Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.361
      1 /*	$NetBSD: kern_synch.c,v 1.361 2023/10/04 20:28:06 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.361 2023/10/04 20:28:06 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_ddb.h"
     76 #include "opt_dtrace.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #include <sys/cpu.h>
     85 #include <sys/pserialize.h>
     86 #include <sys/resource.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/rwlock.h>
     89 #include <sys/sched.h>
     90 #include <sys/syscall_stats.h>
     91 #include <sys/sleepq.h>
     92 #include <sys/lockdebug.h>
     93 #include <sys/evcnt.h>
     94 #include <sys/intr.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/atomic.h>
     97 #include <sys/syslog.h>
     98 
     99 #include <uvm/uvm_extern.h>
    100 
    101 #include <dev/lockstat.h>
    102 
    103 #include <sys/dtrace_bsd.h>
    104 int                             dtrace_vtime_active=0;
    105 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    106 
    107 #ifdef DDB
    108 #include <ddb/ddb.h>
    109 #endif
    110 
    111 static void	sched_unsleep(struct lwp *, bool);
    112 static void	sched_changepri(struct lwp *, pri_t);
    113 static void	sched_lendpri(struct lwp *, pri_t);
    114 
    115 syncobj_t sleep_syncobj = {
    116 	.sobj_name	= "sleep",
    117 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    118 	.sobj_boostpri  = PRI_KERNEL,
    119 	.sobj_unsleep	= sleepq_unsleep,
    120 	.sobj_changepri	= sleepq_changepri,
    121 	.sobj_lendpri	= sleepq_lendpri,
    122 	.sobj_owner	= syncobj_noowner,
    123 };
    124 
    125 syncobj_t sched_syncobj = {
    126 	.sobj_name	= "sched",
    127 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    128 	.sobj_boostpri  = PRI_USER,
    129 	.sobj_unsleep	= sched_unsleep,
    130 	.sobj_changepri	= sched_changepri,
    131 	.sobj_lendpri	= sched_lendpri,
    132 	.sobj_owner	= syncobj_noowner,
    133 };
    134 
    135 syncobj_t kpause_syncobj = {
    136 	.sobj_name	= "kpause",
    137 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
    138 	.sobj_boostpri  = PRI_KERNEL,
    139 	.sobj_unsleep	= sleepq_unsleep,
    140 	.sobj_changepri	= sleepq_changepri,
    141 	.sobj_lendpri	= sleepq_lendpri,
    142 	.sobj_owner	= syncobj_noowner,
    143 };
    144 
    145 /* "Lightning bolt": once a second sleep address. */
    146 kcondvar_t		lbolt			__cacheline_aligned;
    147 
    148 u_int			sched_pstats_ticks	__cacheline_aligned;
    149 
    150 /* Preemption event counters. */
    151 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    152 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    153 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    154 
    155 void
    156 synch_init(void)
    157 {
    158 
    159 	cv_init(&lbolt, "lbolt");
    160 
    161 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    162 	   "kpreempt", "defer: critical section");
    163 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    164 	   "kpreempt", "defer: kernel_lock");
    165 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    166 	   "kpreempt", "immediate");
    167 }
    168 
    169 /*
    170  * OBSOLETE INTERFACE
    171  *
    172  * General sleep call.  Suspends the current LWP until a wakeup is
    173  * performed on the specified identifier.  The LWP will then be made
    174  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    175  * means no timeout).  If pri includes PCATCH flag, signals are checked
    176  * before and after sleeping, else signals are not checked.  Returns 0 if
    177  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    178  * signal needs to be delivered, ERESTART is returned if the current system
    179  * call should be restarted if possible, and EINTR is returned if the system
    180  * call should be interrupted by the signal (return EINTR).
    181  */
    182 int
    183 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	kmutex_t *mp;
    188 	bool catch_p;
    189 
    190 	KASSERT((l->l_pflag & LP_INTR) == 0);
    191 	KASSERT(ident != &lbolt);
    192 	//KASSERT(KERNEL_LOCKED_P());
    193 
    194 	if (sleepq_dontsleep(l)) {
    195 		(void)sleepq_abort(NULL, 0);
    196 		return 0;
    197 	}
    198 
    199 	catch_p = priority & PCATCH;
    200 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    201 	sleepq_enter(sq, l, mp);
    202 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    203 	return sleepq_block(timo, catch_p, &sleep_syncobj);
    204 }
    205 
    206 int
    207 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    208 	kmutex_t *mtx)
    209 {
    210 	struct lwp *l = curlwp;
    211 	sleepq_t *sq;
    212 	kmutex_t *mp;
    213 	bool catch_p;
    214 	int error;
    215 
    216 	KASSERT((l->l_pflag & LP_INTR) == 0);
    217 	KASSERT(ident != &lbolt);
    218 
    219 	if (sleepq_dontsleep(l)) {
    220 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    221 		return 0;
    222 	}
    223 
    224 	catch_p = priority & PCATCH;
    225 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    226 	sleepq_enter(sq, l, mp);
    227 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    228 	mutex_exit(mtx);
    229 	error = sleepq_block(timo, catch_p, &sleep_syncobj);
    230 
    231 	if ((priority & PNORELOCK) == 0)
    232 		mutex_enter(mtx);
    233 
    234 	return error;
    235 }
    236 
    237 /*
    238  * General sleep call for situations where a wake-up is not expected.
    239  */
    240 int
    241 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    242 {
    243 	struct lwp *l = curlwp;
    244 	int error;
    245 
    246 	KASSERT(timo != 0 || intr);
    247 
    248 	if (sleepq_dontsleep(l))
    249 		return sleepq_abort(NULL, 0);
    250 
    251 	if (mtx != NULL)
    252 		mutex_exit(mtx);
    253 	lwp_lock(l);
    254 	KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
    255 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
    256 	error = sleepq_block(timo, intr, &kpause_syncobj);
    257 	if (mtx != NULL)
    258 		mutex_enter(mtx);
    259 
    260 	return error;
    261 }
    262 
    263 /*
    264  * OBSOLETE INTERFACE
    265  *
    266  * Make all LWPs sleeping on the specified identifier runnable.
    267  */
    268 void
    269 wakeup(wchan_t ident)
    270 {
    271 	sleepq_t *sq;
    272 	kmutex_t *mp;
    273 
    274 	if (__predict_false(cold))
    275 		return;
    276 
    277 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    278 	sleepq_wake(sq, ident, (u_int)-1, mp);
    279 }
    280 
    281 /*
    282  * General yield call.  Puts the current LWP back on its run queue and
    283  * performs a context switch.
    284  */
    285 void
    286 yield(void)
    287 {
    288 	struct lwp *l = curlwp;
    289 
    290 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    291 	lwp_lock(l);
    292 
    293 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    294 	KASSERT(l->l_stat == LSONPROC);
    295 
    296 	spc_lock(l->l_cpu);
    297 	mi_switch(l);
    298 	KERNEL_LOCK(l->l_biglocks, l);
    299 }
    300 
    301 /*
    302  * General preemption call.  Puts the current LWP back on its run queue
    303  * and performs an involuntary context switch.  Different from yield()
    304  * in that:
    305  *
    306  * - It's counted differently (involuntary vs. voluntary).
    307  * - Realtime threads go to the head of their runqueue vs. tail for yield().
    308  */
    309 void
    310 preempt(void)
    311 {
    312 	struct lwp *l = curlwp;
    313 
    314 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    315 	lwp_lock(l);
    316 
    317 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    318 	KASSERT(l->l_stat == LSONPROC);
    319 
    320 	spc_lock(l->l_cpu);
    321 	l->l_pflag |= LP_PREEMPTING;
    322 	mi_switch(l);
    323 	KERNEL_LOCK(l->l_biglocks, l);
    324 }
    325 
    326 /*
    327  * Return true if the current LWP should yield the processor.  Intended to
    328  * be used by long-running code in kernel.
    329  */
    330 inline bool
    331 preempt_needed(void)
    332 {
    333 	lwp_t *l = curlwp;
    334 	int needed;
    335 
    336 	KPREEMPT_DISABLE(l);
    337 	needed = l->l_cpu->ci_want_resched;
    338 	KPREEMPT_ENABLE(l);
    339 
    340 	return (needed != 0);
    341 }
    342 
    343 /*
    344  * A breathing point for long running code in kernel.
    345  */
    346 void
    347 preempt_point(void)
    348 {
    349 
    350 	if (__predict_false(preempt_needed())) {
    351 		preempt();
    352 	}
    353 }
    354 
    355 /*
    356  * Handle a request made by another agent to preempt the current LWP
    357  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    358  *
    359  * Character addresses for lockstat only.
    360  */
    361 static char	kpreempt_is_disabled;
    362 static char	kernel_lock_held;
    363 static char	is_softint_lwp;
    364 static char	spl_is_raised;
    365 
    366 bool
    367 kpreempt(uintptr_t where)
    368 {
    369 	uintptr_t failed;
    370 	lwp_t *l;
    371 	int s, dop, lsflag;
    372 
    373 	l = curlwp;
    374 	failed = 0;
    375 	while ((dop = l->l_dopreempt) != 0) {
    376 		if (l->l_stat != LSONPROC) {
    377 			/*
    378 			 * About to block (or die), let it happen.
    379 			 * Doesn't really count as "preemption has
    380 			 * been blocked", since we're going to
    381 			 * context switch.
    382 			 */
    383 			atomic_swap_uint(&l->l_dopreempt, 0);
    384 			return true;
    385 		}
    386 		KASSERT((l->l_flag & LW_IDLE) == 0);
    387 		if (__predict_false(l->l_nopreempt != 0)) {
    388 			/* LWP holds preemption disabled, explicitly. */
    389 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    390 				kpreempt_ev_crit.ev_count++;
    391 			}
    392 			failed = (uintptr_t)&kpreempt_is_disabled;
    393 			break;
    394 		}
    395 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    396 			/* Can't preempt soft interrupts yet. */
    397 			atomic_swap_uint(&l->l_dopreempt, 0);
    398 			failed = (uintptr_t)&is_softint_lwp;
    399 			break;
    400 		}
    401 		s = splsched();
    402 		if (__predict_false(l->l_blcnt != 0 ||
    403 		    curcpu()->ci_biglock_wanted != NULL)) {
    404 			/* Hold or want kernel_lock, code is not MT safe. */
    405 			splx(s);
    406 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    407 				kpreempt_ev_klock.ev_count++;
    408 			}
    409 			failed = (uintptr_t)&kernel_lock_held;
    410 			break;
    411 		}
    412 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    413 			/*
    414 			 * It may be that the IPL is too high.
    415 			 * kpreempt_enter() can schedule an
    416 			 * interrupt to retry later.
    417 			 */
    418 			splx(s);
    419 			failed = (uintptr_t)&spl_is_raised;
    420 			break;
    421 		}
    422 		/* Do it! */
    423 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    424 			kpreempt_ev_immed.ev_count++;
    425 		}
    426 		lwp_lock(l);
    427 		l->l_pflag |= LP_PREEMPTING;
    428 		spc_lock(l->l_cpu);
    429 		mi_switch(l);
    430 		l->l_nopreempt++;
    431 		splx(s);
    432 
    433 		/* Take care of any MD cleanup. */
    434 		cpu_kpreempt_exit(where);
    435 		l->l_nopreempt--;
    436 	}
    437 
    438 	if (__predict_true(!failed)) {
    439 		return false;
    440 	}
    441 
    442 	/* Record preemption failure for reporting via lockstat. */
    443 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    444 	lsflag = 0;
    445 	LOCKSTAT_ENTER(lsflag);
    446 	if (__predict_false(lsflag)) {
    447 		if (where == 0) {
    448 			where = (uintptr_t)__builtin_return_address(0);
    449 		}
    450 		/* Preemption is on, might recurse, so make it atomic. */
    451 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    452 		    (void *)where) == NULL) {
    453 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    454 			l->l_pfaillock = failed;
    455 		}
    456 	}
    457 	LOCKSTAT_EXIT(lsflag);
    458 	return true;
    459 }
    460 
    461 /*
    462  * Return true if preemption is explicitly disabled.
    463  */
    464 bool
    465 kpreempt_disabled(void)
    466 {
    467 	const lwp_t *l = curlwp;
    468 
    469 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    470 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    471 	    cpu_kpreempt_disabled();
    472 }
    473 
    474 /*
    475  * Disable kernel preemption.
    476  */
    477 void
    478 kpreempt_disable(void)
    479 {
    480 
    481 	KPREEMPT_DISABLE(curlwp);
    482 }
    483 
    484 /*
    485  * Reenable kernel preemption.
    486  */
    487 void
    488 kpreempt_enable(void)
    489 {
    490 
    491 	KPREEMPT_ENABLE(curlwp);
    492 }
    493 
    494 /*
    495  * Compute the amount of time during which the current lwp was running.
    496  *
    497  * - update l_rtime unless it's an idle lwp.
    498  */
    499 
    500 void
    501 updatertime(lwp_t *l, const struct bintime *now)
    502 {
    503 	static bool backwards = false;
    504 
    505 	if (__predict_false(l->l_flag & LW_IDLE))
    506 		return;
    507 
    508 	if (__predict_false(bintimecmp(now, &l->l_stime, <)) && !backwards) {
    509 		char caller[128];
    510 
    511 #ifdef DDB
    512 		db_symstr(caller, sizeof(caller),
    513 		    (db_expr_t)(intptr_t)__builtin_return_address(0),
    514 		    DB_STGY_PROC);
    515 #else
    516 		snprintf(caller, sizeof(caller), "%p",
    517 		    __builtin_return_address(0));
    518 #endif
    519 		backwards = true;
    520 		printf("WARNING: lwp %ld (%s%s%s) flags 0x%x:"
    521 		    " timecounter went backwards"
    522 		    " from (%jd + 0x%016"PRIx64"/2^64) sec"
    523 		    " to (%jd + 0x%016"PRIx64"/2^64) sec"
    524 		    " in %s\n",
    525 		    (long)l->l_lid,
    526 		    l->l_proc->p_comm,
    527 		    l->l_name ? " " : "",
    528 		    l->l_name ? l->l_name : "",
    529 		    l->l_pflag,
    530 		    (intmax_t)l->l_stime.sec, l->l_stime.frac,
    531 		    (intmax_t)now->sec, now->frac,
    532 		    caller);
    533 	}
    534 
    535 	/* rtime += now - stime */
    536 	bintime_add(&l->l_rtime, now);
    537 	bintime_sub(&l->l_rtime, &l->l_stime);
    538 }
    539 
    540 /*
    541  * Select next LWP from the current CPU to run..
    542  */
    543 static inline lwp_t *
    544 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    545 {
    546 	lwp_t *newl;
    547 
    548 	/*
    549 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    550 	 * If no LWP is runnable, select the idle LWP.
    551 	 *
    552 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
    553 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
    554 	 * which may or may not be held here.  On exit from this code block,
    555 	 * in all cases newl is locked by spc_lwplock.
    556 	 */
    557 	newl = sched_nextlwp();
    558 	if (newl != NULL) {
    559 		sched_dequeue(newl);
    560 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    561 		KASSERT(newl->l_cpu == ci);
    562 		newl->l_stat = LSONPROC;
    563 		newl->l_pflag |= LP_RUNNING;
    564 		newl->l_boostpri = PRI_NONE;
    565 		spc->spc_curpriority = lwp_eprio(newl);
    566 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    567 		lwp_setlock(newl, spc->spc_lwplock);
    568 	} else {
    569 		/*
    570 		 * The idle LWP does not get set to LSONPROC, because
    571 		 * otherwise it screws up the output from top(1) etc.
    572 		 */
    573 		newl = ci->ci_data.cpu_idlelwp;
    574 		newl->l_pflag |= LP_RUNNING;
    575 		spc->spc_curpriority = PRI_IDLE;
    576 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    577 		    SPCF_IDLE;
    578 	}
    579 
    580 	/*
    581 	 * Only clear want_resched if there are no pending (slow) software
    582 	 * interrupts.  We can do this without an atomic, because no new
    583 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    584 	 * the update to ci_want_resched will become globally visible before
    585 	 * the release of spc_mutex becomes globally visible.
    586 	 */
    587 	if (ci->ci_data.cpu_softints == 0)
    588 		ci->ci_want_resched = 0;
    589 
    590 	return newl;
    591 }
    592 
    593 /*
    594  * The machine independent parts of context switch.
    595  *
    596  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    597  * changes its own l_cpu (that would screw up curcpu on many ports and could
    598  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    599  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    600  * is checked under lock).
    601  */
    602 void
    603 mi_switch(lwp_t *l)
    604 {
    605 	struct cpu_info *ci;
    606 	struct schedstate_percpu *spc;
    607 	struct lwp *newl;
    608 	kmutex_t *lock;
    609 	int oldspl;
    610 	struct bintime bt;
    611 	bool returning;
    612 
    613 	KASSERT(lwp_locked(l, NULL));
    614 	KASSERT(kpreempt_disabled());
    615 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    616 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    617 
    618 	kstack_check_magic(l);
    619 
    620 	binuptime(&bt);
    621 
    622 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    623 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    624 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    625 	ci = curcpu();
    626 	spc = &ci->ci_schedstate;
    627 	returning = false;
    628 	newl = NULL;
    629 
    630 	/*
    631 	 * If we have been asked to switch to a specific LWP, then there
    632 	 * is no need to inspect the run queues.  If a soft interrupt is
    633 	 * blocking, then return to the interrupted thread without adjusting
    634 	 * VM context or its start time: neither have been changed in order
    635 	 * to take the interrupt.
    636 	 */
    637 	if (l->l_switchto != NULL) {
    638 		if ((l->l_pflag & LP_INTR) != 0) {
    639 			returning = true;
    640 			softint_block(l);
    641 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    642 				updatertime(l, &bt);
    643 		}
    644 		newl = l->l_switchto;
    645 		l->l_switchto = NULL;
    646 	}
    647 #ifndef __HAVE_FAST_SOFTINTS
    648 	else if (ci->ci_data.cpu_softints != 0) {
    649 		/* There are pending soft interrupts, so pick one. */
    650 		newl = softint_picklwp();
    651 		newl->l_stat = LSONPROC;
    652 		newl->l_pflag |= LP_RUNNING;
    653 	}
    654 #endif	/* !__HAVE_FAST_SOFTINTS */
    655 
    656 	/*
    657 	 * If on the CPU and we have gotten this far, then we must yield.
    658 	 */
    659 	if (l->l_stat == LSONPROC && l != newl) {
    660 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    661 		KASSERT((l->l_flag & LW_IDLE) == 0);
    662 		l->l_stat = LSRUN;
    663 		lwp_setlock(l, spc->spc_mutex);
    664 		sched_enqueue(l);
    665 		sched_preempted(l);
    666 
    667 		/*
    668 		 * Handle migration.  Note that "migrating LWP" may
    669 		 * be reset here, if interrupt/preemption happens
    670 		 * early in idle LWP.
    671 		 */
    672 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    673 			KASSERT((l->l_pflag & LP_INTR) == 0);
    674 			spc->spc_migrating = l;
    675 		}
    676 	}
    677 
    678 	/* Pick new LWP to run. */
    679 	if (newl == NULL) {
    680 		newl = nextlwp(ci, spc);
    681 	}
    682 
    683 	/* Items that must be updated with the CPU locked. */
    684 	if (!returning) {
    685 		/* Count time spent in current system call */
    686 		SYSCALL_TIME_SLEEP(l);
    687 
    688 		updatertime(l, &bt);
    689 
    690 		/* Update the new LWP's start time. */
    691 		newl->l_stime = bt;
    692 
    693 		/*
    694 		 * ci_curlwp changes when a fast soft interrupt occurs.
    695 		 * We use ci_onproc to keep track of which kernel or
    696 		 * user thread is running 'underneath' the software
    697 		 * interrupt.  This is important for time accounting,
    698 		 * itimers and forcing user threads to preempt (aston).
    699 		 */
    700 		ci->ci_onproc = newl;
    701 	}
    702 
    703 	/*
    704 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    705 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    706 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    707 	 * cleared by the LWP itself (us) with atomics when not under lock.
    708 	 */
    709 	l->l_dopreempt = 0;
    710 	if (__predict_false(l->l_pfailaddr != 0)) {
    711 		LOCKSTAT_FLAG(lsflag);
    712 		LOCKSTAT_ENTER(lsflag);
    713 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    714 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    715 		    1, l->l_pfailtime, l->l_pfailaddr);
    716 		LOCKSTAT_EXIT(lsflag);
    717 		l->l_pfailtime = 0;
    718 		l->l_pfaillock = 0;
    719 		l->l_pfailaddr = 0;
    720 	}
    721 
    722 	if (l != newl) {
    723 		struct lwp *prevlwp;
    724 
    725 		/* Release all locks, but leave the current LWP locked */
    726 		if (l->l_mutex == spc->spc_mutex) {
    727 			/*
    728 			 * Drop spc_lwplock, if the current LWP has been moved
    729 			 * to the run queue (it is now locked by spc_mutex).
    730 			 */
    731 			mutex_spin_exit(spc->spc_lwplock);
    732 		} else {
    733 			/*
    734 			 * Otherwise, drop the spc_mutex, we are done with the
    735 			 * run queues.
    736 			 */
    737 			mutex_spin_exit(spc->spc_mutex);
    738 		}
    739 
    740 		/* We're down to only one lock, so do debug checks. */
    741 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    742 
    743 		/* Count the context switch. */
    744 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    745 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    746 			l->l_ru.ru_nivcsw++;
    747 			l->l_pflag &= ~LP_PREEMPTING;
    748 		} else {
    749 			l->l_ru.ru_nvcsw++;
    750 		}
    751 
    752 		/*
    753 		 * Increase the count of spin-mutexes before the release
    754 		 * of the last lock - we must remain at IPL_SCHED after
    755 		 * releasing the lock.
    756 		 */
    757 		KASSERTMSG(ci->ci_mtx_count == -1,
    758 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    759 		    "(block with spin-mutex held)",
    760 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    761 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    762 		ci->ci_mtx_count = -2;
    763 
    764 		/* Update status for lwpctl, if present. */
    765 		if (l->l_lwpctl != NULL) {
    766 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    767 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    768 		}
    769 
    770 		/*
    771 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    772 		 * other side to unlock - we're returning into an assembly
    773 		 * trampoline.  Unlock now.  This is safe because this is a
    774 		 * kernel LWP and is bound to current CPU: the worst anyone
    775 		 * else will do to it, is to put it back onto this CPU's run
    776 		 * queue (and the CPU is busy here right now!).
    777 		 */
    778 		if (returning) {
    779 			/* Keep IPL_SCHED after this; MD code will fix up. */
    780 			l->l_pflag &= ~LP_RUNNING;
    781 			lwp_unlock(l);
    782 		} else {
    783 			/* A normal LWP: save old VM context. */
    784 			pmap_deactivate(l);
    785 		}
    786 
    787 		/*
    788 		 * If DTrace has set the active vtime enum to anything
    789 		 * other than INACTIVE (0), then it should have set the
    790 		 * function to call.
    791 		 */
    792 		if (__predict_false(dtrace_vtime_active)) {
    793 			(*dtrace_vtime_switch_func)(newl);
    794 		}
    795 
    796 		/*
    797 		 * We must ensure not to come here from inside a read section.
    798 		 */
    799 		KASSERT(pserialize_not_in_read_section());
    800 
    801 		/* Switch to the new LWP.. */
    802 #ifdef MULTIPROCESSOR
    803 		KASSERT(curlwp == ci->ci_curlwp);
    804 #endif
    805 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    806 		prevlwp = cpu_switchto(l, newl, returning);
    807 		ci = curcpu();
    808 #ifdef MULTIPROCESSOR
    809 		KASSERT(curlwp == ci->ci_curlwp);
    810 #endif
    811 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    812 		    l, curlwp, prevlwp);
    813 		KASSERT(prevlwp != NULL);
    814 		KASSERT(l->l_cpu == ci);
    815 		KASSERT(ci->ci_mtx_count == -2);
    816 
    817 		/*
    818 		 * Immediately mark the previous LWP as no longer running
    819 		 * and unlock (to keep lock wait times short as possible).
    820 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    821 		 * don't touch after clearing LP_RUNNING as it could be
    822 		 * reaped by another CPU.  Issue a memory barrier to ensure
    823 		 * this.
    824 		 *
    825 		 * atomic_store_release matches atomic_load_acquire in
    826 		 * lwp_free.
    827 		 */
    828 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    829 		lock = prevlwp->l_mutex;
    830 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    831 			atomic_store_release(&prevlwp->l_pflag,
    832 			    prevlwp->l_pflag & ~LP_RUNNING);
    833 		} else {
    834 			prevlwp->l_pflag &= ~LP_RUNNING;
    835 		}
    836 		mutex_spin_exit(lock);
    837 
    838 		/*
    839 		 * Switched away - we have new curlwp.
    840 		 * Restore VM context and IPL.
    841 		 */
    842 		pmap_activate(l);
    843 		pcu_switchpoint(l);
    844 
    845 		/* Update status for lwpctl, if present. */
    846 		if (l->l_lwpctl != NULL) {
    847 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    848 			l->l_lwpctl->lc_pctr++;
    849 		}
    850 
    851 		/*
    852 		 * Normalize the spin mutex count and restore the previous
    853 		 * SPL.  Note that, unless the caller disabled preemption,
    854 		 * we can be preempted at any time after this splx().
    855 		 */
    856 		KASSERT(l->l_cpu == ci);
    857 		KASSERT(ci->ci_mtx_count == -1);
    858 		ci->ci_mtx_count = 0;
    859 		splx(oldspl);
    860 	} else {
    861 		/* Nothing to do - just unlock and return. */
    862 		mutex_spin_exit(spc->spc_mutex);
    863 		l->l_pflag &= ~LP_PREEMPTING;
    864 		lwp_unlock(l);
    865 	}
    866 
    867 	KASSERT(l == curlwp);
    868 	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
    869 
    870 	SYSCALL_TIME_WAKEUP(l);
    871 	LOCKDEBUG_BARRIER(NULL, 1);
    872 }
    873 
    874 /*
    875  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    876  *
    877  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    878  */
    879 void
    880 setrunnable(struct lwp *l)
    881 {
    882 	struct proc *p = l->l_proc;
    883 	struct cpu_info *ci;
    884 	kmutex_t *oldlock;
    885 
    886 	KASSERT((l->l_flag & LW_IDLE) == 0);
    887 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    888 	KASSERT(mutex_owned(p->p_lock));
    889 	KASSERT(lwp_locked(l, NULL));
    890 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    891 
    892 	switch (l->l_stat) {
    893 	case LSSTOP:
    894 		/*
    895 		 * If we're being traced (possibly because someone attached us
    896 		 * while we were stopped), check for a signal from the debugger.
    897 		 */
    898 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    899 			signotify(l);
    900 		p->p_nrlwps++;
    901 		break;
    902 	case LSSUSPENDED:
    903 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    904 		l->l_flag &= ~LW_WSUSPEND;
    905 		p->p_nrlwps++;
    906 		cv_broadcast(&p->p_lwpcv);
    907 		break;
    908 	case LSSLEEP:
    909 		KASSERT(l->l_wchan != NULL);
    910 		break;
    911 	case LSIDL:
    912 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    913 		break;
    914 	default:
    915 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    916 	}
    917 
    918 	/*
    919 	 * If the LWP was sleeping, start it again.
    920 	 */
    921 	if (l->l_wchan != NULL) {
    922 		l->l_stat = LSSLEEP;
    923 		/* lwp_unsleep() will release the lock. */
    924 		lwp_unsleep(l, true);
    925 		return;
    926 	}
    927 
    928 	/*
    929 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    930 	 * about to call mi_switch(), in which case it will yield.
    931 	 */
    932 	if ((l->l_pflag & LP_RUNNING) != 0) {
    933 		l->l_stat = LSONPROC;
    934 		l->l_slptime = 0;
    935 		lwp_unlock(l);
    936 		return;
    937 	}
    938 
    939 	/*
    940 	 * Look for a CPU to run.
    941 	 * Set the LWP runnable.
    942 	 */
    943 	ci = sched_takecpu(l);
    944 	l->l_cpu = ci;
    945 	spc_lock(ci);
    946 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    947 	sched_setrunnable(l);
    948 	l->l_stat = LSRUN;
    949 	l->l_slptime = 0;
    950 	sched_enqueue(l);
    951 	sched_resched_lwp(l, true);
    952 	/* SPC & LWP now unlocked. */
    953 	mutex_spin_exit(oldlock);
    954 }
    955 
    956 /*
    957  * suspendsched:
    958  *
    959  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    960  */
    961 void
    962 suspendsched(void)
    963 {
    964 	CPU_INFO_ITERATOR cii;
    965 	struct cpu_info *ci;
    966 	struct lwp *l;
    967 	struct proc *p;
    968 
    969 	/*
    970 	 * We do this by process in order not to violate the locking rules.
    971 	 */
    972 	mutex_enter(&proc_lock);
    973 	PROCLIST_FOREACH(p, &allproc) {
    974 		mutex_enter(p->p_lock);
    975 		if ((p->p_flag & PK_SYSTEM) != 0) {
    976 			mutex_exit(p->p_lock);
    977 			continue;
    978 		}
    979 
    980 		if (p->p_stat != SSTOP) {
    981 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    982 				p->p_pptr->p_nstopchild++;
    983 				p->p_waited = 0;
    984 			}
    985 			p->p_stat = SSTOP;
    986 		}
    987 
    988 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    989 			if (l == curlwp)
    990 				continue;
    991 
    992 			lwp_lock(l);
    993 
    994 			/*
    995 			 * Set L_WREBOOT so that the LWP will suspend itself
    996 			 * when it tries to return to user mode.  We want to
    997 			 * try and get to get as many LWPs as possible to
    998 			 * the user / kernel boundary, so that they will
    999 			 * release any locks that they hold.
   1000 			 */
   1001 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1002 
   1003 			if (l->l_stat == LSSLEEP &&
   1004 			    (l->l_flag & LW_SINTR) != 0) {
   1005 				/* setrunnable() will release the lock. */
   1006 				setrunnable(l);
   1007 				continue;
   1008 			}
   1009 
   1010 			lwp_unlock(l);
   1011 		}
   1012 
   1013 		mutex_exit(p->p_lock);
   1014 	}
   1015 	mutex_exit(&proc_lock);
   1016 
   1017 	/*
   1018 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1019 	 * They'll trap into the kernel and suspend themselves in userret().
   1020 	 *
   1021 	 * Unusually, we don't hold any other scheduler object locked, which
   1022 	 * would keep preemption off for sched_resched_cpu(), so disable it
   1023 	 * explicitly.
   1024 	 */
   1025 	kpreempt_disable();
   1026 	for (CPU_INFO_FOREACH(cii, ci)) {
   1027 		spc_lock(ci);
   1028 		sched_resched_cpu(ci, PRI_KERNEL, true);
   1029 		/* spc now unlocked */
   1030 	}
   1031 	kpreempt_enable();
   1032 }
   1033 
   1034 /*
   1035  * sched_unsleep:
   1036  *
   1037  *	The is called when the LWP has not been awoken normally but instead
   1038  *	interrupted: for example, if the sleep timed out.  Because of this,
   1039  *	it's not a valid action for running or idle LWPs.
   1040  */
   1041 static void
   1042 sched_unsleep(struct lwp *l, bool cleanup)
   1043 {
   1044 
   1045 	lwp_unlock(l);
   1046 	panic("sched_unsleep");
   1047 }
   1048 
   1049 static void
   1050 sched_changepri(struct lwp *l, pri_t pri)
   1051 {
   1052 	struct schedstate_percpu *spc;
   1053 	struct cpu_info *ci;
   1054 
   1055 	KASSERT(lwp_locked(l, NULL));
   1056 
   1057 	ci = l->l_cpu;
   1058 	spc = &ci->ci_schedstate;
   1059 
   1060 	if (l->l_stat == LSRUN) {
   1061 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1062 		sched_dequeue(l);
   1063 		l->l_priority = pri;
   1064 		sched_enqueue(l);
   1065 		sched_resched_lwp(l, false);
   1066 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1067 		/* On priority drop, only evict realtime LWPs. */
   1068 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1069 		l->l_priority = pri;
   1070 		spc_lock(ci);
   1071 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1072 		/* spc now unlocked */
   1073 	} else {
   1074 		l->l_priority = pri;
   1075 	}
   1076 }
   1077 
   1078 static void
   1079 sched_lendpri(struct lwp *l, pri_t pri)
   1080 {
   1081 	struct schedstate_percpu *spc;
   1082 	struct cpu_info *ci;
   1083 
   1084 	KASSERT(lwp_locked(l, NULL));
   1085 
   1086 	ci = l->l_cpu;
   1087 	spc = &ci->ci_schedstate;
   1088 
   1089 	if (l->l_stat == LSRUN) {
   1090 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1091 		sched_dequeue(l);
   1092 		l->l_inheritedprio = pri;
   1093 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1094 		sched_enqueue(l);
   1095 		sched_resched_lwp(l, false);
   1096 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1097 		/* On priority drop, only evict realtime LWPs. */
   1098 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1099 		l->l_inheritedprio = pri;
   1100 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1101 		spc_lock(ci);
   1102 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1103 		/* spc now unlocked */
   1104 	} else {
   1105 		l->l_inheritedprio = pri;
   1106 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1107 	}
   1108 }
   1109 
   1110 struct lwp *
   1111 syncobj_noowner(wchan_t wchan)
   1112 {
   1113 
   1114 	return NULL;
   1115 }
   1116 
   1117 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1118 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1119 
   1120 /*
   1121  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1122  * 5 second intervals.
   1123  */
   1124 static const fixpt_t cexp[ ] = {
   1125 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1126 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1127 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1128 };
   1129 
   1130 /*
   1131  * sched_pstats:
   1132  *
   1133  * => Update process statistics and check CPU resource allocation.
   1134  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1135  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1136  */
   1137 void
   1138 sched_pstats(void)
   1139 {
   1140 	struct loadavg *avg = &averunnable;
   1141 	const int clkhz = (stathz != 0 ? stathz : hz);
   1142 	static bool backwardslwp = false;
   1143 	static bool backwardsproc = false;
   1144 	static u_int lavg_count = 0;
   1145 	struct proc *p;
   1146 	int nrun;
   1147 
   1148 	sched_pstats_ticks++;
   1149 	if (++lavg_count >= 5) {
   1150 		lavg_count = 0;
   1151 		nrun = 0;
   1152 	}
   1153 	mutex_enter(&proc_lock);
   1154 	PROCLIST_FOREACH(p, &allproc) {
   1155 		struct lwp *l;
   1156 		struct rlimit *rlim;
   1157 		time_t runtm;
   1158 		int sig;
   1159 
   1160 		/* Increment sleep time (if sleeping), ignore overflow. */
   1161 		mutex_enter(p->p_lock);
   1162 		runtm = p->p_rtime.sec;
   1163 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1164 			fixpt_t lpctcpu;
   1165 			u_int lcpticks;
   1166 
   1167 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1168 				continue;
   1169 			lwp_lock(l);
   1170 			if (__predict_false(l->l_rtime.sec < 0) &&
   1171 			    !backwardslwp) {
   1172 				backwardslwp = true;
   1173 				printf("WARNING: lwp %ld (%s%s%s): "
   1174 				    "negative runtime: "
   1175 				    "(%jd + 0x%016"PRIx64"/2^64) sec\n",
   1176 				    (long)l->l_lid,
   1177 				    l->l_proc->p_comm,
   1178 				    l->l_name ? " " : "",
   1179 				    l->l_name ? l->l_name : "",
   1180 				    (intmax_t)l->l_rtime.sec,
   1181 				    l->l_rtime.frac);
   1182 			}
   1183 			runtm += l->l_rtime.sec;
   1184 			l->l_swtime++;
   1185 			sched_lwp_stats(l);
   1186 
   1187 			/* For load average calculation. */
   1188 			if (__predict_false(lavg_count == 0) &&
   1189 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1190 				switch (l->l_stat) {
   1191 				case LSSLEEP:
   1192 					if (l->l_slptime > 1) {
   1193 						break;
   1194 					}
   1195 					/* FALLTHROUGH */
   1196 				case LSRUN:
   1197 				case LSONPROC:
   1198 				case LSIDL:
   1199 					nrun++;
   1200 				}
   1201 			}
   1202 			lwp_unlock(l);
   1203 
   1204 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1205 			if (l->l_slptime != 0)
   1206 				continue;
   1207 
   1208 			lpctcpu = l->l_pctcpu;
   1209 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1210 			lpctcpu += ((FSCALE - ccpu) *
   1211 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1212 			l->l_pctcpu = lpctcpu;
   1213 		}
   1214 		/* Calculating p_pctcpu only for ps(1) */
   1215 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1216 
   1217 		if (__predict_false(runtm < 0)) {
   1218 			if (!backwardsproc) {
   1219 				backwardsproc = true;
   1220 				printf("WARNING: pid %ld (%s): "
   1221 				    "negative runtime; "
   1222 				    "monotonic clock has gone backwards\n",
   1223 				    (long)p->p_pid, p->p_comm);
   1224 			}
   1225 			mutex_exit(p->p_lock);
   1226 			continue;
   1227 		}
   1228 
   1229 		/*
   1230 		 * Check if the process exceeds its CPU resource allocation.
   1231 		 * If over the hard limit, kill it with SIGKILL.
   1232 		 * If over the soft limit, send SIGXCPU and raise
   1233 		 * the soft limit a little.
   1234 		 */
   1235 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1236 		sig = 0;
   1237 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1238 			if (runtm >= rlim->rlim_max) {
   1239 				sig = SIGKILL;
   1240 				log(LOG_NOTICE,
   1241 				    "pid %d, command %s, is killed: %s\n",
   1242 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1243 				uprintf("pid %d, command %s, is killed: %s\n",
   1244 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1245 			} else {
   1246 				sig = SIGXCPU;
   1247 				if (rlim->rlim_cur < rlim->rlim_max)
   1248 					rlim->rlim_cur += 5;
   1249 			}
   1250 		}
   1251 		mutex_exit(p->p_lock);
   1252 		if (__predict_false(sig)) {
   1253 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1254 			psignal(p, sig);
   1255 		}
   1256 	}
   1257 
   1258 	/* Load average calculation. */
   1259 	if (__predict_false(lavg_count == 0)) {
   1260 		int i;
   1261 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1262 		for (i = 0; i < __arraycount(cexp); i++) {
   1263 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1264 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1265 		}
   1266 	}
   1267 
   1268 	/* Lightning bolt. */
   1269 	cv_broadcast(&lbolt);
   1270 
   1271 	mutex_exit(&proc_lock);
   1272 }
   1273