Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.362
      1 /*	$NetBSD: kern_synch.c,v 1.362 2023/10/04 20:29:18 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020, 2023
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.362 2023/10/04 20:29:18 ad Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_ddb.h"
     76 #include "opt_dtrace.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #include <sys/cpu.h>
     85 #include <sys/pserialize.h>
     86 #include <sys/resource.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/rwlock.h>
     89 #include <sys/sched.h>
     90 #include <sys/syscall_stats.h>
     91 #include <sys/sleepq.h>
     92 #include <sys/lockdebug.h>
     93 #include <sys/evcnt.h>
     94 #include <sys/intr.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/atomic.h>
     97 #include <sys/syslog.h>
     98 
     99 #include <uvm/uvm_extern.h>
    100 
    101 #include <dev/lockstat.h>
    102 
    103 #include <sys/dtrace_bsd.h>
    104 int                             dtrace_vtime_active=0;
    105 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    106 
    107 #ifdef DDB
    108 #include <ddb/ddb.h>
    109 #endif
    110 
    111 static void	sched_unsleep(struct lwp *, bool);
    112 static void	sched_changepri(struct lwp *, pri_t);
    113 static void	sched_lendpri(struct lwp *, pri_t);
    114 
    115 syncobj_t sleep_syncobj = {
    116 	.sobj_name	= "sleep",
    117 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    118 	.sobj_boostpri  = PRI_KERNEL,
    119 	.sobj_unsleep	= sleepq_unsleep,
    120 	.sobj_changepri	= sleepq_changepri,
    121 	.sobj_lendpri	= sleepq_lendpri,
    122 	.sobj_owner	= syncobj_noowner,
    123 };
    124 
    125 syncobj_t sched_syncobj = {
    126 	.sobj_name	= "sched",
    127 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    128 	.sobj_boostpri  = PRI_USER,
    129 	.sobj_unsleep	= sched_unsleep,
    130 	.sobj_changepri	= sched_changepri,
    131 	.sobj_lendpri	= sched_lendpri,
    132 	.sobj_owner	= syncobj_noowner,
    133 };
    134 
    135 syncobj_t kpause_syncobj = {
    136 	.sobj_name	= "kpause",
    137 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
    138 	.sobj_boostpri  = PRI_KERNEL,
    139 	.sobj_unsleep	= sleepq_unsleep,
    140 	.sobj_changepri	= sleepq_changepri,
    141 	.sobj_lendpri	= sleepq_lendpri,
    142 	.sobj_owner	= syncobj_noowner,
    143 };
    144 
    145 /* "Lightning bolt": once a second sleep address. */
    146 kcondvar_t		lbolt			__cacheline_aligned;
    147 
    148 u_int			sched_pstats_ticks	__cacheline_aligned;
    149 
    150 /* Preemption event counters. */
    151 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    152 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    153 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    154 
    155 void
    156 synch_init(void)
    157 {
    158 
    159 	cv_init(&lbolt, "lbolt");
    160 
    161 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    162 	   "kpreempt", "defer: critical section");
    163 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    164 	   "kpreempt", "defer: kernel_lock");
    165 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    166 	   "kpreempt", "immediate");
    167 }
    168 
    169 /*
    170  * OBSOLETE INTERFACE
    171  *
    172  * General sleep call.  Suspends the current LWP until a wakeup is
    173  * performed on the specified identifier.  The LWP will then be made
    174  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    175  * means no timeout).  If pri includes PCATCH flag, signals are checked
    176  * before and after sleeping, else signals are not checked.  Returns 0 if
    177  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    178  * signal needs to be delivered, ERESTART is returned if the current system
    179  * call should be restarted if possible, and EINTR is returned if the system
    180  * call should be interrupted by the signal (return EINTR).
    181  */
    182 int
    183 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	kmutex_t *mp;
    188 	bool catch_p;
    189 	int nlocks;
    190 
    191 	KASSERT((l->l_pflag & LP_INTR) == 0);
    192 	KASSERT(ident != &lbolt);
    193 	//KASSERT(KERNEL_LOCKED_P());
    194 
    195 	if (sleepq_dontsleep(l)) {
    196 		(void)sleepq_abort(NULL, 0);
    197 		return 0;
    198 	}
    199 
    200 	catch_p = priority & PCATCH;
    201 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    202 	nlocks = sleepq_enter(sq, l, mp);
    203 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    204 	return sleepq_block(timo, catch_p, &sleep_syncobj, nlocks);
    205 }
    206 
    207 int
    208 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    209 	kmutex_t *mtx)
    210 {
    211 	struct lwp *l = curlwp;
    212 	sleepq_t *sq;
    213 	kmutex_t *mp;
    214 	bool catch_p;
    215 	int error, nlocks;
    216 
    217 	KASSERT((l->l_pflag & LP_INTR) == 0);
    218 	KASSERT(ident != &lbolt);
    219 
    220 	if (sleepq_dontsleep(l)) {
    221 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    222 		return 0;
    223 	}
    224 
    225 	catch_p = priority & PCATCH;
    226 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    227 	nlocks = sleepq_enter(sq, l, mp);
    228 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
    229 	mutex_exit(mtx);
    230 	error = sleepq_block(timo, catch_p, &sleep_syncobj, nlocks);
    231 
    232 	if ((priority & PNORELOCK) == 0)
    233 		mutex_enter(mtx);
    234 
    235 	return error;
    236 }
    237 
    238 /*
    239  * General sleep call for situations where a wake-up is not expected.
    240  */
    241 int
    242 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    243 {
    244 	struct lwp *l = curlwp;
    245 	int error, nlocks;
    246 
    247 	KASSERT(timo != 0 || intr);
    248 
    249 	if (sleepq_dontsleep(l))
    250 		return sleepq_abort(NULL, 0);
    251 
    252 	if (mtx != NULL)
    253 		mutex_exit(mtx);
    254 	lwp_lock(l);
    255 	KERNEL_UNLOCK_ALL(NULL, &nlocks);
    256 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
    257 	error = sleepq_block(timo, intr, &kpause_syncobj, nlocks);
    258 	if (mtx != NULL)
    259 		mutex_enter(mtx);
    260 
    261 	return error;
    262 }
    263 
    264 /*
    265  * OBSOLETE INTERFACE
    266  *
    267  * Make all LWPs sleeping on the specified identifier runnable.
    268  */
    269 void
    270 wakeup(wchan_t ident)
    271 {
    272 	sleepq_t *sq;
    273 	kmutex_t *mp;
    274 
    275 	if (__predict_false(cold))
    276 		return;
    277 
    278 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    279 	sleepq_wake(sq, ident, (u_int)-1, mp);
    280 }
    281 
    282 /*
    283  * General yield call.  Puts the current LWP back on its run queue and
    284  * performs a context switch.
    285  */
    286 void
    287 yield(void)
    288 {
    289 	struct lwp *l = curlwp;
    290 	int nlocks;
    291 
    292 	KERNEL_UNLOCK_ALL(l, &nlocks);
    293 	lwp_lock(l);
    294 
    295 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    296 	KASSERT(l->l_stat == LSONPROC);
    297 
    298 	spc_lock(l->l_cpu);
    299 	mi_switch(l);
    300 	KERNEL_LOCK(nlocks, l);
    301 }
    302 
    303 /*
    304  * General preemption call.  Puts the current LWP back on its run queue
    305  * and performs an involuntary context switch.  Different from yield()
    306  * in that:
    307  *
    308  * - It's counted differently (involuntary vs. voluntary).
    309  * - Realtime threads go to the head of their runqueue vs. tail for yield().
    310  */
    311 void
    312 preempt(void)
    313 {
    314 	struct lwp *l = curlwp;
    315 	int nlocks;
    316 
    317 	KERNEL_UNLOCK_ALL(l, &nlocks);
    318 	lwp_lock(l);
    319 
    320 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    321 	KASSERT(l->l_stat == LSONPROC);
    322 
    323 	spc_lock(l->l_cpu);
    324 	l->l_pflag |= LP_PREEMPTING;
    325 	mi_switch(l);
    326 	KERNEL_LOCK(nlocks, l);
    327 }
    328 
    329 /*
    330  * Return true if the current LWP should yield the processor.  Intended to
    331  * be used by long-running code in kernel.
    332  */
    333 inline bool
    334 preempt_needed(void)
    335 {
    336 	lwp_t *l = curlwp;
    337 	int needed;
    338 
    339 	KPREEMPT_DISABLE(l);
    340 	needed = l->l_cpu->ci_want_resched;
    341 	KPREEMPT_ENABLE(l);
    342 
    343 	return (needed != 0);
    344 }
    345 
    346 /*
    347  * A breathing point for long running code in kernel.
    348  */
    349 void
    350 preempt_point(void)
    351 {
    352 
    353 	if (__predict_false(preempt_needed())) {
    354 		preempt();
    355 	}
    356 }
    357 
    358 /*
    359  * Handle a request made by another agent to preempt the current LWP
    360  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    361  *
    362  * Character addresses for lockstat only.
    363  */
    364 static char	kpreempt_is_disabled;
    365 static char	kernel_lock_held;
    366 static char	is_softint_lwp;
    367 static char	spl_is_raised;
    368 
    369 bool
    370 kpreempt(uintptr_t where)
    371 {
    372 	uintptr_t failed;
    373 	lwp_t *l;
    374 	int s, dop, lsflag;
    375 
    376 	l = curlwp;
    377 	failed = 0;
    378 	while ((dop = l->l_dopreempt) != 0) {
    379 		if (l->l_stat != LSONPROC) {
    380 			/*
    381 			 * About to block (or die), let it happen.
    382 			 * Doesn't really count as "preemption has
    383 			 * been blocked", since we're going to
    384 			 * context switch.
    385 			 */
    386 			atomic_swap_uint(&l->l_dopreempt, 0);
    387 			return true;
    388 		}
    389 		KASSERT((l->l_flag & LW_IDLE) == 0);
    390 		if (__predict_false(l->l_nopreempt != 0)) {
    391 			/* LWP holds preemption disabled, explicitly. */
    392 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    393 				kpreempt_ev_crit.ev_count++;
    394 			}
    395 			failed = (uintptr_t)&kpreempt_is_disabled;
    396 			break;
    397 		}
    398 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    399 			/* Can't preempt soft interrupts yet. */
    400 			atomic_swap_uint(&l->l_dopreempt, 0);
    401 			failed = (uintptr_t)&is_softint_lwp;
    402 			break;
    403 		}
    404 		s = splsched();
    405 		if (__predict_false(l->l_blcnt != 0 ||
    406 		    curcpu()->ci_biglock_wanted != NULL)) {
    407 			/* Hold or want kernel_lock, code is not MT safe. */
    408 			splx(s);
    409 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    410 				kpreempt_ev_klock.ev_count++;
    411 			}
    412 			failed = (uintptr_t)&kernel_lock_held;
    413 			break;
    414 		}
    415 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    416 			/*
    417 			 * It may be that the IPL is too high.
    418 			 * kpreempt_enter() can schedule an
    419 			 * interrupt to retry later.
    420 			 */
    421 			splx(s);
    422 			failed = (uintptr_t)&spl_is_raised;
    423 			break;
    424 		}
    425 		/* Do it! */
    426 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    427 			kpreempt_ev_immed.ev_count++;
    428 		}
    429 		lwp_lock(l);
    430 		l->l_pflag |= LP_PREEMPTING;
    431 		spc_lock(l->l_cpu);
    432 		mi_switch(l);
    433 		l->l_nopreempt++;
    434 		splx(s);
    435 
    436 		/* Take care of any MD cleanup. */
    437 		cpu_kpreempt_exit(where);
    438 		l->l_nopreempt--;
    439 	}
    440 
    441 	if (__predict_true(!failed)) {
    442 		return false;
    443 	}
    444 
    445 	/* Record preemption failure for reporting via lockstat. */
    446 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    447 	lsflag = 0;
    448 	LOCKSTAT_ENTER(lsflag);
    449 	if (__predict_false(lsflag)) {
    450 		if (where == 0) {
    451 			where = (uintptr_t)__builtin_return_address(0);
    452 		}
    453 		/* Preemption is on, might recurse, so make it atomic. */
    454 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    455 		    (void *)where) == NULL) {
    456 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    457 			l->l_pfaillock = failed;
    458 		}
    459 	}
    460 	LOCKSTAT_EXIT(lsflag);
    461 	return true;
    462 }
    463 
    464 /*
    465  * Return true if preemption is explicitly disabled.
    466  */
    467 bool
    468 kpreempt_disabled(void)
    469 {
    470 	const lwp_t *l = curlwp;
    471 
    472 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    473 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    474 	    cpu_kpreempt_disabled();
    475 }
    476 
    477 /*
    478  * Disable kernel preemption.
    479  */
    480 void
    481 kpreempt_disable(void)
    482 {
    483 
    484 	KPREEMPT_DISABLE(curlwp);
    485 }
    486 
    487 /*
    488  * Reenable kernel preemption.
    489  */
    490 void
    491 kpreempt_enable(void)
    492 {
    493 
    494 	KPREEMPT_ENABLE(curlwp);
    495 }
    496 
    497 /*
    498  * Compute the amount of time during which the current lwp was running.
    499  *
    500  * - update l_rtime unless it's an idle lwp.
    501  */
    502 
    503 void
    504 updatertime(lwp_t *l, const struct bintime *now)
    505 {
    506 	static bool backwards = false;
    507 
    508 	if (__predict_false(l->l_flag & LW_IDLE))
    509 		return;
    510 
    511 	if (__predict_false(bintimecmp(now, &l->l_stime, <)) && !backwards) {
    512 		char caller[128];
    513 
    514 #ifdef DDB
    515 		db_symstr(caller, sizeof(caller),
    516 		    (db_expr_t)(intptr_t)__builtin_return_address(0),
    517 		    DB_STGY_PROC);
    518 #else
    519 		snprintf(caller, sizeof(caller), "%p",
    520 		    __builtin_return_address(0));
    521 #endif
    522 		backwards = true;
    523 		printf("WARNING: lwp %ld (%s%s%s) flags 0x%x:"
    524 		    " timecounter went backwards"
    525 		    " from (%jd + 0x%016"PRIx64"/2^64) sec"
    526 		    " to (%jd + 0x%016"PRIx64"/2^64) sec"
    527 		    " in %s\n",
    528 		    (long)l->l_lid,
    529 		    l->l_proc->p_comm,
    530 		    l->l_name ? " " : "",
    531 		    l->l_name ? l->l_name : "",
    532 		    l->l_pflag,
    533 		    (intmax_t)l->l_stime.sec, l->l_stime.frac,
    534 		    (intmax_t)now->sec, now->frac,
    535 		    caller);
    536 	}
    537 
    538 	/* rtime += now - stime */
    539 	bintime_add(&l->l_rtime, now);
    540 	bintime_sub(&l->l_rtime, &l->l_stime);
    541 }
    542 
    543 /*
    544  * Select next LWP from the current CPU to run..
    545  */
    546 static inline lwp_t *
    547 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    548 {
    549 	lwp_t *newl;
    550 
    551 	/*
    552 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    553 	 * If no LWP is runnable, select the idle LWP.
    554 	 *
    555 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
    556 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
    557 	 * which may or may not be held here.  On exit from this code block,
    558 	 * in all cases newl is locked by spc_lwplock.
    559 	 */
    560 	newl = sched_nextlwp();
    561 	if (newl != NULL) {
    562 		sched_dequeue(newl);
    563 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    564 		KASSERT(newl->l_cpu == ci);
    565 		newl->l_stat = LSONPROC;
    566 		newl->l_pflag |= LP_RUNNING;
    567 		newl->l_boostpri = PRI_NONE;
    568 		spc->spc_curpriority = lwp_eprio(newl);
    569 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    570 		lwp_setlock(newl, spc->spc_lwplock);
    571 	} else {
    572 		/*
    573 		 * The idle LWP does not get set to LSONPROC, because
    574 		 * otherwise it screws up the output from top(1) etc.
    575 		 */
    576 		newl = ci->ci_data.cpu_idlelwp;
    577 		newl->l_pflag |= LP_RUNNING;
    578 		spc->spc_curpriority = PRI_IDLE;
    579 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    580 		    SPCF_IDLE;
    581 	}
    582 
    583 	/*
    584 	 * Only clear want_resched if there are no pending (slow) software
    585 	 * interrupts.  We can do this without an atomic, because no new
    586 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    587 	 * the update to ci_want_resched will become globally visible before
    588 	 * the release of spc_mutex becomes globally visible.
    589 	 */
    590 	if (ci->ci_data.cpu_softints == 0)
    591 		ci->ci_want_resched = 0;
    592 
    593 	return newl;
    594 }
    595 
    596 /*
    597  * The machine independent parts of context switch.
    598  *
    599  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    600  * changes its own l_cpu (that would screw up curcpu on many ports and could
    601  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    602  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
    603  * is checked under lock).
    604  */
    605 void
    606 mi_switch(lwp_t *l)
    607 {
    608 	struct cpu_info *ci;
    609 	struct schedstate_percpu *spc;
    610 	struct lwp *newl;
    611 	kmutex_t *lock;
    612 	int oldspl;
    613 	struct bintime bt;
    614 	bool returning;
    615 
    616 	KASSERT(lwp_locked(l, NULL));
    617 	KASSERT(kpreempt_disabled());
    618 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    619 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
    620 
    621 	kstack_check_magic(l);
    622 
    623 	binuptime(&bt);
    624 
    625 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    626 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    627 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    628 	ci = curcpu();
    629 	spc = &ci->ci_schedstate;
    630 	returning = false;
    631 	newl = NULL;
    632 
    633 	/*
    634 	 * If we have been asked to switch to a specific LWP, then there
    635 	 * is no need to inspect the run queues.  If a soft interrupt is
    636 	 * blocking, then return to the interrupted thread without adjusting
    637 	 * VM context or its start time: neither have been changed in order
    638 	 * to take the interrupt.
    639 	 */
    640 	if (l->l_switchto != NULL) {
    641 		if ((l->l_pflag & LP_INTR) != 0) {
    642 			returning = true;
    643 			softint_block(l);
    644 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    645 				updatertime(l, &bt);
    646 		}
    647 		newl = l->l_switchto;
    648 		l->l_switchto = NULL;
    649 	}
    650 #ifndef __HAVE_FAST_SOFTINTS
    651 	else if (ci->ci_data.cpu_softints != 0) {
    652 		/* There are pending soft interrupts, so pick one. */
    653 		newl = softint_picklwp();
    654 		newl->l_stat = LSONPROC;
    655 		newl->l_pflag |= LP_RUNNING;
    656 	}
    657 #endif	/* !__HAVE_FAST_SOFTINTS */
    658 
    659 	/*
    660 	 * If on the CPU and we have gotten this far, then we must yield.
    661 	 */
    662 	if (l->l_stat == LSONPROC && l != newl) {
    663 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    664 		KASSERT((l->l_flag & LW_IDLE) == 0);
    665 		l->l_stat = LSRUN;
    666 		lwp_setlock(l, spc->spc_mutex);
    667 		sched_enqueue(l);
    668 		sched_preempted(l);
    669 
    670 		/*
    671 		 * Handle migration.  Note that "migrating LWP" may
    672 		 * be reset here, if interrupt/preemption happens
    673 		 * early in idle LWP.
    674 		 */
    675 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    676 			KASSERT((l->l_pflag & LP_INTR) == 0);
    677 			spc->spc_migrating = l;
    678 		}
    679 	}
    680 
    681 	/* Pick new LWP to run. */
    682 	if (newl == NULL) {
    683 		newl = nextlwp(ci, spc);
    684 	}
    685 
    686 	/* Items that must be updated with the CPU locked. */
    687 	if (!returning) {
    688 		/* Count time spent in current system call */
    689 		SYSCALL_TIME_SLEEP(l);
    690 
    691 		updatertime(l, &bt);
    692 
    693 		/* Update the new LWP's start time. */
    694 		newl->l_stime = bt;
    695 
    696 		/*
    697 		 * ci_curlwp changes when a fast soft interrupt occurs.
    698 		 * We use ci_onproc to keep track of which kernel or
    699 		 * user thread is running 'underneath' the software
    700 		 * interrupt.  This is important for time accounting,
    701 		 * itimers and forcing user threads to preempt (aston).
    702 		 */
    703 		ci->ci_onproc = newl;
    704 	}
    705 
    706 	/*
    707 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    708 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    709 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    710 	 * cleared by the LWP itself (us) with atomics when not under lock.
    711 	 */
    712 	l->l_dopreempt = 0;
    713 	if (__predict_false(l->l_pfailaddr != 0)) {
    714 		LOCKSTAT_FLAG(lsflag);
    715 		LOCKSTAT_ENTER(lsflag);
    716 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    717 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    718 		    1, l->l_pfailtime, l->l_pfailaddr);
    719 		LOCKSTAT_EXIT(lsflag);
    720 		l->l_pfailtime = 0;
    721 		l->l_pfaillock = 0;
    722 		l->l_pfailaddr = 0;
    723 	}
    724 
    725 	if (l != newl) {
    726 		struct lwp *prevlwp;
    727 
    728 		/* Release all locks, but leave the current LWP locked */
    729 		if (l->l_mutex == spc->spc_mutex) {
    730 			/*
    731 			 * Drop spc_lwplock, if the current LWP has been moved
    732 			 * to the run queue (it is now locked by spc_mutex).
    733 			 */
    734 			mutex_spin_exit(spc->spc_lwplock);
    735 		} else {
    736 			/*
    737 			 * Otherwise, drop the spc_mutex, we are done with the
    738 			 * run queues.
    739 			 */
    740 			mutex_spin_exit(spc->spc_mutex);
    741 		}
    742 
    743 		/* We're down to only one lock, so do debug checks. */
    744 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    745 
    746 		/* Count the context switch. */
    747 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    748 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    749 			l->l_ru.ru_nivcsw++;
    750 			l->l_pflag &= ~LP_PREEMPTING;
    751 		} else {
    752 			l->l_ru.ru_nvcsw++;
    753 		}
    754 
    755 		/*
    756 		 * Increase the count of spin-mutexes before the release
    757 		 * of the last lock - we must remain at IPL_SCHED after
    758 		 * releasing the lock.
    759 		 */
    760 		KASSERTMSG(ci->ci_mtx_count == -1,
    761 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    762 		    "(block with spin-mutex held)",
    763 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    764 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    765 		ci->ci_mtx_count = -2;
    766 
    767 		/* Update status for lwpctl, if present. */
    768 		if (l->l_lwpctl != NULL) {
    769 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    770 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    771 		}
    772 
    773 		/*
    774 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    775 		 * other side to unlock - we're returning into an assembly
    776 		 * trampoline.  Unlock now.  This is safe because this is a
    777 		 * kernel LWP and is bound to current CPU: the worst anyone
    778 		 * else will do to it, is to put it back onto this CPU's run
    779 		 * queue (and the CPU is busy here right now!).
    780 		 */
    781 		if (returning) {
    782 			/* Keep IPL_SCHED after this; MD code will fix up. */
    783 			l->l_pflag &= ~LP_RUNNING;
    784 			lwp_unlock(l);
    785 		} else {
    786 			/* A normal LWP: save old VM context. */
    787 			pmap_deactivate(l);
    788 		}
    789 
    790 		/*
    791 		 * If DTrace has set the active vtime enum to anything
    792 		 * other than INACTIVE (0), then it should have set the
    793 		 * function to call.
    794 		 */
    795 		if (__predict_false(dtrace_vtime_active)) {
    796 			(*dtrace_vtime_switch_func)(newl);
    797 		}
    798 
    799 		/*
    800 		 * We must ensure not to come here from inside a read section.
    801 		 */
    802 		KASSERT(pserialize_not_in_read_section());
    803 
    804 		/* Switch to the new LWP.. */
    805 #ifdef MULTIPROCESSOR
    806 		KASSERT(curlwp == ci->ci_curlwp);
    807 #endif
    808 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    809 		prevlwp = cpu_switchto(l, newl, returning);
    810 		ci = curcpu();
    811 #ifdef MULTIPROCESSOR
    812 		KASSERT(curlwp == ci->ci_curlwp);
    813 #endif
    814 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    815 		    l, curlwp, prevlwp);
    816 		KASSERT(prevlwp != NULL);
    817 		KASSERT(l->l_cpu == ci);
    818 		KASSERT(ci->ci_mtx_count == -2);
    819 
    820 		/*
    821 		 * Immediately mark the previous LWP as no longer running
    822 		 * and unlock (to keep lock wait times short as possible).
    823 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
    824 		 * don't touch after clearing LP_RUNNING as it could be
    825 		 * reaped by another CPU.  Issue a memory barrier to ensure
    826 		 * this.
    827 		 *
    828 		 * atomic_store_release matches atomic_load_acquire in
    829 		 * lwp_free.
    830 		 */
    831 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
    832 		lock = prevlwp->l_mutex;
    833 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
    834 			atomic_store_release(&prevlwp->l_pflag,
    835 			    prevlwp->l_pflag & ~LP_RUNNING);
    836 		} else {
    837 			prevlwp->l_pflag &= ~LP_RUNNING;
    838 		}
    839 		mutex_spin_exit(lock);
    840 
    841 		/*
    842 		 * Switched away - we have new curlwp.
    843 		 * Restore VM context and IPL.
    844 		 */
    845 		pmap_activate(l);
    846 		pcu_switchpoint(l);
    847 
    848 		/* Update status for lwpctl, if present. */
    849 		if (l->l_lwpctl != NULL) {
    850 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    851 			l->l_lwpctl->lc_pctr++;
    852 		}
    853 
    854 		/*
    855 		 * Normalize the spin mutex count and restore the previous
    856 		 * SPL.  Note that, unless the caller disabled preemption,
    857 		 * we can be preempted at any time after this splx().
    858 		 */
    859 		KASSERT(l->l_cpu == ci);
    860 		KASSERT(ci->ci_mtx_count == -1);
    861 		ci->ci_mtx_count = 0;
    862 		splx(oldspl);
    863 	} else {
    864 		/* Nothing to do - just unlock and return. */
    865 		mutex_spin_exit(spc->spc_mutex);
    866 		l->l_pflag &= ~LP_PREEMPTING;
    867 		lwp_unlock(l);
    868 	}
    869 
    870 	KASSERT(l == curlwp);
    871 	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
    872 
    873 	SYSCALL_TIME_WAKEUP(l);
    874 	LOCKDEBUG_BARRIER(NULL, 1);
    875 }
    876 
    877 /*
    878  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    879  *
    880  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    881  */
    882 void
    883 setrunnable(struct lwp *l)
    884 {
    885 	struct proc *p = l->l_proc;
    886 	struct cpu_info *ci;
    887 	kmutex_t *oldlock;
    888 
    889 	KASSERT((l->l_flag & LW_IDLE) == 0);
    890 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    891 	KASSERT(mutex_owned(p->p_lock));
    892 	KASSERT(lwp_locked(l, NULL));
    893 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    894 
    895 	switch (l->l_stat) {
    896 	case LSSTOP:
    897 		/*
    898 		 * If we're being traced (possibly because someone attached us
    899 		 * while we were stopped), check for a signal from the debugger.
    900 		 */
    901 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    902 			signotify(l);
    903 		p->p_nrlwps++;
    904 		break;
    905 	case LSSUSPENDED:
    906 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    907 		l->l_flag &= ~LW_WSUSPEND;
    908 		p->p_nrlwps++;
    909 		cv_broadcast(&p->p_lwpcv);
    910 		break;
    911 	case LSSLEEP:
    912 		KASSERT(l->l_wchan != NULL);
    913 		break;
    914 	case LSIDL:
    915 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    916 		break;
    917 	default:
    918 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    919 	}
    920 
    921 	/*
    922 	 * If the LWP was sleeping, start it again.
    923 	 */
    924 	if (l->l_wchan != NULL) {
    925 		l->l_stat = LSSLEEP;
    926 		/* lwp_unsleep() will release the lock. */
    927 		lwp_unsleep(l, true);
    928 		return;
    929 	}
    930 
    931 	/*
    932 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    933 	 * about to call mi_switch(), in which case it will yield.
    934 	 */
    935 	if ((l->l_pflag & LP_RUNNING) != 0) {
    936 		l->l_stat = LSONPROC;
    937 		l->l_slptime = 0;
    938 		lwp_unlock(l);
    939 		return;
    940 	}
    941 
    942 	/*
    943 	 * Look for a CPU to run.
    944 	 * Set the LWP runnable.
    945 	 */
    946 	ci = sched_takecpu(l);
    947 	l->l_cpu = ci;
    948 	spc_lock(ci);
    949 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    950 	sched_setrunnable(l);
    951 	l->l_stat = LSRUN;
    952 	l->l_slptime = 0;
    953 	sched_enqueue(l);
    954 	sched_resched_lwp(l, true);
    955 	/* SPC & LWP now unlocked. */
    956 	mutex_spin_exit(oldlock);
    957 }
    958 
    959 /*
    960  * suspendsched:
    961  *
    962  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    963  */
    964 void
    965 suspendsched(void)
    966 {
    967 	CPU_INFO_ITERATOR cii;
    968 	struct cpu_info *ci;
    969 	struct lwp *l;
    970 	struct proc *p;
    971 
    972 	/*
    973 	 * We do this by process in order not to violate the locking rules.
    974 	 */
    975 	mutex_enter(&proc_lock);
    976 	PROCLIST_FOREACH(p, &allproc) {
    977 		mutex_enter(p->p_lock);
    978 		if ((p->p_flag & PK_SYSTEM) != 0) {
    979 			mutex_exit(p->p_lock);
    980 			continue;
    981 		}
    982 
    983 		if (p->p_stat != SSTOP) {
    984 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    985 				p->p_pptr->p_nstopchild++;
    986 				p->p_waited = 0;
    987 			}
    988 			p->p_stat = SSTOP;
    989 		}
    990 
    991 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    992 			if (l == curlwp)
    993 				continue;
    994 
    995 			lwp_lock(l);
    996 
    997 			/*
    998 			 * Set L_WREBOOT so that the LWP will suspend itself
    999 			 * when it tries to return to user mode.  We want to
   1000 			 * try and get to get as many LWPs as possible to
   1001 			 * the user / kernel boundary, so that they will
   1002 			 * release any locks that they hold.
   1003 			 */
   1004 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1005 
   1006 			if (l->l_stat == LSSLEEP &&
   1007 			    (l->l_flag & LW_SINTR) != 0) {
   1008 				/* setrunnable() will release the lock. */
   1009 				setrunnable(l);
   1010 				continue;
   1011 			}
   1012 
   1013 			lwp_unlock(l);
   1014 		}
   1015 
   1016 		mutex_exit(p->p_lock);
   1017 	}
   1018 	mutex_exit(&proc_lock);
   1019 
   1020 	/*
   1021 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1022 	 * They'll trap into the kernel and suspend themselves in userret().
   1023 	 *
   1024 	 * Unusually, we don't hold any other scheduler object locked, which
   1025 	 * would keep preemption off for sched_resched_cpu(), so disable it
   1026 	 * explicitly.
   1027 	 */
   1028 	kpreempt_disable();
   1029 	for (CPU_INFO_FOREACH(cii, ci)) {
   1030 		spc_lock(ci);
   1031 		sched_resched_cpu(ci, PRI_KERNEL, true);
   1032 		/* spc now unlocked */
   1033 	}
   1034 	kpreempt_enable();
   1035 }
   1036 
   1037 /*
   1038  * sched_unsleep:
   1039  *
   1040  *	The is called when the LWP has not been awoken normally but instead
   1041  *	interrupted: for example, if the sleep timed out.  Because of this,
   1042  *	it's not a valid action for running or idle LWPs.
   1043  */
   1044 static void
   1045 sched_unsleep(struct lwp *l, bool cleanup)
   1046 {
   1047 
   1048 	lwp_unlock(l);
   1049 	panic("sched_unsleep");
   1050 }
   1051 
   1052 static void
   1053 sched_changepri(struct lwp *l, pri_t pri)
   1054 {
   1055 	struct schedstate_percpu *spc;
   1056 	struct cpu_info *ci;
   1057 
   1058 	KASSERT(lwp_locked(l, NULL));
   1059 
   1060 	ci = l->l_cpu;
   1061 	spc = &ci->ci_schedstate;
   1062 
   1063 	if (l->l_stat == LSRUN) {
   1064 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1065 		sched_dequeue(l);
   1066 		l->l_priority = pri;
   1067 		sched_enqueue(l);
   1068 		sched_resched_lwp(l, false);
   1069 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1070 		/* On priority drop, only evict realtime LWPs. */
   1071 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1072 		l->l_priority = pri;
   1073 		spc_lock(ci);
   1074 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1075 		/* spc now unlocked */
   1076 	} else {
   1077 		l->l_priority = pri;
   1078 	}
   1079 }
   1080 
   1081 static void
   1082 sched_lendpri(struct lwp *l, pri_t pri)
   1083 {
   1084 	struct schedstate_percpu *spc;
   1085 	struct cpu_info *ci;
   1086 
   1087 	KASSERT(lwp_locked(l, NULL));
   1088 
   1089 	ci = l->l_cpu;
   1090 	spc = &ci->ci_schedstate;
   1091 
   1092 	if (l->l_stat == LSRUN) {
   1093 		KASSERT(lwp_locked(l, spc->spc_mutex));
   1094 		sched_dequeue(l);
   1095 		l->l_inheritedprio = pri;
   1096 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1097 		sched_enqueue(l);
   1098 		sched_resched_lwp(l, false);
   1099 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1100 		/* On priority drop, only evict realtime LWPs. */
   1101 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1102 		l->l_inheritedprio = pri;
   1103 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1104 		spc_lock(ci);
   1105 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1106 		/* spc now unlocked */
   1107 	} else {
   1108 		l->l_inheritedprio = pri;
   1109 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1110 	}
   1111 }
   1112 
   1113 struct lwp *
   1114 syncobj_noowner(wchan_t wchan)
   1115 {
   1116 
   1117 	return NULL;
   1118 }
   1119 
   1120 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1121 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1122 
   1123 /*
   1124  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1125  * 5 second intervals.
   1126  */
   1127 static const fixpt_t cexp[ ] = {
   1128 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1129 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1130 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1131 };
   1132 
   1133 /*
   1134  * sched_pstats:
   1135  *
   1136  * => Update process statistics and check CPU resource allocation.
   1137  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1138  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1139  */
   1140 void
   1141 sched_pstats(void)
   1142 {
   1143 	struct loadavg *avg = &averunnable;
   1144 	const int clkhz = (stathz != 0 ? stathz : hz);
   1145 	static bool backwardslwp = false;
   1146 	static bool backwardsproc = false;
   1147 	static u_int lavg_count = 0;
   1148 	struct proc *p;
   1149 	int nrun;
   1150 
   1151 	sched_pstats_ticks++;
   1152 	if (++lavg_count >= 5) {
   1153 		lavg_count = 0;
   1154 		nrun = 0;
   1155 	}
   1156 	mutex_enter(&proc_lock);
   1157 	PROCLIST_FOREACH(p, &allproc) {
   1158 		struct lwp *l;
   1159 		struct rlimit *rlim;
   1160 		time_t runtm;
   1161 		int sig;
   1162 
   1163 		/* Increment sleep time (if sleeping), ignore overflow. */
   1164 		mutex_enter(p->p_lock);
   1165 		runtm = p->p_rtime.sec;
   1166 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1167 			fixpt_t lpctcpu;
   1168 			u_int lcpticks;
   1169 
   1170 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1171 				continue;
   1172 			lwp_lock(l);
   1173 			if (__predict_false(l->l_rtime.sec < 0) &&
   1174 			    !backwardslwp) {
   1175 				backwardslwp = true;
   1176 				printf("WARNING: lwp %ld (%s%s%s): "
   1177 				    "negative runtime: "
   1178 				    "(%jd + 0x%016"PRIx64"/2^64) sec\n",
   1179 				    (long)l->l_lid,
   1180 				    l->l_proc->p_comm,
   1181 				    l->l_name ? " " : "",
   1182 				    l->l_name ? l->l_name : "",
   1183 				    (intmax_t)l->l_rtime.sec,
   1184 				    l->l_rtime.frac);
   1185 			}
   1186 			runtm += l->l_rtime.sec;
   1187 			l->l_swtime++;
   1188 			sched_lwp_stats(l);
   1189 
   1190 			/* For load average calculation. */
   1191 			if (__predict_false(lavg_count == 0) &&
   1192 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1193 				switch (l->l_stat) {
   1194 				case LSSLEEP:
   1195 					if (l->l_slptime > 1) {
   1196 						break;
   1197 					}
   1198 					/* FALLTHROUGH */
   1199 				case LSRUN:
   1200 				case LSONPROC:
   1201 				case LSIDL:
   1202 					nrun++;
   1203 				}
   1204 			}
   1205 			lwp_unlock(l);
   1206 
   1207 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1208 			if (l->l_slptime != 0)
   1209 				continue;
   1210 
   1211 			lpctcpu = l->l_pctcpu;
   1212 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1213 			lpctcpu += ((FSCALE - ccpu) *
   1214 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1215 			l->l_pctcpu = lpctcpu;
   1216 		}
   1217 		/* Calculating p_pctcpu only for ps(1) */
   1218 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1219 
   1220 		if (__predict_false(runtm < 0)) {
   1221 			if (!backwardsproc) {
   1222 				backwardsproc = true;
   1223 				printf("WARNING: pid %ld (%s): "
   1224 				    "negative runtime; "
   1225 				    "monotonic clock has gone backwards\n",
   1226 				    (long)p->p_pid, p->p_comm);
   1227 			}
   1228 			mutex_exit(p->p_lock);
   1229 			continue;
   1230 		}
   1231 
   1232 		/*
   1233 		 * Check if the process exceeds its CPU resource allocation.
   1234 		 * If over the hard limit, kill it with SIGKILL.
   1235 		 * If over the soft limit, send SIGXCPU and raise
   1236 		 * the soft limit a little.
   1237 		 */
   1238 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1239 		sig = 0;
   1240 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1241 			if (runtm >= rlim->rlim_max) {
   1242 				sig = SIGKILL;
   1243 				log(LOG_NOTICE,
   1244 				    "pid %d, command %s, is killed: %s\n",
   1245 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1246 				uprintf("pid %d, command %s, is killed: %s\n",
   1247 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1248 			} else {
   1249 				sig = SIGXCPU;
   1250 				if (rlim->rlim_cur < rlim->rlim_max)
   1251 					rlim->rlim_cur += 5;
   1252 			}
   1253 		}
   1254 		mutex_exit(p->p_lock);
   1255 		if (__predict_false(sig)) {
   1256 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1257 			psignal(p, sig);
   1258 		}
   1259 	}
   1260 
   1261 	/* Load average calculation. */
   1262 	if (__predict_false(lavg_count == 0)) {
   1263 		int i;
   1264 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1265 		for (i = 0; i < __arraycount(cexp); i++) {
   1266 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1267 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1268 		}
   1269 	}
   1270 
   1271 	/* Lightning bolt. */
   1272 	cv_broadcast(&lbolt);
   1273 
   1274 	mutex_exit(&proc_lock);
   1275 }
   1276