Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.36
      1 /*	$NetBSD: kern_synch.c,v 1.36 1996/03/30 22:23:25 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/buf.h>
     48 #include <sys/signalvar.h>
     49 #include <sys/resourcevar.h>
     50 #include <vm/vm.h>
     51 #ifdef KTRACE
     52 #include <sys/ktrace.h>
     53 #endif
     54 #include <sys/cpu.h>
     55 
     56 #include <machine/cpu.h>
     57 
     58 u_char	curpriority;		/* usrpri of curproc */
     59 int	lbolt;			/* once a second sleep address */
     60 
     61 void roundrobin __P((void *));
     62 void schedcpu __P((void *));
     63 void updatepri __P((struct proc *));
     64 void endtsleep __P((void *));
     65 
     66 /*
     67  * Force switch among equal priority processes every 100ms.
     68  */
     69 /* ARGSUSED */
     70 void
     71 roundrobin(arg)
     72 	void *arg;
     73 {
     74 
     75 	need_resched();
     76 	timeout(roundrobin, NULL, hz / 10);
     77 }
     78 
     79 /*
     80  * Constants for digital decay and forget:
     81  *	90% of (p_estcpu) usage in 5 * loadav time
     82  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     83  *          Note that, as ps(1) mentions, this can let percentages
     84  *          total over 100% (I've seen 137.9% for 3 processes).
     85  *
     86  * Note that hardclock updates p_estcpu and p_cpticks independently.
     87  *
     88  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     89  * That is, the system wants to compute a value of decay such
     90  * that the following for loop:
     91  * 	for (i = 0; i < (5 * loadavg); i++)
     92  * 		p_estcpu *= decay;
     93  * will compute
     94  * 	p_estcpu *= 0.1;
     95  * for all values of loadavg:
     96  *
     97  * Mathematically this loop can be expressed by saying:
     98  * 	decay ** (5 * loadavg) ~= .1
     99  *
    100  * The system computes decay as:
    101  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    102  *
    103  * We wish to prove that the system's computation of decay
    104  * will always fulfill the equation:
    105  * 	decay ** (5 * loadavg) ~= .1
    106  *
    107  * If we compute b as:
    108  * 	b = 2 * loadavg
    109  * then
    110  * 	decay = b / (b + 1)
    111  *
    112  * We now need to prove two things:
    113  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    114  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    115  *
    116  * Facts:
    117  *         For x close to zero, exp(x) =~ 1 + x, since
    118  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    119  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    120  *         For x close to zero, ln(1+x) =~ x, since
    121  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    122  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    123  *         ln(.1) =~ -2.30
    124  *
    125  * Proof of (1):
    126  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    127  *	solving for factor,
    128  *      ln(factor) =~ (-2.30/5*loadav), or
    129  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    130  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    131  *
    132  * Proof of (2):
    133  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    134  *	solving for power,
    135  *      power*ln(b/(b+1)) =~ -2.30, or
    136  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    137  *
    138  * Actual power values for the implemented algorithm are as follows:
    139  *      loadav: 1       2       3       4
    140  *      power:  5.68    10.32   14.94   19.55
    141  */
    142 
    143 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    144 #define	loadfactor(loadav)	(2 * (loadav))
    145 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    146 
    147 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    148 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    149 
    150 /*
    151  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    152  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    153  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    154  *
    155  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    156  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    157  *
    158  * If you dont want to bother with the faster/more-accurate formula, you
    159  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    160  * (more general) method of calculating the %age of CPU used by a process.
    161  */
    162 #define	CCPU_SHIFT	11
    163 
    164 /*
    165  * Recompute process priorities, every hz ticks.
    166  */
    167 /* ARGSUSED */
    168 void
    169 schedcpu(arg)
    170 	void *arg;
    171 {
    172 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    173 	register struct proc *p;
    174 	register int s;
    175 	register unsigned int newcpu;
    176 
    177 	wakeup((caddr_t)&lbolt);
    178 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    179 		/*
    180 		 * Increment time in/out of memory and sleep time
    181 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    182 		 * (remember them?) overflow takes 45 days.
    183 		 */
    184 		p->p_swtime++;
    185 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    186 			p->p_slptime++;
    187 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    188 		/*
    189 		 * If the process has slept the entire second,
    190 		 * stop recalculating its priority until it wakes up.
    191 		 */
    192 		if (p->p_slptime > 1)
    193 			continue;
    194 		s = splstatclock();	/* prevent state changes */
    195 		/*
    196 		 * p_pctcpu is only for ps.
    197 		 */
    198 #if	(FSHIFT >= CCPU_SHIFT)
    199 		p->p_pctcpu += (hz == 100)?
    200 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    201                 	100 * (((fixpt_t) p->p_cpticks)
    202 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    203 #else
    204 		p->p_pctcpu += ((FSCALE - ccpu) *
    205 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    206 #endif
    207 		p->p_cpticks = 0;
    208 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
    209 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    210 		resetpriority(p);
    211 		if (p->p_priority >= PUSER) {
    212 #define	PPQ	(128 / NQS)		/* priorities per queue */
    213 			if ((p != curproc) &&
    214 			    p->p_stat == SRUN &&
    215 			    (p->p_flag & P_INMEM) &&
    216 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    217 				remrq(p);
    218 				p->p_priority = p->p_usrpri;
    219 				setrunqueue(p);
    220 			} else
    221 				p->p_priority = p->p_usrpri;
    222 		}
    223 		splx(s);
    224 	}
    225 	vmmeter();
    226 	if (bclnlist != NULL)
    227 		wakeup((caddr_t)pageproc);
    228 	timeout(schedcpu, (void *)0, hz);
    229 }
    230 
    231 /*
    232  * Recalculate the priority of a process after it has slept for a while.
    233  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    234  * least six times the loadfactor will decay p_estcpu to zero.
    235  */
    236 void
    237 updatepri(p)
    238 	register struct proc *p;
    239 {
    240 	register unsigned int newcpu = p->p_estcpu;
    241 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    242 
    243 	if (p->p_slptime > 5 * loadfac)
    244 		p->p_estcpu = 0;
    245 	else {
    246 		p->p_slptime--;	/* the first time was done in schedcpu */
    247 		while (newcpu && --p->p_slptime)
    248 			newcpu = (int) decay_cpu(loadfac, newcpu);
    249 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    250 	}
    251 	resetpriority(p);
    252 }
    253 
    254 /*
    255  * We're only looking at 7 bits of the address; everything is
    256  * aligned to 4, lots of things are aligned to greater powers
    257  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    258  */
    259 #define TABLESIZE	128
    260 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    261 struct slpque {
    262 	struct proc *sq_head;
    263 	struct proc **sq_tailp;
    264 } slpque[TABLESIZE];
    265 
    266 /*
    267  * During autoconfiguration or after a panic, a sleep will simply
    268  * lower the priority briefly to allow interrupts, then return.
    269  * The priority to be used (safepri) is machine-dependent, thus this
    270  * value is initialized and maintained in the machine-dependent layers.
    271  * This priority will typically be 0, or the lowest priority
    272  * that is safe for use on the interrupt stack; it can be made
    273  * higher to block network software interrupts after panics.
    274  */
    275 int safepri;
    276 
    277 /*
    278  * General sleep call.  Suspends the current process until a wakeup is
    279  * performed on the specified identifier.  The process will then be made
    280  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    281  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    282  * before and after sleeping, else signals are not checked.  Returns 0 if
    283  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    284  * signal needs to be delivered, ERESTART is returned if the current system
    285  * call should be restarted if possible, and EINTR is returned if the system
    286  * call should be interrupted by the signal (return EINTR).
    287  */
    288 int
    289 tsleep(ident, priority, wmesg, timo)
    290 	void *ident;
    291 	int priority, timo;
    292 	char *wmesg;
    293 {
    294 	register struct proc *p = curproc;
    295 	register struct slpque *qp;
    296 	register s;
    297 	int sig, catch = priority & PCATCH;
    298 	extern int cold;
    299 	void endtsleep __P((void *));
    300 
    301 #ifdef KTRACE
    302 	if (KTRPOINT(p, KTR_CSW))
    303 		ktrcsw(p->p_tracep, 1, 0);
    304 #endif
    305 	s = splhigh();
    306 	if (cold || panicstr) {
    307 		/*
    308 		 * After a panic, or during autoconfiguration,
    309 		 * just give interrupts a chance, then just return;
    310 		 * don't run any other procs or panic below,
    311 		 * in case this is the idle process and already asleep.
    312 		 */
    313 		splx(safepri);
    314 		splx(s);
    315 		return (0);
    316 	}
    317 #ifdef DIAGNOSTIC
    318 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    319 		panic("tsleep");
    320 #endif
    321 	p->p_wchan = ident;
    322 	p->p_wmesg = wmesg;
    323 	p->p_slptime = 0;
    324 	p->p_priority = priority & PRIMASK;
    325 	qp = &slpque[LOOKUP(ident)];
    326 	if (qp->sq_head == 0)
    327 		qp->sq_head = p;
    328 	else
    329 		*qp->sq_tailp = p;
    330 	*(qp->sq_tailp = &p->p_forw) = 0;
    331 	if (timo)
    332 		timeout(endtsleep, (void *)p, timo);
    333 	/*
    334 	 * We put ourselves on the sleep queue and start our timeout
    335 	 * before calling CURSIG, as we could stop there, and a wakeup
    336 	 * or a SIGCONT (or both) could occur while we were stopped.
    337 	 * A SIGCONT would cause us to be marked as SSLEEP
    338 	 * without resuming us, thus we must be ready for sleep
    339 	 * when CURSIG is called.  If the wakeup happens while we're
    340 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    341 	 */
    342 	if (catch) {
    343 		p->p_flag |= P_SINTR;
    344 		if ((sig = CURSIG(p)) != 0) {
    345 			if (p->p_wchan)
    346 				unsleep(p);
    347 			p->p_stat = SRUN;
    348 			goto resume;
    349 		}
    350 		if (p->p_wchan == 0) {
    351 			catch = 0;
    352 			goto resume;
    353 		}
    354 	} else
    355 		sig = 0;
    356 	p->p_stat = SSLEEP;
    357 	p->p_stats->p_ru.ru_nvcsw++;
    358 	mi_switch();
    359 #ifdef	DDB
    360 	/* handy breakpoint location after process "wakes" */
    361 	asm(".globl bpendtsleep ; bpendtsleep:");
    362 #endif
    363 resume:
    364 	curpriority = p->p_usrpri;
    365 	splx(s);
    366 	p->p_flag &= ~P_SINTR;
    367 	if (p->p_flag & P_TIMEOUT) {
    368 		p->p_flag &= ~P_TIMEOUT;
    369 		if (sig == 0) {
    370 #ifdef KTRACE
    371 			if (KTRPOINT(p, KTR_CSW))
    372 				ktrcsw(p->p_tracep, 0, 0);
    373 #endif
    374 			return (EWOULDBLOCK);
    375 		}
    376 	} else if (timo)
    377 		untimeout(endtsleep, (void *)p);
    378 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    379 #ifdef KTRACE
    380 		if (KTRPOINT(p, KTR_CSW))
    381 			ktrcsw(p->p_tracep, 0, 0);
    382 #endif
    383 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    384 			return (EINTR);
    385 		return (ERESTART);
    386 	}
    387 #ifdef KTRACE
    388 	if (KTRPOINT(p, KTR_CSW))
    389 		ktrcsw(p->p_tracep, 0, 0);
    390 #endif
    391 	return (0);
    392 }
    393 
    394 /*
    395  * Implement timeout for tsleep.
    396  * If process hasn't been awakened (wchan non-zero),
    397  * set timeout flag and undo the sleep.  If proc
    398  * is stopped, just unsleep so it will remain stopped.
    399  */
    400 void
    401 endtsleep(arg)
    402 	void *arg;
    403 {
    404 	register struct proc *p;
    405 	int s;
    406 
    407 	p = (struct proc *)arg;
    408 	s = splhigh();
    409 	if (p->p_wchan) {
    410 		if (p->p_stat == SSLEEP)
    411 			setrunnable(p);
    412 		else
    413 			unsleep(p);
    414 		p->p_flag |= P_TIMEOUT;
    415 	}
    416 	splx(s);
    417 }
    418 
    419 /*
    420  * Short-term, non-interruptable sleep.
    421  */
    422 void
    423 sleep(ident, priority)
    424 	void *ident;
    425 	int priority;
    426 {
    427 	register struct proc *p = curproc;
    428 	register struct slpque *qp;
    429 	register s;
    430 	extern int cold;
    431 
    432 #ifdef DIAGNOSTIC
    433 	if (priority > PZERO) {
    434 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
    435 		    priority, ident);
    436 		panic("old sleep");
    437 	}
    438 #endif
    439 	s = splhigh();
    440 	if (cold || panicstr) {
    441 		/*
    442 		 * After a panic, or during autoconfiguration,
    443 		 * just give interrupts a chance, then just return;
    444 		 * don't run any other procs or panic below,
    445 		 * in case this is the idle process and already asleep.
    446 		 */
    447 		splx(safepri);
    448 		splx(s);
    449 		return;
    450 	}
    451 #ifdef DIAGNOSTIC
    452 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    453 		panic("sleep");
    454 #endif
    455 	p->p_wchan = ident;
    456 	p->p_wmesg = NULL;
    457 	p->p_slptime = 0;
    458 	p->p_priority = priority;
    459 	qp = &slpque[LOOKUP(ident)];
    460 	if (qp->sq_head == 0)
    461 		qp->sq_head = p;
    462 	else
    463 		*qp->sq_tailp = p;
    464 	*(qp->sq_tailp = &p->p_forw) = 0;
    465 	p->p_stat = SSLEEP;
    466 	p->p_stats->p_ru.ru_nvcsw++;
    467 #ifdef KTRACE
    468 	if (KTRPOINT(p, KTR_CSW))
    469 		ktrcsw(p->p_tracep, 1, 0);
    470 #endif
    471 	mi_switch();
    472 #ifdef	DDB
    473 	/* handy breakpoint location after process "wakes" */
    474 	asm(".globl bpendsleep ; bpendsleep:");
    475 #endif
    476 #ifdef KTRACE
    477 	if (KTRPOINT(p, KTR_CSW))
    478 		ktrcsw(p->p_tracep, 0, 0);
    479 #endif
    480 	curpriority = p->p_usrpri;
    481 	splx(s);
    482 }
    483 
    484 /*
    485  * Remove a process from its wait queue
    486  */
    487 void
    488 unsleep(p)
    489 	register struct proc *p;
    490 {
    491 	register struct slpque *qp;
    492 	register struct proc **hp;
    493 	int s;
    494 
    495 	s = splhigh();
    496 	if (p->p_wchan) {
    497 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    498 		while (*hp != p)
    499 			hp = &(*hp)->p_forw;
    500 		*hp = p->p_forw;
    501 		if (qp->sq_tailp == &p->p_forw)
    502 			qp->sq_tailp = hp;
    503 		p->p_wchan = 0;
    504 	}
    505 	splx(s);
    506 }
    507 
    508 /*
    509  * Make all processes sleeping on the specified identifier runnable.
    510  */
    511 void
    512 wakeup(ident)
    513 	register void *ident;
    514 {
    515 	register struct slpque *qp;
    516 	register struct proc *p, **q;
    517 	int s;
    518 
    519 	s = splhigh();
    520 	qp = &slpque[LOOKUP(ident)];
    521 restart:
    522 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    523 #ifdef DIAGNOSTIC
    524 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    525 			panic("wakeup");
    526 #endif
    527 		if (p->p_wchan == ident) {
    528 			p->p_wchan = 0;
    529 			*q = p->p_forw;
    530 			if (qp->sq_tailp == &p->p_forw)
    531 				qp->sq_tailp = q;
    532 			if (p->p_stat == SSLEEP) {
    533 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    534 				if (p->p_slptime > 1)
    535 					updatepri(p);
    536 				p->p_slptime = 0;
    537 				p->p_stat = SRUN;
    538 				if (p->p_flag & P_INMEM)
    539 					setrunqueue(p);
    540 				/*
    541 				 * Since curpriority is a user priority,
    542 				 * p->p_priority is always better than
    543 				 * curpriority.
    544 				 */
    545 				if ((p->p_flag & P_INMEM) == 0)
    546 					wakeup((caddr_t)&proc0);
    547 				else
    548 					need_resched();
    549 				/* END INLINE EXPANSION */
    550 				goto restart;
    551 			}
    552 		} else
    553 			q = &p->p_forw;
    554 	}
    555 	splx(s);
    556 }
    557 
    558 /*
    559  * The machine independent parts of mi_switch().
    560  * Must be called at splstatclock() or higher.
    561  */
    562 void
    563 mi_switch()
    564 {
    565 	register struct proc *p = curproc;	/* XXX */
    566 	register struct rlimit *rlim;
    567 	register long s, u;
    568 	struct timeval tv;
    569 
    570 	/*
    571 	 * Compute the amount of time during which the current
    572 	 * process was running, and add that to its total so far.
    573 	 */
    574 	microtime(&tv);
    575 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    576 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    577 	if (u < 0) {
    578 		u += 1000000;
    579 		s--;
    580 	} else if (u >= 1000000) {
    581 		u -= 1000000;
    582 		s++;
    583 	}
    584 	p->p_rtime.tv_usec = u;
    585 	p->p_rtime.tv_sec = s;
    586 
    587 	/*
    588 	 * Check if the process exceeds its cpu resource allocation.
    589 	 * If over max, kill it.  In any case, if it has run for more
    590 	 * than 10 minutes, reduce priority to give others a chance.
    591 	 */
    592 	rlim = &p->p_rlimit[RLIMIT_CPU];
    593 	if (s >= rlim->rlim_cur) {
    594 		if (s >= rlim->rlim_max)
    595 			psignal(p, SIGKILL);
    596 		else {
    597 			psignal(p, SIGXCPU);
    598 			if (rlim->rlim_cur < rlim->rlim_max)
    599 				rlim->rlim_cur += 5;
    600 		}
    601 	}
    602 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    603 		p->p_nice = NZERO + 4;
    604 		resetpriority(p);
    605 	}
    606 
    607 	/*
    608 	 * Pick a new current process and record its start time.
    609 	 */
    610 	cnt.v_swtch++;
    611 	cpu_switch(p);
    612 	microtime(&runtime);
    613 }
    614 
    615 /*
    616  * Initialize the (doubly-linked) run queues
    617  * to be empty.
    618  */
    619 void
    620 rqinit()
    621 {
    622 	register int i;
    623 
    624 	for (i = 0; i < NQS; i++)
    625 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    626 }
    627 
    628 /*
    629  * Change process state to be runnable,
    630  * placing it on the run queue if it is in memory,
    631  * and awakening the swapper if it isn't in memory.
    632  */
    633 void
    634 setrunnable(p)
    635 	register struct proc *p;
    636 {
    637 	register int s;
    638 
    639 	s = splhigh();
    640 	switch (p->p_stat) {
    641 	case 0:
    642 	case SRUN:
    643 	case SZOMB:
    644 	default:
    645 		panic("setrunnable");
    646 	case SSTOP:
    647 		/*
    648 		 * If we're being traced (possibly because someone attached us
    649 		 * while we were stopped), check for a signal from the debugger.
    650 		 */
    651 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
    652 			p->p_siglist |= sigmask(p->p_xstat);
    653 	case SSLEEP:
    654 		unsleep(p);		/* e.g. when sending signals */
    655 		break;
    656 
    657 	case SIDL:
    658 		break;
    659 	}
    660 	p->p_stat = SRUN;
    661 	if (p->p_flag & P_INMEM)
    662 		setrunqueue(p);
    663 	splx(s);
    664 	if (p->p_slptime > 1)
    665 		updatepri(p);
    666 	p->p_slptime = 0;
    667 	if ((p->p_flag & P_INMEM) == 0)
    668 		wakeup((caddr_t)&proc0);
    669 	else if (p->p_priority < curpriority)
    670 		need_resched();
    671 }
    672 
    673 /*
    674  * Compute the priority of a process when running in user mode.
    675  * Arrange to reschedule if the resulting priority is better
    676  * than that of the current process.
    677  */
    678 void
    679 resetpriority(p)
    680 	register struct proc *p;
    681 {
    682 	register unsigned int newpriority;
    683 
    684 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
    685 	newpriority = min(newpriority, MAXPRI);
    686 	p->p_usrpri = newpriority;
    687 	if (newpriority < curpriority)
    688 		need_resched();
    689 }
    690 
    691 #ifdef DDB
    692 #include <machine/db_machdep.h>
    693 
    694 #include <ddb/db_interface.h>
    695 #include <ddb/db_output.h>
    696 
    697 void
    698 db_show_all_procs(addr, haddr, count, modif)
    699 	db_expr_t addr;
    700 	int haddr;
    701 	db_expr_t count;
    702 	char *modif;
    703 {
    704 	int map = modif[0] == 'm';
    705 	int doingzomb = 0;
    706 	struct proc *p, *pp;
    707 
    708 	p = allproc.lh_first;
    709 	db_printf("  pid proc     addr     %s comm         wchan\n",
    710 	    map ? "map     " : "uid  ppid  pgrp  flag stat em ");
    711 	while (p != 0) {
    712 		pp = p->p_pptr;
    713 		if (p->p_stat) {
    714 			db_printf("%5d %p %p ",
    715 			    p->p_pid, p, p->p_addr);
    716 			if (map)
    717 				db_printf("%p %s   ",
    718 				    p->p_vmspace, p->p_comm);
    719 			else
    720 				db_printf("%3d %5d %5d  %06x  %d  %s  %s   ",
    721 				    p->p_cred->p_ruid, pp ? pp->p_pid : -1,
    722 				    p->p_pgrp->pg_id, p->p_flag, p->p_stat,
    723 				    p->p_emul->e_name, p->p_comm);
    724 			if (p->p_wchan) {
    725 				if (p->p_wmesg)
    726 					db_printf("%s ", p->p_wmesg);
    727 				db_printf("%p", p->p_wchan);
    728 			}
    729 			db_printf("\n");
    730 		}
    731 		p = p->p_list.le_next;
    732 		if (p == 0 && doingzomb == 0) {
    733 			doingzomb = 1;
    734 			p = zombproc.lh_first;
    735 		}
    736 	}
    737 }
    738 #endif
    739