kern_synch.c revision 1.36 1 /* $NetBSD: kern_synch.c,v 1.36 1996/03/30 22:23:25 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/buf.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <vm/vm.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 #include <sys/cpu.h>
55
56 #include <machine/cpu.h>
57
58 u_char curpriority; /* usrpri of curproc */
59 int lbolt; /* once a second sleep address */
60
61 void roundrobin __P((void *));
62 void schedcpu __P((void *));
63 void updatepri __P((struct proc *));
64 void endtsleep __P((void *));
65
66 /*
67 * Force switch among equal priority processes every 100ms.
68 */
69 /* ARGSUSED */
70 void
71 roundrobin(arg)
72 void *arg;
73 {
74
75 need_resched();
76 timeout(roundrobin, NULL, hz / 10);
77 }
78
79 /*
80 * Constants for digital decay and forget:
81 * 90% of (p_estcpu) usage in 5 * loadav time
82 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
83 * Note that, as ps(1) mentions, this can let percentages
84 * total over 100% (I've seen 137.9% for 3 processes).
85 *
86 * Note that hardclock updates p_estcpu and p_cpticks independently.
87 *
88 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
89 * That is, the system wants to compute a value of decay such
90 * that the following for loop:
91 * for (i = 0; i < (5 * loadavg); i++)
92 * p_estcpu *= decay;
93 * will compute
94 * p_estcpu *= 0.1;
95 * for all values of loadavg:
96 *
97 * Mathematically this loop can be expressed by saying:
98 * decay ** (5 * loadavg) ~= .1
99 *
100 * The system computes decay as:
101 * decay = (2 * loadavg) / (2 * loadavg + 1)
102 *
103 * We wish to prove that the system's computation of decay
104 * will always fulfill the equation:
105 * decay ** (5 * loadavg) ~= .1
106 *
107 * If we compute b as:
108 * b = 2 * loadavg
109 * then
110 * decay = b / (b + 1)
111 *
112 * We now need to prove two things:
113 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
114 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
115 *
116 * Facts:
117 * For x close to zero, exp(x) =~ 1 + x, since
118 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
119 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
120 * For x close to zero, ln(1+x) =~ x, since
121 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
122 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
123 * ln(.1) =~ -2.30
124 *
125 * Proof of (1):
126 * Solve (factor)**(power) =~ .1 given power (5*loadav):
127 * solving for factor,
128 * ln(factor) =~ (-2.30/5*loadav), or
129 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
130 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
131 *
132 * Proof of (2):
133 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
134 * solving for power,
135 * power*ln(b/(b+1)) =~ -2.30, or
136 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
137 *
138 * Actual power values for the implemented algorithm are as follows:
139 * loadav: 1 2 3 4
140 * power: 5.68 10.32 14.94 19.55
141 */
142
143 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
144 #define loadfactor(loadav) (2 * (loadav))
145 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
146
147 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
148 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
149
150 /*
151 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
152 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
153 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
154 *
155 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
156 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
157 *
158 * If you dont want to bother with the faster/more-accurate formula, you
159 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
160 * (more general) method of calculating the %age of CPU used by a process.
161 */
162 #define CCPU_SHIFT 11
163
164 /*
165 * Recompute process priorities, every hz ticks.
166 */
167 /* ARGSUSED */
168 void
169 schedcpu(arg)
170 void *arg;
171 {
172 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
173 register struct proc *p;
174 register int s;
175 register unsigned int newcpu;
176
177 wakeup((caddr_t)&lbolt);
178 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
179 /*
180 * Increment time in/out of memory and sleep time
181 * (if sleeping). We ignore overflow; with 16-bit int's
182 * (remember them?) overflow takes 45 days.
183 */
184 p->p_swtime++;
185 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
186 p->p_slptime++;
187 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
188 /*
189 * If the process has slept the entire second,
190 * stop recalculating its priority until it wakes up.
191 */
192 if (p->p_slptime > 1)
193 continue;
194 s = splstatclock(); /* prevent state changes */
195 /*
196 * p_pctcpu is only for ps.
197 */
198 #if (FSHIFT >= CCPU_SHIFT)
199 p->p_pctcpu += (hz == 100)?
200 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
201 100 * (((fixpt_t) p->p_cpticks)
202 << (FSHIFT - CCPU_SHIFT)) / hz;
203 #else
204 p->p_pctcpu += ((FSCALE - ccpu) *
205 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
206 #endif
207 p->p_cpticks = 0;
208 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
209 p->p_estcpu = min(newcpu, UCHAR_MAX);
210 resetpriority(p);
211 if (p->p_priority >= PUSER) {
212 #define PPQ (128 / NQS) /* priorities per queue */
213 if ((p != curproc) &&
214 p->p_stat == SRUN &&
215 (p->p_flag & P_INMEM) &&
216 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
217 remrq(p);
218 p->p_priority = p->p_usrpri;
219 setrunqueue(p);
220 } else
221 p->p_priority = p->p_usrpri;
222 }
223 splx(s);
224 }
225 vmmeter();
226 if (bclnlist != NULL)
227 wakeup((caddr_t)pageproc);
228 timeout(schedcpu, (void *)0, hz);
229 }
230
231 /*
232 * Recalculate the priority of a process after it has slept for a while.
233 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
234 * least six times the loadfactor will decay p_estcpu to zero.
235 */
236 void
237 updatepri(p)
238 register struct proc *p;
239 {
240 register unsigned int newcpu = p->p_estcpu;
241 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
242
243 if (p->p_slptime > 5 * loadfac)
244 p->p_estcpu = 0;
245 else {
246 p->p_slptime--; /* the first time was done in schedcpu */
247 while (newcpu && --p->p_slptime)
248 newcpu = (int) decay_cpu(loadfac, newcpu);
249 p->p_estcpu = min(newcpu, UCHAR_MAX);
250 }
251 resetpriority(p);
252 }
253
254 /*
255 * We're only looking at 7 bits of the address; everything is
256 * aligned to 4, lots of things are aligned to greater powers
257 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
258 */
259 #define TABLESIZE 128
260 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
261 struct slpque {
262 struct proc *sq_head;
263 struct proc **sq_tailp;
264 } slpque[TABLESIZE];
265
266 /*
267 * During autoconfiguration or after a panic, a sleep will simply
268 * lower the priority briefly to allow interrupts, then return.
269 * The priority to be used (safepri) is machine-dependent, thus this
270 * value is initialized and maintained in the machine-dependent layers.
271 * This priority will typically be 0, or the lowest priority
272 * that is safe for use on the interrupt stack; it can be made
273 * higher to block network software interrupts after panics.
274 */
275 int safepri;
276
277 /*
278 * General sleep call. Suspends the current process until a wakeup is
279 * performed on the specified identifier. The process will then be made
280 * runnable with the specified priority. Sleeps at most timo/hz seconds
281 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
282 * before and after sleeping, else signals are not checked. Returns 0 if
283 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
284 * signal needs to be delivered, ERESTART is returned if the current system
285 * call should be restarted if possible, and EINTR is returned if the system
286 * call should be interrupted by the signal (return EINTR).
287 */
288 int
289 tsleep(ident, priority, wmesg, timo)
290 void *ident;
291 int priority, timo;
292 char *wmesg;
293 {
294 register struct proc *p = curproc;
295 register struct slpque *qp;
296 register s;
297 int sig, catch = priority & PCATCH;
298 extern int cold;
299 void endtsleep __P((void *));
300
301 #ifdef KTRACE
302 if (KTRPOINT(p, KTR_CSW))
303 ktrcsw(p->p_tracep, 1, 0);
304 #endif
305 s = splhigh();
306 if (cold || panicstr) {
307 /*
308 * After a panic, or during autoconfiguration,
309 * just give interrupts a chance, then just return;
310 * don't run any other procs or panic below,
311 * in case this is the idle process and already asleep.
312 */
313 splx(safepri);
314 splx(s);
315 return (0);
316 }
317 #ifdef DIAGNOSTIC
318 if (ident == NULL || p->p_stat != SRUN || p->p_back)
319 panic("tsleep");
320 #endif
321 p->p_wchan = ident;
322 p->p_wmesg = wmesg;
323 p->p_slptime = 0;
324 p->p_priority = priority & PRIMASK;
325 qp = &slpque[LOOKUP(ident)];
326 if (qp->sq_head == 0)
327 qp->sq_head = p;
328 else
329 *qp->sq_tailp = p;
330 *(qp->sq_tailp = &p->p_forw) = 0;
331 if (timo)
332 timeout(endtsleep, (void *)p, timo);
333 /*
334 * We put ourselves on the sleep queue and start our timeout
335 * before calling CURSIG, as we could stop there, and a wakeup
336 * or a SIGCONT (or both) could occur while we were stopped.
337 * A SIGCONT would cause us to be marked as SSLEEP
338 * without resuming us, thus we must be ready for sleep
339 * when CURSIG is called. If the wakeup happens while we're
340 * stopped, p->p_wchan will be 0 upon return from CURSIG.
341 */
342 if (catch) {
343 p->p_flag |= P_SINTR;
344 if ((sig = CURSIG(p)) != 0) {
345 if (p->p_wchan)
346 unsleep(p);
347 p->p_stat = SRUN;
348 goto resume;
349 }
350 if (p->p_wchan == 0) {
351 catch = 0;
352 goto resume;
353 }
354 } else
355 sig = 0;
356 p->p_stat = SSLEEP;
357 p->p_stats->p_ru.ru_nvcsw++;
358 mi_switch();
359 #ifdef DDB
360 /* handy breakpoint location after process "wakes" */
361 asm(".globl bpendtsleep ; bpendtsleep:");
362 #endif
363 resume:
364 curpriority = p->p_usrpri;
365 splx(s);
366 p->p_flag &= ~P_SINTR;
367 if (p->p_flag & P_TIMEOUT) {
368 p->p_flag &= ~P_TIMEOUT;
369 if (sig == 0) {
370 #ifdef KTRACE
371 if (KTRPOINT(p, KTR_CSW))
372 ktrcsw(p->p_tracep, 0, 0);
373 #endif
374 return (EWOULDBLOCK);
375 }
376 } else if (timo)
377 untimeout(endtsleep, (void *)p);
378 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
379 #ifdef KTRACE
380 if (KTRPOINT(p, KTR_CSW))
381 ktrcsw(p->p_tracep, 0, 0);
382 #endif
383 if (p->p_sigacts->ps_sigintr & sigmask(sig))
384 return (EINTR);
385 return (ERESTART);
386 }
387 #ifdef KTRACE
388 if (KTRPOINT(p, KTR_CSW))
389 ktrcsw(p->p_tracep, 0, 0);
390 #endif
391 return (0);
392 }
393
394 /*
395 * Implement timeout for tsleep.
396 * If process hasn't been awakened (wchan non-zero),
397 * set timeout flag and undo the sleep. If proc
398 * is stopped, just unsleep so it will remain stopped.
399 */
400 void
401 endtsleep(arg)
402 void *arg;
403 {
404 register struct proc *p;
405 int s;
406
407 p = (struct proc *)arg;
408 s = splhigh();
409 if (p->p_wchan) {
410 if (p->p_stat == SSLEEP)
411 setrunnable(p);
412 else
413 unsleep(p);
414 p->p_flag |= P_TIMEOUT;
415 }
416 splx(s);
417 }
418
419 /*
420 * Short-term, non-interruptable sleep.
421 */
422 void
423 sleep(ident, priority)
424 void *ident;
425 int priority;
426 {
427 register struct proc *p = curproc;
428 register struct slpque *qp;
429 register s;
430 extern int cold;
431
432 #ifdef DIAGNOSTIC
433 if (priority > PZERO) {
434 printf("sleep called with priority %d > PZERO, wchan: %p\n",
435 priority, ident);
436 panic("old sleep");
437 }
438 #endif
439 s = splhigh();
440 if (cold || panicstr) {
441 /*
442 * After a panic, or during autoconfiguration,
443 * just give interrupts a chance, then just return;
444 * don't run any other procs or panic below,
445 * in case this is the idle process and already asleep.
446 */
447 splx(safepri);
448 splx(s);
449 return;
450 }
451 #ifdef DIAGNOSTIC
452 if (ident == NULL || p->p_stat != SRUN || p->p_back)
453 panic("sleep");
454 #endif
455 p->p_wchan = ident;
456 p->p_wmesg = NULL;
457 p->p_slptime = 0;
458 p->p_priority = priority;
459 qp = &slpque[LOOKUP(ident)];
460 if (qp->sq_head == 0)
461 qp->sq_head = p;
462 else
463 *qp->sq_tailp = p;
464 *(qp->sq_tailp = &p->p_forw) = 0;
465 p->p_stat = SSLEEP;
466 p->p_stats->p_ru.ru_nvcsw++;
467 #ifdef KTRACE
468 if (KTRPOINT(p, KTR_CSW))
469 ktrcsw(p->p_tracep, 1, 0);
470 #endif
471 mi_switch();
472 #ifdef DDB
473 /* handy breakpoint location after process "wakes" */
474 asm(".globl bpendsleep ; bpendsleep:");
475 #endif
476 #ifdef KTRACE
477 if (KTRPOINT(p, KTR_CSW))
478 ktrcsw(p->p_tracep, 0, 0);
479 #endif
480 curpriority = p->p_usrpri;
481 splx(s);
482 }
483
484 /*
485 * Remove a process from its wait queue
486 */
487 void
488 unsleep(p)
489 register struct proc *p;
490 {
491 register struct slpque *qp;
492 register struct proc **hp;
493 int s;
494
495 s = splhigh();
496 if (p->p_wchan) {
497 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
498 while (*hp != p)
499 hp = &(*hp)->p_forw;
500 *hp = p->p_forw;
501 if (qp->sq_tailp == &p->p_forw)
502 qp->sq_tailp = hp;
503 p->p_wchan = 0;
504 }
505 splx(s);
506 }
507
508 /*
509 * Make all processes sleeping on the specified identifier runnable.
510 */
511 void
512 wakeup(ident)
513 register void *ident;
514 {
515 register struct slpque *qp;
516 register struct proc *p, **q;
517 int s;
518
519 s = splhigh();
520 qp = &slpque[LOOKUP(ident)];
521 restart:
522 for (q = &qp->sq_head; (p = *q) != NULL; ) {
523 #ifdef DIAGNOSTIC
524 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
525 panic("wakeup");
526 #endif
527 if (p->p_wchan == ident) {
528 p->p_wchan = 0;
529 *q = p->p_forw;
530 if (qp->sq_tailp == &p->p_forw)
531 qp->sq_tailp = q;
532 if (p->p_stat == SSLEEP) {
533 /* OPTIMIZED EXPANSION OF setrunnable(p); */
534 if (p->p_slptime > 1)
535 updatepri(p);
536 p->p_slptime = 0;
537 p->p_stat = SRUN;
538 if (p->p_flag & P_INMEM)
539 setrunqueue(p);
540 /*
541 * Since curpriority is a user priority,
542 * p->p_priority is always better than
543 * curpriority.
544 */
545 if ((p->p_flag & P_INMEM) == 0)
546 wakeup((caddr_t)&proc0);
547 else
548 need_resched();
549 /* END INLINE EXPANSION */
550 goto restart;
551 }
552 } else
553 q = &p->p_forw;
554 }
555 splx(s);
556 }
557
558 /*
559 * The machine independent parts of mi_switch().
560 * Must be called at splstatclock() or higher.
561 */
562 void
563 mi_switch()
564 {
565 register struct proc *p = curproc; /* XXX */
566 register struct rlimit *rlim;
567 register long s, u;
568 struct timeval tv;
569
570 /*
571 * Compute the amount of time during which the current
572 * process was running, and add that to its total so far.
573 */
574 microtime(&tv);
575 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
576 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
577 if (u < 0) {
578 u += 1000000;
579 s--;
580 } else if (u >= 1000000) {
581 u -= 1000000;
582 s++;
583 }
584 p->p_rtime.tv_usec = u;
585 p->p_rtime.tv_sec = s;
586
587 /*
588 * Check if the process exceeds its cpu resource allocation.
589 * If over max, kill it. In any case, if it has run for more
590 * than 10 minutes, reduce priority to give others a chance.
591 */
592 rlim = &p->p_rlimit[RLIMIT_CPU];
593 if (s >= rlim->rlim_cur) {
594 if (s >= rlim->rlim_max)
595 psignal(p, SIGKILL);
596 else {
597 psignal(p, SIGXCPU);
598 if (rlim->rlim_cur < rlim->rlim_max)
599 rlim->rlim_cur += 5;
600 }
601 }
602 if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
603 p->p_nice = NZERO + 4;
604 resetpriority(p);
605 }
606
607 /*
608 * Pick a new current process and record its start time.
609 */
610 cnt.v_swtch++;
611 cpu_switch(p);
612 microtime(&runtime);
613 }
614
615 /*
616 * Initialize the (doubly-linked) run queues
617 * to be empty.
618 */
619 void
620 rqinit()
621 {
622 register int i;
623
624 for (i = 0; i < NQS; i++)
625 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
626 }
627
628 /*
629 * Change process state to be runnable,
630 * placing it on the run queue if it is in memory,
631 * and awakening the swapper if it isn't in memory.
632 */
633 void
634 setrunnable(p)
635 register struct proc *p;
636 {
637 register int s;
638
639 s = splhigh();
640 switch (p->p_stat) {
641 case 0:
642 case SRUN:
643 case SZOMB:
644 default:
645 panic("setrunnable");
646 case SSTOP:
647 /*
648 * If we're being traced (possibly because someone attached us
649 * while we were stopped), check for a signal from the debugger.
650 */
651 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
652 p->p_siglist |= sigmask(p->p_xstat);
653 case SSLEEP:
654 unsleep(p); /* e.g. when sending signals */
655 break;
656
657 case SIDL:
658 break;
659 }
660 p->p_stat = SRUN;
661 if (p->p_flag & P_INMEM)
662 setrunqueue(p);
663 splx(s);
664 if (p->p_slptime > 1)
665 updatepri(p);
666 p->p_slptime = 0;
667 if ((p->p_flag & P_INMEM) == 0)
668 wakeup((caddr_t)&proc0);
669 else if (p->p_priority < curpriority)
670 need_resched();
671 }
672
673 /*
674 * Compute the priority of a process when running in user mode.
675 * Arrange to reschedule if the resulting priority is better
676 * than that of the current process.
677 */
678 void
679 resetpriority(p)
680 register struct proc *p;
681 {
682 register unsigned int newpriority;
683
684 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
685 newpriority = min(newpriority, MAXPRI);
686 p->p_usrpri = newpriority;
687 if (newpriority < curpriority)
688 need_resched();
689 }
690
691 #ifdef DDB
692 #include <machine/db_machdep.h>
693
694 #include <ddb/db_interface.h>
695 #include <ddb/db_output.h>
696
697 void
698 db_show_all_procs(addr, haddr, count, modif)
699 db_expr_t addr;
700 int haddr;
701 db_expr_t count;
702 char *modif;
703 {
704 int map = modif[0] == 'm';
705 int doingzomb = 0;
706 struct proc *p, *pp;
707
708 p = allproc.lh_first;
709 db_printf(" pid proc addr %s comm wchan\n",
710 map ? "map " : "uid ppid pgrp flag stat em ");
711 while (p != 0) {
712 pp = p->p_pptr;
713 if (p->p_stat) {
714 db_printf("%5d %p %p ",
715 p->p_pid, p, p->p_addr);
716 if (map)
717 db_printf("%p %s ",
718 p->p_vmspace, p->p_comm);
719 else
720 db_printf("%3d %5d %5d %06x %d %s %s ",
721 p->p_cred->p_ruid, pp ? pp->p_pid : -1,
722 p->p_pgrp->pg_id, p->p_flag, p->p_stat,
723 p->p_emul->e_name, p->p_comm);
724 if (p->p_wchan) {
725 if (p->p_wmesg)
726 db_printf("%s ", p->p_wmesg);
727 db_printf("%p", p->p_wchan);
728 }
729 db_printf("\n");
730 }
731 p = p->p_list.le_next;
732 if (p == 0 && doingzomb == 0) {
733 doingzomb = 1;
734 p = zombproc.lh_first;
735 }
736 }
737 }
738 #endif
739