sq, l, mp);
218 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
219 mutex_exit(mtx);
220 error = sleepq_block(timo, catch_p, &sleep_syncobj);
221
222 if ((priority & PNORELOCK) == 0)
223 mutex_enter(mtx);
224
225 return error;
226 }
227
228 /*
229 * General sleep call for situations where a wake-up is not expected.
230 */
231 int
232 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
233 {
234 struct lwp *l = curlwp;
235 int error;
236
237 KASSERT(timo != 0 || intr);
238
239 if (sleepq_dontsleep(l))
240 return sleepq_abort(NULL, 0);
241
242 if (mtx != NULL)
243 mutex_exit(mtx);
244 l->l_kpriority = true;
245 lwp_lock(l);
246 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
247 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
248 error = sleepq_block(timo, intr, &kpause_syncobj);
249 if (mtx != NULL)
250 mutex_enter(mtx);
251
252 return error;
253 }
254
255 /*
256 * OBSOLETE INTERFACE
257 *
258 * Make all LWPs sleeping on the specified identifier runnable.
259 */
260 void
261 wakeup(wchan_t ident)
262 {
263 sleepq_t *sq;
264 kmutex_t *mp;
265
266 if (__predict_false(cold))
267 return;
268
269 sq = sleeptab_lookup(&sleeptab, ident, &mp);
270 sleepq_wake(sq, ident, (u_int)-1, mp);
271 }
272
273 /*
274 * General yield call. Puts the current LWP back on its run queue and
275 * performs a context switch.
276 */
277 void
278 yield(void)
279 {
280 struct lwp *l = curlwp;
281
282 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
283 lwp_lock(l);
284
285 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
286 KASSERT(l->l_stat == LSONPROC);
287
288 /* Voluntary - ditch kpriority boost. */
289 l->l_kpriority = false;
290 spc_lock(l->l_cpu);
291 mi_switch(l);
292 KERNEL_LOCK(l->l_biglocks, l);
293 }
294
295 /*
296 * General preemption call. Puts the current LWP back on its run queue
297 * and performs an involuntary context switch. Different from yield()
298 * in that:
299 *
300 * - It's counted differently (involuntary vs. voluntary).
301 * - Realtime threads go to the head of their runqueue vs. tail for yield().
302 * - Priority boost is retained unless LWP has exceeded timeslice.
303 */
304 void
305 preempt(void)
306 {
307 struct lwp *l = curlwp;
308
309 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
310 lwp_lock(l);
311
312 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
313 KASSERT(l->l_stat == LSONPROC);
314
315 spc_lock(l->l_cpu);
316 /* Involuntary - keep kpriority boost unless a CPU hog. */
317 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
318 l->l_kpriority = false;
319 }
320 l->l_pflag |= LP_PREEMPTING;
321 mi_switch(l);
322 KERNEL_LOCK(l->l_biglocks, l);
323 }
324
325 /*
326 * Return true if the current LWP should yield the processor. Intended to
327 * be used by long-running code in kernel.
328 */
329 inline bool
330 preempt_needed(void)
331 {
332 lwp_t *l = curlwp;
333 int needed;
334
335 KPREEMPT_DISABLE(l);
336 needed = l->l_cpu->ci_want_resched;
337 KPREEMPT_ENABLE(l);
338
339 return (needed != 0);
340 }
341
342 /*
343 * A breathing point for long running code in kernel.
344 */
345 void
346 preempt_point(void)
347 {
348
349 if (__predict_false(preempt_needed())) {
350 preempt();
351 }
352 }
353
354 /*
355 * Handle a request made by another agent to preempt the current LWP
356 * in-kernel. Usually called when l_dopreempt may be non-zero.
357 *
358 * Character addresses for lockstat only.
359 */
360 static char kpreempt_is_disabled;
361 static char kernel_lock_held;
362 static char is_softint_lwp;
363 static char spl_is_raised;
364
365 bool
366 kpreempt(uintptr_t where)
367 {
368 uintptr_t failed;
369 lwp_t *l;
370 int s, dop, lsflag;
371
372 l = curlwp;
373 failed = 0;
374 while ((dop = l->l_dopreempt) != 0) {
375 if (l->l_stat != LSONPROC) {
376 /*
377 * About to block (or die), let it happen.
378 * Doesn't really count as "preemption has
379 * been blocked", since we're going to
380 * context switch.
381 */
382 atomic_swap_uint(&l->l_dopreempt, 0);
383 return true;
384 }
385 KASSERT((l->l_flag & LW_IDLE) == 0);
386 if (__predict_false(l->l_nopreempt != 0)) {
387 /* LWP holds preemption disabled, explicitly. */
388 if ((dop & DOPREEMPT_COUNTED) == 0) {
389 kpreempt_ev_crit.ev_count++;
390 }
391 failed = (uintptr_t)&kpreempt_is_disabled;
392 break;
393 }
394 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
395 /* Can't preempt soft interrupts yet. */
396 atomic_swap_uint(&l->l_dopreempt, 0);
397 failed = (uintptr_t)&is_softint_lwp;
398 break;
399 }
400 s = splsched();
401 if (__predict_false(l->l_blcnt != 0 ||
402 curcpu()->ci_biglock_wanted != NULL)) {
403 /* Hold or want kernel_lock, code is not MT safe. */
404 splx(s);
405 if ((dop & DOPREEMPT_COUNTED) == 0) {
406 kpreempt_ev_klock.ev_count++;
407 }
408 failed = (uintptr_t)&kernel_lock_held;
409 break;
410 }
411 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
412 /*
413 * It may be that the IPL is too high.
414 * kpreempt_enter() can schedule an
415 * interrupt to retry later.
416 */
417 splx(s);
418 failed = (uintptr_t)&spl_is_raised;
419 break;
420 }
421 /* Do it! */
422 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
423 kpreempt_ev_immed.ev_count++;
424 }
425 lwp_lock(l);
426 /* Involuntary - keep kpriority boost. */
427 l->l_pflag |= LP_PREEMPTING;
428 spc_lock(l->l_cpu);
429 mi_switch(l);
430 l->l_nopreempt++;
431 splx(s);
432
433 /* Take care of any MD cleanup. */
434 cpu_kpreempt_exit(where);
435 l->l_nopreempt--;
436 }
437
438 if (__predict_true(!failed)) {
439 return false;
440 }
441
442 /* Record preemption failure for reporting via lockstat. */
443 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
444 lsflag = 0;
445 LOCKSTAT_ENTER(lsflag);
446 if (__predict_false(lsflag)) {
447 if (where == 0) {
448 where = (uintptr_t)__builtin_return_address(0);
449 }
450 /* Preemption is on, might recurse, so make it atomic. */
451 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
452 (void *)where) == NULL) {
453 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
454 l->l_pfaillock = failed;
455 }
456 }
457 LOCKSTAT_EXIT(lsflag);
458 return true;
459 }
460
461 /*
462 * Return true if preemption is explicitly disabled.
463 */
464 bool
465 kpreempt_disabled(void)
466 {
467 const lwp_t *l = curlwp;
468
469 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
470 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
471 cpu_kpreempt_disabled();
472 }
473
474 /*
475 * Disable kernel preemption.
476 */
477 void
478 kpreempt_disable(void)
479 {
480
481 KPREEMPT_DISABLE(curlwp);
482 }
483
484 /*
485 * Reenable kernel preemption.
486 */
487 void
488 kpreempt_enable(void)
489 {
490
491 KPREEMPT_ENABLE(curlwp);
492 }
493
494 /*
495 * Compute the amount of time during which the current lwp was running.
496 *
497 * - update l_rtime unless it's an idle lwp.
498 */
499
500 void
501 updatertime(lwp_t *l, const struct bintime *now)
502 {
503
504 if (__predict_false(l->l_flag & LW_IDLE))
505 return;
506
507 /* rtime += now - stime */
508 bintime_add(&l->l_rtime, now);
509 bintime_sub(&l->l_rtime, &l->l_stime);
510 }
511
512 /*
513 * Select next LWP from the current CPU to run..
514 */
515 static inline lwp_t *
516 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
517 {
518 lwp_t *newl;
519
520 /*
521 * Let sched_nextlwp() select the LWP to run the CPU next.
522 * If no LWP is runnable, select the idle LWP.
523 *
524 * On arrival here LWPs on a run queue are locked by spc_mutex which
525 * is currently held. Idle LWPs are always locked by spc_lwplock,
526 * which may or may not be held here. On exit from this code block,
527 * in all cases newl is locked by spc_lwplock.
528 */
529 newl = sched_nextlwp();
530 if (newl != NULL) {
531 sched_dequeue(newl);
532 KASSERT(lwp_locked(newl, spc->spc_mutex));
533 KASSERT(newl->l_cpu == ci);
534 newl->l_stat = LSONPROC;
535 newl->l_pflag |= LP_RUNNING;
536 spc->spc_curpriority = lwp_eprio(newl);
537 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
538 lwp_setlock(newl, spc->spc_lwplock);
539 } else {
540 /*
541 * The idle LWP does not get set to LSONPROC, because
542 * otherwise it screws up the output from top(1) etc.
543 */
544 newl = ci->ci_data.cpu_idlelwp;
545 newl->l_pflag |= LP_RUNNING;
546 spc->spc_curpriority = PRI_IDLE;
547 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
548 SPCF_IDLE;
549 }
550
551 /*
552 * Only clear want_resched if there are no pending (slow) software
553 * interrupts. We can do this without an atomic, because no new
554 * LWPs can appear in the queue due to our hold on spc_mutex, and
555 * the update to ci_want_resched will become globally visible before
556 * the release of spc_mutex becomes globally visible.
557 */
558 if (ci->ci_data.cpu_softints == 0)
559 ci->ci_want_resched = 0;
560
561 return newl;
562 }
563
564 /*
565 * The machine independent parts of context switch.
566 *
567 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
568 * changes its own l_cpu (that would screw up curcpu on many ports and could
569 * cause all kinds of other evil stuff). l_cpu is always changed by some
570 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
571 * is checked under lock).
572 */
573 void
574 mi_switch(lwp_t *l)
575 {
576 struct cpu_info *ci;
577 struct schedstate_percpu *spc;
578 struct lwp *newl;
579 kmutex_t *lock;
580 int oldspl;
581 struct bintime bt;
582 bool returning;
583
584 KASSERT(lwp_locked(l, NULL));
585 KASSERT(kpreempt_disabled());
586 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
587 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
588
589 kstack_check_magic(l);
590
591 binuptime(&bt);
592
593 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
594 KASSERT((l->l_pflag & LP_RUNNING) != 0);
595 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
596 ci = curcpu();
597 spc = &ci->ci_schedstate;
598 returning = false;
599 newl = NULL;
600
601 /*
602 * If we have been asked to switch to a specific LWP, then there
603 * is no need to inspect the run queues. If a soft interrupt is
604 * blocking, then return to the interrupted thread without adjusting
605 * VM context or its start time: neither have been changed in order
606 * to take the interrupt.
607 */
608 if (l->l_switchto != NULL) {
609 if ((l->l_pflag & LP_INTR) != 0) {
610 returning = true;
611 softint_block(l);
612 if ((l->l_pflag & LP_TIMEINTR) != 0)
613 updatertime(l, &bt);
614 }
615 newl = l->l_switchto;
616 l->l_switchto = NULL;
617 }
618 #ifndef __HAVE_FAST_SOFTINTS
619 else if (ci->ci_data.cpu_softints != 0) {
620 /* There are pending soft interrupts, so pick one. */
621 newl = softint_picklwp();
622 newl->l_stat = LSONPROC;
623 newl->l_pflag |= LP_RUNNING;
624 }
625 #endif /* !__HAVE_FAST_SOFTINTS */
626
627 /*
628 * If on the CPU and we have gotten this far, then we must yield.
629 */
630 if (l->l_stat == LSONPROC && l != newl) {
631 KASSERT(lwp_locked(l, spc->spc_lwplock));
632 KASSERT((l->l_flag & LW_IDLE) == 0);
633 l->l_stat = LSRUN;
634 lwp_setlock(l, spc->spc_mutex);
635 sched_enqueue(l);
636 sched_preempted(l);
637
638 /*
639 * Handle migration. Note that "migrating LWP" may
640 * be reset here, if interrupt/preemption happens
641 * early in idle LWP.
642 */
643 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
644 KASSERT((l->l_pflag & LP_INTR) == 0);
645 spc->spc_migrating = l;
646 }
647 }
648
649 /* Pick new LWP to run. */
650 if (newl == NULL) {
651 newl = nextlwp(ci, spc);
652 }
653
654 /* Items that must be updated with the CPU locked. */
655 if (!returning) {
656 /* Count time spent in current system call */
657 SYSCALL_TIME_SLEEP(l);
658
659 updatertime(l, &bt);
660
661 /* Update the new LWP's start time. */
662 newl->l_stime = bt;
663
664 /*
665 * ci_curlwp changes when a fast soft interrupt occurs.
666 * We use ci_onproc to keep track of which kernel or
667 * user thread is running 'underneath' the software
668 * interrupt. This is important for time accounting,
669 * itimers and forcing user threads to preempt (aston).
670 */
671 ci->ci_onproc = newl;
672 }
673
674 /*
675 * Preemption related tasks. Must be done holding spc_mutex. Clear
676 * l_dopreempt without an atomic - it's only ever set non-zero by
677 * sched_resched_cpu() which also holds spc_mutex, and only ever
678 * cleared by the LWP itself (us) with atomics when not under lock.
679 */
680 l->l_dopreempt = 0;
681 if (__predict_false(l->l_pfailaddr != 0)) {
682 LOCKSTAT_FLAG(lsflag);
683 LOCKSTAT_ENTER(lsflag);
684 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
685 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
686 1, l->l_pfailtime, l->l_pfailaddr);
687 LOCKSTAT_EXIT(lsflag);
688 l->l_pfailtime = 0;
689 l->l_pfaillock = 0;
690 l->l_pfailaddr = 0;
691 }
692
693 if (l != newl) {
694 struct lwp *prevlwp;
695
696 /* Release all locks, but leave the current LWP locked */
697 if (l->l_mutex == spc->spc_mutex) {
698 /*
699 * Drop spc_lwplock, if the current LWP has been moved
700 * to the run queue (it is now locked by spc_mutex).
701 */
702 mutex_spin_exit(spc->spc_lwplock);
703 } else {
704 /*
705 * Otherwise, drop the spc_mutex, we are done with the
706 * run queues.
707 */
708 mutex_spin_exit(spc->spc_mutex);
709 }
710
711 /* We're down to only one lock, so do debug checks. */
712 LOCKDEBUG_BARRIER(l->l_mutex, 1);
713
714 /* Count the context switch. */
715 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
716 l->l_ncsw++;
717 if ((l->l_pflag & LP_PREEMPTING) != 0) {
718 l->l_nivcsw++;
719 l->l_pflag &= ~LP_PREEMPTING;
720 }
721
722 /*
723 * Increase the count of spin-mutexes before the release
724 * of the last lock - we must remain at IPL_SCHED after
725 * releasing the lock.
726 */
727 KASSERTMSG(ci->ci_mtx_count == -1,
728 "%s: cpu%u: ci_mtx_count (%d) != -1 "
729 "(block with spin-mutex held)",
730 __func__, cpu_index(ci), ci->ci_mtx_count);
731 oldspl = MUTEX_SPIN_OLDSPL(ci);
732 ci->ci_mtx_count = -2;
733
734 /* Update status for lwpctl, if present. */
735 if (l->l_lwpctl != NULL) {
736 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
737 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
738 }
739
740 /*
741 * If curlwp is a soft interrupt LWP, there's nobody on the
742 * other side to unlock - we're returning into an assembly
743 * trampoline. Unlock now. This is safe because this is a
744 * kernel LWP and is bound to current CPU: the worst anyone
745 * else will do to it, is to put it back onto this CPU's run
746 * queue (and the CPU is busy here right now!).
747 */
748 if (returning) {
749 /* Keep IPL_SCHED after this; MD code will fix up. */
750 l->l_pflag &= ~LP_RUNNING;
751 lwp_unlock(l);
752 } else {
753 /* A normal LWP: save old VM context. */
754 pmap_deactivate(l);
755 }
756
757 /*
758 * If DTrace has set the active vtime enum to anything
759 * other than INACTIVE (0), then it should have set the
760 * function to call.
761 */
762 if (__predict_false(dtrace_vtime_active)) {
763 (*dtrace_vtime_switch_func)(newl);
764 }
765
766 /*
767 * We must ensure not to come here from inside a read section.
768 */
769 KASSERT(pserialize_not_in_read_section());
770
771 /* Switch to the new LWP.. */
772 #ifdef MULTIPROCESSOR
773 KASSERT(curlwp == ci->ci_curlwp);
774 #endif
775 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
776 prevlwp = cpu_switchto(l, newl, returning);
777 ci = curcpu();
778 #ifdef MULTIPROCESSOR
779 KASSERT(curlwp == ci->ci_curlwp);
780 #endif
781 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
782 l, curlwp, prevlwp);
783 KASSERT(prevlwp != NULL);
784 KASSERT(l->l_cpu == ci);
785 KASSERT(ci->ci_mtx_count == -2);
786
787 /*
788 * Immediately mark the previous LWP as no longer running
789 * and unlock (to keep lock wait times short as possible).
790 * We'll still be at IPL_SCHED afterwards. If a zombie,
791 * don't touch after clearing LP_RUNNING as it could be
792 * reaped by another CPU. Issue a memory barrier to ensure
793 * this.
794 *
795 * atomic_store_release matches atomic_load_acquire in
796 * lwp_free.
797 */
798 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
799 lock = prevlwp->l_mutex;
800 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
801 atomic_store_release(&prevlwp->l_pflag,
802 prevlwp->l_pflag & ~LP_RUNNING);
803 } else {
804 prevlwp->l_pflag &= ~LP_RUNNING;
805 }
806 mutex_spin_exit(lock);
807
808 /*
809 * Switched away - we have new curlwp.
810 * Restore VM context and IPL.
811 */
812 pmap_activate(l);
813 pcu_switchpoint(l);
814
815 /* Update status for lwpctl, if present. */
816 if (l->l_lwpctl != NULL) {
817 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
818 l->l_lwpctl->lc_pctr++;
819 }
820
821 /*
822 * Normalize the spin mutex count and restore the previous
823 * SPL. Note that, unless the caller disabled preemption,
824 * we can be preempted at any time after this splx().
825 */
826 KASSERT(l->l_cpu == ci);
827 KASSERT(ci->ci_mtx_count == -1);
828 ci->ci_mtx_count = 0;
829 splx(oldspl);
830 } else {
831 /* Nothing to do - just unlock and return. */
832 mutex_spin_exit(spc->spc_mutex);
833 l->l_pflag &= ~LP_PREEMPTING;
834 lwp_unlock(l);
835 }
836
837 KASSERT(l == curlwp);
838 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
839
840 SYSCALL_TIME_WAKEUP(l);
841 LOCKDEBUG_BARRIER(NULL, 1);
842 }
843
844 /*
845 * setrunnable: change LWP state to be runnable, placing it on the run queue.
846 *
847 * Call with the process and LWP locked. Will return with the LWP unlocked.
848 */
849 void
850 setrunnable(struct lwp *l)
851 {
852 struct proc *p = l->l_proc;
853 struct cpu_info *ci;
854 kmutex_t *oldlock;
855
856 KASSERT((l->l_flag & LW_IDLE) == 0);
857 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
858 KASSERT(mutex_owned(p->p_lock));
859 KASSERT(lwp_locked(l, NULL));
860 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
861
862 switch (l->l_stat) {
863 case LSSTOP:
864 /*
865 * If we're being traced (possibly because someone attached us
866 * while we were stopped), check for a signal from the debugger.
867 */
868 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
869 signotify(l);
870 p->p_nrlwps++;
871 break;
872 case LSSUSPENDED:
873 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
874 l->l_flag &= ~LW_WSUSPEND;
875 p->p_nrlwps++;
876 cv_broadcast(&p->p_lwpcv);
877 break;
878 case LSSLEEP:
879 KASSERT(l->l_wchan != NULL);
880 break;
881 case LSIDL:
882 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
883 break;
884 default:
885 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
886 }
887
888 /*
889 * If the LWP was sleeping, start it again.
890 */
891 if (l->l_wchan != NULL) {
892 l->l_stat = LSSLEEP;
893 /* lwp_unsleep() will release the lock. */
894 lwp_unsleep(l, true);
895 return;
896 }
897
898 /*
899 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
900 * about to call mi_switch(), in which case it will yield.
901 */
902 if ((l->l_pflag & LP_RUNNING) != 0) {
903 l->l_stat = LSONPROC;
904 l->l_slptime = 0;
905 lwp_unlock(l);
906 return;
907 }
908
909 /*
910 * Look for a CPU to run.
911 * Set the LWP runnable.
912 */
913 ci = sched_takecpu(l);
914 l->l_cpu = ci;
915 spc_lock(ci);
916 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
917 sched_setrunnable(l);
918 l->l_stat = LSRUN;
919 l->l_slptime = 0;
920 sched_enqueue(l);
921 sched_resched_lwp(l, true);
922 /* SPC & LWP now unlocked. */
923 mutex_spin_exit(oldlock);
924 }
925
926 /*
927 * suspendsched:
928 *
929 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
930 */
931 void
932 suspendsched(void)
933 {
934 CPU_INFO_ITERATOR cii;
935 struct cpu_info *ci;
936 struct lwp *l;
937 struct proc *p;
938
939 /*
940 * We do this by process in order not to violate the locking rules.
941 */
942 mutex_enter(&proc_lock);
943 PROCLIST_FOREACH(p, &allproc) {
944 mutex_enter(p->p_lock);
945 if ((p->p_flag & PK_SYSTEM) != 0) {
946 mutex_exit(p->p_lock);
947 continue;
948 }
949
950 if (p->p_stat != SSTOP) {
951 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
952 p->p_pptr->p_nstopchild++;
953 p->p_waited = 0;
954 }
955 p->p_stat = SSTOP;
956 }
957
958 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
959 if (l == curlwp)
960 continue;
961
962 lwp_lock(l);
963
964 /*
965 * Set L_WREBOOT so that the LWP will suspend itself
966 * when it tries to return to user mode. We want to
967 * try and get to get as many LWPs as possible to
968 * the user / kernel boundary, so that they will
969 * release any locks that they hold.
970 */
971 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
972
973 if (l->l_stat == LSSLEEP &&
974 (l->l_flag & LW_SINTR) != 0) {
975 /* setrunnable() will release the lock. */
976 setrunnable(l);
977 continue;
978 }
979
980 lwp_unlock(l);
981 }
982
983 mutex_exit(p->p_lock);
984 }
985 mutex_exit(&proc_lock);
986
987 /*
988 * Kick all CPUs to make them preempt any LWPs running in user mode.
989 * They'll trap into the kernel and suspend themselves in userret().
990 *
991 * Unusually, we don't hold any other scheduler object locked, which
992 * would keep preemption off for sched_resched_cpu(), so disable it
993 * explicitly.
994 */
995 kpreempt_disable();
996 for (CPU_INFO_FOREACH(cii, ci)) {
997 spc_lock(ci);
998 sched_resched_cpu(ci, PRI_KERNEL, true);
999 /* spc now unlocked */
1000 }
1001 kpreempt_enable();
1002 }
1003
1004 /*
1005 * sched_unsleep:
1006 *
1007 * The is called when the LWP has not been awoken normally but instead
1008 * interrupted: for example, if the sleep timed out. Because of this,
1009 * it's not a valid action for running or idle LWPs.
1010 */
1011 static void
1012 sched_unsleep(struct lwp *l, bool cleanup)
1013 {
1014
1015 lwp_unlock(l);
1016 panic("sched_unsleep");
1017 }
1018
1019 static void
1020 sched_changepri(struct lwp *l, pri_t pri)
1021 {
1022 struct schedstate_percpu *spc;
1023 struct cpu_info *ci;
1024
1025 KASSERT(lwp_locked(l, NULL));
1026
1027 ci = l->l_cpu;
1028 spc = &ci->ci_schedstate;
1029
1030 if (l->l_stat == LSRUN) {
1031 KASSERT(lwp_locked(l, spc->spc_mutex));
1032 sched_dequeue(l);
1033 l->l_priority = pri;
1034 sched_enqueue(l);
1035 sched_resched_lwp(l, false);
1036 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1037 /* On priority drop, only evict realtime LWPs. */
1038 KASSERT(lwp_locked(l, spc->spc_lwplock));
1039 l->l_priority = pri;
1040 spc_lock(ci);
1041 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1042 /* spc now unlocked */
1043 } else {
1044 l->l_priority = pri;
1045 }
1046 }
1047
1048 static void
1049 sched_lendpri(struct lwp *l, pri_t pri)
1050 {
1051 struct schedstate_percpu *spc;
1052 struct cpu_info *ci;
1053
1054 KASSERT(lwp_locked(l, NULL));
1055
1056 ci = l->l_cpu;
1057 spc = &ci->ci_schedstate;
1058
1059 if (l->l_stat == LSRUN) {
1060 KASSERT(lwp_locked(l, spc->spc_mutex));
1061 sched_dequeue(l);
1062 l->l_inheritedprio = pri;
1063 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1064 sched_enqueue(l);
1065 sched_resched_lwp(l, false);
1066 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1067 /* On priority drop, only evict realtime LWPs. */
1068 KASSERT(lwp_locked(l, spc->spc_lwplock));
1069 l->l_inheritedprio = pri;
1070 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1071 spc_lock(ci);
1072 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1073 /* spc now unlocked */
1074 } else {
1075 l->l_inheritedprio = pri;
1076 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1077 }
1078 }
1079
1080 struct lwp *
1081 syncobj_noowner(wchan_t wchan)
1082 {
1083
1084 return NULL;
1085 }
1086
1087 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1088 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1089
1090 /*
1091 * Constants for averages over 1, 5 and 15 minutes when sampling at
1092 * 5 second intervals.
1093 */
1094 static const fixpt_t cexp[ ] = {
1095 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1096 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1097 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1098 };
1099
1100 /*
1101 * sched_pstats:
1102 *
1103 * => Update process statistics and check CPU resource allocation.
1104 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1105 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1106 */
1107 void
1108 sched_pstats(void)
1109 {
1110 struct loadavg *avg = &averunnable;
1111 const int clkhz = (stathz != 0 ? stathz : hz);
1112 static bool backwards = false;
1113 static u_int lavg_count = 0;
1114 struct proc *p;
1115 int nrun;
1116
1117 sched_pstats_ticks++;
1118 if (++lavg_count >= 5) {
1119 lavg_count = 0;
1120 nrun = 0;
1121 }
1122 mutex_enter(&proc_lock);
1123 PROCLIST_FOREACH(p, &allproc) {
1124 struct lwp *l;
1125 struct rlimit *rlim;
1126 time_t runtm;
1127 int sig;
1128
1129 /* Increment sleep time (if sleeping), ignore overflow. */
1130 mutex_enter(p->p_lock);
1131 runtm = p->p_rtime.sec;
1132 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1133 fixpt_t lpctcpu;
1134 u_int lcpticks;
1135
1136 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1137 continue;
1138 lwp_lock(l);
1139 runtm += l->l_rtime.sec;
1140 l->l_swtime++;
1141 sched_lwp_stats(l);
1142
1143 /* For load average calculation. */
1144 if (__predict_false(lavg_count == 0) &&
1145 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1146 switch (l->l_stat) {
1147 case LSSLEEP:
1148 if (l->l_slptime > 1) {
1149 break;
1150 }
1151 /* FALLTHROUGH */
1152 case LSRUN:
1153 case LSONPROC:
1154 case LSIDL:
1155 nrun++;
1156 }
1157 }
1158 lwp_unlock(l);
1159
1160 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1161 if (l->l_slptime != 0)
1162 continue;
1163
1164 lpctcpu = l->l_pctcpu;
1165 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1166 lpctcpu += ((FSCALE - ccpu) *
1167 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1168 l->l_pctcpu = lpctcpu;
1169 }
1170 /* Calculating p_pctcpu only for ps(1) */
1171 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1172
1173 if (__predict_false(runtm < 0)) {
1174 if (!backwards) {
1175 backwards = true;
1176 printf("WARNING: negative runtime; "
1177 "monotonic clock has gone backwards\n");
1178 }
1179 mutex_exit(p->p_lock);
1180 continue;
1181 }
1182
1183 /*
1184 * Check if the process exceeds its CPU resource allocation.
1185 * If over the hard limit, kill it with SIGKILL.
1186 * If over the soft limit, send SIGXCPU and raise
1187 * the soft limit a little.
1188 */
1189 rlim = &p->p_rlimit[RLIMIT_CPU];
1190 sig = 0;
1191 if (__predict_false(runtm >= rlim->rlim_cur)) {
1192 if (runtm >= rlim->rlim_max) {
1193 sig = SIGKILL;
1194 log(LOG_NOTICE,
1195 "pid %d, command %s, is killed: %s\n",
1196 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1197 uprintf("pid %d, command %s, is killed: %s\n",
1198 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1199 } else {
1200 sig = SIGXCPU;
1201 if (rlim->rlim_cur < rlim->rlim_max)
1202 rlim->rlim_cur += 5;
1203 }
1204 }
1205 mutex_exit(p->p_lock);
1206 if (__predict_false(sig)) {
1207 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1208 psignal(p, sig);
1209 }
1210 }
1211
1212 /* Load average calculation. */
1213 if (__predict_false(lavg_count == 0)) {
1214 int i;
1215 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1216 for (i = 0; i < __arraycount(cexp); i++) {
1217 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1218 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1219 }
1220 }
1221
1222 /* Lightning bolt. */
1223 cv_broadcast(&lbolt);
1224
1225 mutex_exit(&proc_lock);
1226 }
1227