kern_synch.c revision 1.365 1 /* $NetBSD: kern_synch.c,v 1.365 2023/10/15 10:29:10 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.365 2023/10/15 10:29:10 riastradh Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_ddb.h"
76 #include "opt_dtrace.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/dtrace_bsd.h>
85 #include <sys/evcnt.h>
86 #include <sys/intr.h>
87 #include <sys/kernel.h>
88 #include <sys/lockdebug.h>
89 #include <sys/lwpctl.h>
90 #include <sys/proc.h>
91 #include <sys/pserialize.h>
92 #include <sys/resource.h>
93 #include <sys/resourcevar.h>
94 #include <sys/rwlock.h>
95 #include <sys/sched.h>
96 #include <sys/sleepq.h>
97 #include <sys/syncobj.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/syslog.h>
100 #include <sys/systm.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <dev/lockstat.h>
105
106 int dtrace_vtime_active=0;
107 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
108
109 #ifdef DDB
110 #include <ddb/ddb.h>
111 #endif
112
113 static void sched_unsleep(struct lwp *, bool);
114 static void sched_changepri(struct lwp *, pri_t);
115 static void sched_lendpri(struct lwp *, pri_t);
116
117 syncobj_t sleep_syncobj = {
118 .sobj_name = "sleep",
119 .sobj_flag = SOBJ_SLEEPQ_SORTED,
120 .sobj_boostpri = PRI_KERNEL,
121 .sobj_unsleep = sleepq_unsleep,
122 .sobj_changepri = sleepq_changepri,
123 .sobj_lendpri = sleepq_lendpri,
124 .sobj_owner = syncobj_noowner,
125 };
126
127 syncobj_t sched_syncobj = {
128 .sobj_name = "sched",
129 .sobj_flag = SOBJ_SLEEPQ_SORTED,
130 .sobj_boostpri = PRI_USER,
131 .sobj_unsleep = sched_unsleep,
132 .sobj_changepri = sched_changepri,
133 .sobj_lendpri = sched_lendpri,
134 .sobj_owner = syncobj_noowner,
135 };
136
137 syncobj_t kpause_syncobj = {
138 .sobj_name = "kpause",
139 .sobj_flag = SOBJ_SLEEPQ_NULL,
140 .sobj_boostpri = PRI_KERNEL,
141 .sobj_unsleep = sleepq_unsleep,
142 .sobj_changepri = sleepq_changepri,
143 .sobj_lendpri = sleepq_lendpri,
144 .sobj_owner = syncobj_noowner,
145 };
146
147 /* "Lightning bolt": once a second sleep address. */
148 kcondvar_t lbolt __cacheline_aligned;
149
150 u_int sched_pstats_ticks __cacheline_aligned;
151
152 /* Preemption event counters. */
153 static struct evcnt kpreempt_ev_crit __cacheline_aligned;
154 static struct evcnt kpreempt_ev_klock __cacheline_aligned;
155 static struct evcnt kpreempt_ev_immed __cacheline_aligned;
156
157 void
158 synch_init(void)
159 {
160
161 cv_init(&lbolt, "lbolt");
162
163 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
164 "kpreempt", "defer: critical section");
165 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
166 "kpreempt", "defer: kernel_lock");
167 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
168 "kpreempt", "immediate");
169 }
170
171 /*
172 * OBSOLETE INTERFACE
173 *
174 * General sleep call. Suspends the current LWP until a wakeup is
175 * performed on the specified identifier. The LWP will then be made
176 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
177 * means no timeout). If pri includes PCATCH flag, signals are checked
178 * before and after sleeping, else signals are not checked. Returns 0 if
179 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
180 * signal needs to be delivered, ERESTART is returned if the current system
181 * call should be restarted if possible, and EINTR is returned if the system
182 * call should be interrupted by the signal (return EINTR).
183 */
184 int
185 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
186 {
187 struct lwp *l = curlwp;
188 sleepq_t *sq;
189 kmutex_t *mp;
190 bool catch_p;
191 int nlocks;
192
193 KASSERT((l->l_pflag & LP_INTR) == 0);
194 KASSERT(ident != &lbolt);
195 //KASSERT(KERNEL_LOCKED_P());
196
197 if (sleepq_dontsleep(l)) {
198 (void)sleepq_abort(NULL, 0);
199 return 0;
200 }
201
202 catch_p = priority & PCATCH;
203 sq = sleeptab_lookup(&sleeptab, ident, &mp);
204 nlocks = sleepq_enter(sq, l, mp);
205 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
206 return sleepq_block(timo, catch_p, &sleep_syncobj, nlocks);
207 }
208
209 int
210 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
211 kmutex_t *mtx)
212 {
213 struct lwp *l = curlwp;
214 sleepq_t *sq;
215 kmutex_t *mp;
216 bool catch_p;
217 int error, nlocks;
218
219 KASSERT((l->l_pflag & LP_INTR) == 0);
220 KASSERT(ident != &lbolt);
221
222 if (sleepq_dontsleep(l)) {
223 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
224 return 0;
225 }
226
227 catch_p = priority & PCATCH;
228 sq = sleeptab_lookup(&sleeptab, ident, &mp);
229 nlocks = sleepq_enter(sq, l, mp);
230 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
231 mutex_exit(mtx);
232 error = sleepq_block(timo, catch_p, &sleep_syncobj, nlocks);
233
234 if ((priority & PNORELOCK) == 0)
235 mutex_enter(mtx);
236
237 return error;
238 }
239
240 /*
241 * General sleep call for situations where a wake-up is not expected.
242 */
243 int
244 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
245 {
246 struct lwp *l = curlwp;
247 int error, nlocks;
248
249 KASSERT(timo != 0 || intr);
250
251 if (sleepq_dontsleep(l))
252 return sleepq_abort(NULL, 0);
253
254 if (mtx != NULL)
255 mutex_exit(mtx);
256 nlocks = sleepq_enter(NULL, l, NULL);
257 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
258 error = sleepq_block(timo, intr, &kpause_syncobj, nlocks);
259 if (mtx != NULL)
260 mutex_enter(mtx);
261
262 return error;
263 }
264
265 /*
266 * OBSOLETE INTERFACE
267 *
268 * Make all LWPs sleeping on the specified identifier runnable.
269 */
270 void
271 wakeup(wchan_t ident)
272 {
273 sleepq_t *sq;
274 kmutex_t *mp;
275
276 if (__predict_false(cold))
277 return;
278
279 sq = sleeptab_lookup(&sleeptab, ident, &mp);
280 sleepq_wake(sq, ident, (u_int)-1, mp);
281 }
282
283 /*
284 * General yield call. Puts the current LWP back on its run queue and
285 * performs a context switch.
286 */
287 void
288 yield(void)
289 {
290 struct lwp *l = curlwp;
291 int nlocks;
292
293 KERNEL_UNLOCK_ALL(l, &nlocks);
294 lwp_lock(l);
295
296 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
297 KASSERT(l->l_stat == LSONPROC);
298
299 spc_lock(l->l_cpu);
300 mi_switch(l);
301 KERNEL_LOCK(nlocks, l);
302 }
303
304 /*
305 * General preemption call. Puts the current LWP back on its run queue
306 * and performs an involuntary context switch. Different from yield()
307 * in that:
308 *
309 * - It's counted differently (involuntary vs. voluntary).
310 * - Realtime threads go to the head of their runqueue vs. tail for yield().
311 */
312 void
313 preempt(void)
314 {
315 struct lwp *l = curlwp;
316 int nlocks;
317
318 KERNEL_UNLOCK_ALL(l, &nlocks);
319 lwp_lock(l);
320
321 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
322 KASSERT(l->l_stat == LSONPROC);
323
324 spc_lock(l->l_cpu);
325 l->l_pflag |= LP_PREEMPTING;
326 mi_switch(l);
327 KERNEL_LOCK(nlocks, l);
328 }
329
330 /*
331 * Return true if the current LWP should yield the processor. Intended to
332 * be used by long-running code in kernel.
333 */
334 inline bool
335 preempt_needed(void)
336 {
337 lwp_t *l = curlwp;
338 int needed;
339
340 KPREEMPT_DISABLE(l);
341 needed = l->l_cpu->ci_want_resched;
342 KPREEMPT_ENABLE(l);
343
344 return (needed != 0);
345 }
346
347 /*
348 * A breathing point for long running code in kernel.
349 */
350 void
351 preempt_point(void)
352 {
353
354 if (__predict_false(preempt_needed())) {
355 preempt();
356 }
357 }
358
359 /*
360 * Handle a request made by another agent to preempt the current LWP
361 * in-kernel. Usually called when l_dopreempt may be non-zero.
362 *
363 * Character addresses for lockstat only.
364 */
365 static char kpreempt_is_disabled;
366 static char kernel_lock_held;
367 static char is_softint_lwp;
368 static char spl_is_raised;
369
370 bool
371 kpreempt(uintptr_t where)
372 {
373 uintptr_t failed;
374 lwp_t *l;
375 int s, dop, lsflag;
376
377 l = curlwp;
378 failed = 0;
379 while ((dop = l->l_dopreempt) != 0) {
380 if (l->l_stat != LSONPROC) {
381 /*
382 * About to block (or die), let it happen.
383 * Doesn't really count as "preemption has
384 * been blocked", since we're going to
385 * context switch.
386 */
387 atomic_swap_uint(&l->l_dopreempt, 0);
388 return true;
389 }
390 KASSERT((l->l_flag & LW_IDLE) == 0);
391 if (__predict_false(l->l_nopreempt != 0)) {
392 /* LWP holds preemption disabled, explicitly. */
393 if ((dop & DOPREEMPT_COUNTED) == 0) {
394 kpreempt_ev_crit.ev_count++;
395 }
396 failed = (uintptr_t)&kpreempt_is_disabled;
397 break;
398 }
399 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
400 /* Can't preempt soft interrupts yet. */
401 atomic_swap_uint(&l->l_dopreempt, 0);
402 failed = (uintptr_t)&is_softint_lwp;
403 break;
404 }
405 s = splsched();
406 if (__predict_false(l->l_blcnt != 0 ||
407 curcpu()->ci_biglock_wanted != NULL)) {
408 /* Hold or want kernel_lock, code is not MT safe. */
409 splx(s);
410 if ((dop & DOPREEMPT_COUNTED) == 0) {
411 kpreempt_ev_klock.ev_count++;
412 }
413 failed = (uintptr_t)&kernel_lock_held;
414 break;
415 }
416 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
417 /*
418 * It may be that the IPL is too high.
419 * kpreempt_enter() can schedule an
420 * interrupt to retry later.
421 */
422 splx(s);
423 failed = (uintptr_t)&spl_is_raised;
424 break;
425 }
426 /* Do it! */
427 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
428 kpreempt_ev_immed.ev_count++;
429 }
430 lwp_lock(l);
431 l->l_pflag |= LP_PREEMPTING;
432 spc_lock(l->l_cpu);
433 mi_switch(l);
434 l->l_nopreempt++;
435 splx(s);
436
437 /* Take care of any MD cleanup. */
438 cpu_kpreempt_exit(where);
439 l->l_nopreempt--;
440 }
441
442 if (__predict_true(!failed)) {
443 return false;
444 }
445
446 /* Record preemption failure for reporting via lockstat. */
447 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
448 lsflag = 0;
449 LOCKSTAT_ENTER(lsflag);
450 if (__predict_false(lsflag)) {
451 if (where == 0) {
452 where = (uintptr_t)__builtin_return_address(0);
453 }
454 /* Preemption is on, might recurse, so make it atomic. */
455 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
456 (void *)where) == NULL) {
457 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
458 l->l_pfaillock = failed;
459 }
460 }
461 LOCKSTAT_EXIT(lsflag);
462 return true;
463 }
464
465 /*
466 * Return true if preemption is explicitly disabled.
467 */
468 bool
469 kpreempt_disabled(void)
470 {
471 const lwp_t *l = curlwp;
472
473 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
474 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
475 cpu_kpreempt_disabled();
476 }
477
478 /*
479 * Disable kernel preemption.
480 */
481 void
482 kpreempt_disable(void)
483 {
484
485 KPREEMPT_DISABLE(curlwp);
486 }
487
488 /*
489 * Reenable kernel preemption.
490 */
491 void
492 kpreempt_enable(void)
493 {
494
495 KPREEMPT_ENABLE(curlwp);
496 }
497
498 /*
499 * Compute the amount of time during which the current lwp was running.
500 *
501 * - update l_rtime unless it's an idle lwp.
502 */
503
504 void
505 updatertime(lwp_t *l, const struct bintime *now)
506 {
507 static bool backwards = false;
508
509 if (__predict_false(l->l_flag & LW_IDLE))
510 return;
511
512 if (__predict_false(bintimecmp(now, &l->l_stime, <)) && !backwards) {
513 char caller[128];
514
515 #ifdef DDB
516 db_symstr(caller, sizeof(caller),
517 (db_expr_t)(intptr_t)__builtin_return_address(0),
518 DB_STGY_PROC);
519 #else
520 snprintf(caller, sizeof(caller), "%p",
521 __builtin_return_address(0));
522 #endif
523 backwards = true;
524 printf("WARNING: lwp %ld (%s%s%s) flags 0x%x:"
525 " timecounter went backwards"
526 " from (%jd + 0x%016"PRIx64"/2^64) sec"
527 " to (%jd + 0x%016"PRIx64"/2^64) sec"
528 " in %s\n",
529 (long)l->l_lid,
530 l->l_proc->p_comm,
531 l->l_name ? " " : "",
532 l->l_name ? l->l_name : "",
533 l->l_pflag,
534 (intmax_t)l->l_stime.sec, l->l_stime.frac,
535 (intmax_t)now->sec, now->frac,
536 caller);
537 }
538
539 /* rtime += now - stime */
540 bintime_add(&l->l_rtime, now);
541 bintime_sub(&l->l_rtime, &l->l_stime);
542 }
543
544 /*
545 * Select next LWP from the current CPU to run..
546 */
547 static inline lwp_t *
548 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
549 {
550 lwp_t *newl;
551
552 /*
553 * Let sched_nextlwp() select the LWP to run the CPU next.
554 * If no LWP is runnable, select the idle LWP.
555 *
556 * On arrival here LWPs on a run queue are locked by spc_mutex which
557 * is currently held. Idle LWPs are always locked by spc_lwplock,
558 * which may or may not be held here. On exit from this code block,
559 * in all cases newl is locked by spc_lwplock.
560 */
561 newl = sched_nextlwp();
562 if (newl != NULL) {
563 sched_dequeue(newl);
564 KASSERT(lwp_locked(newl, spc->spc_mutex));
565 KASSERT(newl->l_cpu == ci);
566 newl->l_stat = LSONPROC;
567 newl->l_pflag |= LP_RUNNING;
568 newl->l_boostpri = PRI_NONE;
569 spc->spc_curpriority = lwp_eprio(newl);
570 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
571 lwp_setlock(newl, spc->spc_lwplock);
572 } else {
573 /*
574 * The idle LWP does not get set to LSONPROC, because
575 * otherwise it screws up the output from top(1) etc.
576 */
577 newl = ci->ci_data.cpu_idlelwp;
578 newl->l_pflag |= LP_RUNNING;
579 spc->spc_curpriority = PRI_IDLE;
580 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
581 SPCF_IDLE;
582 }
583
584 /*
585 * Only clear want_resched if there are no pending (slow) software
586 * interrupts. We can do this without an atomic, because no new
587 * LWPs can appear in the queue due to our hold on spc_mutex, and
588 * the update to ci_want_resched will become globally visible before
589 * the release of spc_mutex becomes globally visible.
590 */
591 if (ci->ci_data.cpu_softints == 0)
592 ci->ci_want_resched = 0;
593
594 return newl;
595 }
596
597 /*
598 * The machine independent parts of context switch.
599 *
600 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
601 * changes its own l_cpu (that would screw up curcpu on many ports and could
602 * cause all kinds of other evil stuff). l_cpu is always changed by some
603 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
604 * is checked under lock).
605 */
606 void
607 mi_switch(lwp_t *l)
608 {
609 struct cpu_info *ci;
610 struct schedstate_percpu *spc;
611 struct lwp *newl;
612 kmutex_t *lock;
613 int oldspl;
614 struct bintime bt;
615 bool returning;
616
617 KASSERT(lwp_locked(l, NULL));
618 KASSERT(kpreempt_disabled());
619 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
620 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
621
622 kstack_check_magic(l);
623
624 binuptime(&bt);
625
626 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
627 KASSERT((l->l_pflag & LP_RUNNING) != 0);
628 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
629 ci = curcpu();
630 spc = &ci->ci_schedstate;
631 returning = false;
632 newl = NULL;
633
634 /*
635 * If we have been asked to switch to a specific LWP, then there
636 * is no need to inspect the run queues. If a soft interrupt is
637 * blocking, then return to the interrupted thread without adjusting
638 * VM context or its start time: neither have been changed in order
639 * to take the interrupt.
640 */
641 if (l->l_switchto != NULL) {
642 if ((l->l_pflag & LP_INTR) != 0) {
643 returning = true;
644 softint_block(l);
645 if ((l->l_pflag & LP_TIMEINTR) != 0)
646 updatertime(l, &bt);
647 }
648 newl = l->l_switchto;
649 l->l_switchto = NULL;
650 }
651 #ifndef __HAVE_FAST_SOFTINTS
652 else if (ci->ci_data.cpu_softints != 0) {
653 /* There are pending soft interrupts, so pick one. */
654 newl = softint_picklwp();
655 newl->l_stat = LSONPROC;
656 newl->l_pflag |= LP_RUNNING;
657 }
658 #endif /* !__HAVE_FAST_SOFTINTS */
659
660 /*
661 * If on the CPU and we have gotten this far, then we must yield.
662 */
663 if (l->l_stat == LSONPROC && l != newl) {
664 KASSERT(lwp_locked(l, spc->spc_lwplock));
665 KASSERT((l->l_flag & LW_IDLE) == 0);
666 l->l_stat = LSRUN;
667 lwp_setlock(l, spc->spc_mutex);
668 sched_enqueue(l);
669 sched_preempted(l);
670
671 /*
672 * Handle migration. Note that "migrating LWP" may
673 * be reset here, if interrupt/preemption happens
674 * early in idle LWP.
675 */
676 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
677 KASSERT((l->l_pflag & LP_INTR) == 0);
678 spc->spc_migrating = l;
679 }
680 }
681
682 /* Pick new LWP to run. */
683 if (newl == NULL) {
684 newl = nextlwp(ci, spc);
685 }
686
687 /* Items that must be updated with the CPU locked. */
688 if (!returning) {
689 /* Count time spent in current system call */
690 SYSCALL_TIME_SLEEP(l);
691
692 updatertime(l, &bt);
693
694 /* Update the new LWP's start time. */
695 newl->l_stime = bt;
696
697 /*
698 * ci_curlwp changes when a fast soft interrupt occurs.
699 * We use ci_onproc to keep track of which kernel or
700 * user thread is running 'underneath' the software
701 * interrupt. This is important for time accounting,
702 * itimers and forcing user threads to preempt (aston).
703 */
704 ci->ci_onproc = newl;
705 }
706
707 /*
708 * Preemption related tasks. Must be done holding spc_mutex. Clear
709 * l_dopreempt without an atomic - it's only ever set non-zero by
710 * sched_resched_cpu() which also holds spc_mutex, and only ever
711 * cleared by the LWP itself (us) with atomics when not under lock.
712 */
713 l->l_dopreempt = 0;
714 if (__predict_false(l->l_pfailaddr != 0)) {
715 LOCKSTAT_FLAG(lsflag);
716 LOCKSTAT_ENTER(lsflag);
717 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
718 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
719 1, l->l_pfailtime, l->l_pfailaddr);
720 LOCKSTAT_EXIT(lsflag);
721 l->l_pfailtime = 0;
722 l->l_pfaillock = 0;
723 l->l_pfailaddr = 0;
724 }
725
726 if (l != newl) {
727 struct lwp *prevlwp;
728
729 /* Release all locks, but leave the current LWP locked */
730 if (l->l_mutex == spc->spc_mutex) {
731 /*
732 * Drop spc_lwplock, if the current LWP has been moved
733 * to the run queue (it is now locked by spc_mutex).
734 */
735 mutex_spin_exit(spc->spc_lwplock);
736 } else {
737 /*
738 * Otherwise, drop the spc_mutex, we are done with the
739 * run queues.
740 */
741 mutex_spin_exit(spc->spc_mutex);
742 }
743
744 /* We're down to only one lock, so do debug checks. */
745 LOCKDEBUG_BARRIER(l->l_mutex, 1);
746
747 /* Count the context switch. */
748 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
749 if ((l->l_pflag & LP_PREEMPTING) != 0) {
750 l->l_ru.ru_nivcsw++;
751 l->l_pflag &= ~LP_PREEMPTING;
752 } else {
753 l->l_ru.ru_nvcsw++;
754 }
755
756 /*
757 * Increase the count of spin-mutexes before the release
758 * of the last lock - we must remain at IPL_SCHED after
759 * releasing the lock.
760 */
761 KASSERTMSG(ci->ci_mtx_count == -1,
762 "%s: cpu%u: ci_mtx_count (%d) != -1 "
763 "(block with spin-mutex held)",
764 __func__, cpu_index(ci), ci->ci_mtx_count);
765 oldspl = MUTEX_SPIN_OLDSPL(ci);
766 ci->ci_mtx_count = -2;
767
768 /* Update status for lwpctl, if present. */
769 if (l->l_lwpctl != NULL) {
770 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
771 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
772 }
773
774 /*
775 * If curlwp is a soft interrupt LWP, there's nobody on the
776 * other side to unlock - we're returning into an assembly
777 * trampoline. Unlock now. This is safe because this is a
778 * kernel LWP and is bound to current CPU: the worst anyone
779 * else will do to it, is to put it back onto this CPU's run
780 * queue (and the CPU is busy here right now!).
781 */
782 if (returning) {
783 /* Keep IPL_SCHED after this; MD code will fix up. */
784 l->l_pflag &= ~LP_RUNNING;
785 lwp_unlock(l);
786 } else {
787 /* A normal LWP: save old VM context. */
788 pmap_deactivate(l);
789 }
790
791 /*
792 * If DTrace has set the active vtime enum to anything
793 * other than INACTIVE (0), then it should have set the
794 * function to call.
795 */
796 if (__predict_false(dtrace_vtime_active)) {
797 (*dtrace_vtime_switch_func)(newl);
798 }
799
800 /*
801 * We must ensure not to come here from inside a read section.
802 */
803 KASSERT(pserialize_not_in_read_section());
804
805 /* Switch to the new LWP.. */
806 #ifdef MULTIPROCESSOR
807 KASSERT(curlwp == ci->ci_curlwp);
808 #endif
809 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
810 prevlwp = cpu_switchto(l, newl, returning);
811 ci = curcpu();
812 #ifdef MULTIPROCESSOR
813 KASSERT(curlwp == ci->ci_curlwp);
814 #endif
815 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
816 l, curlwp, prevlwp);
817 KASSERT(prevlwp != NULL);
818 KASSERT(l->l_cpu == ci);
819 KASSERT(ci->ci_mtx_count == -2);
820
821 /*
822 * Immediately mark the previous LWP as no longer running
823 * and unlock (to keep lock wait times short as possible).
824 * We'll still be at IPL_SCHED afterwards. If a zombie,
825 * don't touch after clearing LP_RUNNING as it could be
826 * reaped by another CPU. Issue a memory barrier to ensure
827 * this.
828 *
829 * atomic_store_release matches atomic_load_acquire in
830 * lwp_free.
831 */
832 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
833 lock = prevlwp->l_mutex;
834 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
835 atomic_store_release(&prevlwp->l_pflag,
836 prevlwp->l_pflag & ~LP_RUNNING);
837 } else {
838 prevlwp->l_pflag &= ~LP_RUNNING;
839 }
840 mutex_spin_exit(lock);
841
842 /*
843 * Switched away - we have new curlwp.
844 * Restore VM context and IPL.
845 */
846 pmap_activate(l);
847 pcu_switchpoint(l);
848
849 /* Update status for lwpctl, if present. */
850 if (l->l_lwpctl != NULL) {
851 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
852 l->l_lwpctl->lc_pctr++;
853 }
854
855 /*
856 * Normalize the spin mutex count and restore the previous
857 * SPL. Note that, unless the caller disabled preemption,
858 * we can be preempted at any time after this splx().
859 */
860 KASSERT(l->l_cpu == ci);
861 KASSERT(ci->ci_mtx_count == -1);
862 ci->ci_mtx_count = 0;
863 splx(oldspl);
864 } else {
865 /* Nothing to do - just unlock and return. */
866 mutex_spin_exit(spc->spc_mutex);
867 l->l_pflag &= ~LP_PREEMPTING;
868 lwp_unlock(l);
869 }
870
871 KASSERT(l == curlwp);
872 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
873
874 SYSCALL_TIME_WAKEUP(l);
875 LOCKDEBUG_BARRIER(NULL, 1);
876 }
877
878 /*
879 * setrunnable: change LWP state to be runnable, placing it on the run queue.
880 *
881 * Call with the process and LWP locked. Will return with the LWP unlocked.
882 */
883 void
884 setrunnable(struct lwp *l)
885 {
886 struct proc *p = l->l_proc;
887 struct cpu_info *ci;
888 kmutex_t *oldlock;
889
890 KASSERT((l->l_flag & LW_IDLE) == 0);
891 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
892 KASSERT(mutex_owned(p->p_lock));
893 KASSERT(lwp_locked(l, NULL));
894 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
895
896 switch (l->l_stat) {
897 case LSSTOP:
898 /*
899 * If we're being traced (possibly because someone attached us
900 * while we were stopped), check for a signal from the debugger.
901 */
902 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
903 signotify(l);
904 p->p_nrlwps++;
905 break;
906 case LSSUSPENDED:
907 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
908 l->l_flag &= ~LW_WSUSPEND;
909 p->p_nrlwps++;
910 cv_broadcast(&p->p_lwpcv);
911 break;
912 case LSSLEEP:
913 KASSERT(l->l_wchan != NULL);
914 break;
915 case LSIDL:
916 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
917 break;
918 default:
919 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
920 }
921
922 /*
923 * If the LWP was sleeping, start it again.
924 */
925 if (l->l_wchan != NULL) {
926 l->l_stat = LSSLEEP;
927 /* lwp_unsleep() will release the lock. */
928 lwp_unsleep(l, true);
929 return;
930 }
931
932 /*
933 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
934 * about to call mi_switch(), in which case it will yield.
935 */
936 if ((l->l_pflag & LP_RUNNING) != 0) {
937 l->l_stat = LSONPROC;
938 l->l_slptime = 0;
939 lwp_unlock(l);
940 return;
941 }
942
943 /*
944 * Look for a CPU to run.
945 * Set the LWP runnable.
946 */
947 ci = sched_takecpu(l);
948 l->l_cpu = ci;
949 spc_lock(ci);
950 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
951 sched_setrunnable(l);
952 l->l_stat = LSRUN;
953 l->l_slptime = 0;
954 sched_enqueue(l);
955 sched_resched_lwp(l, true);
956 /* SPC & LWP now unlocked. */
957 mutex_spin_exit(oldlock);
958 }
959
960 /*
961 * suspendsched:
962 *
963 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
964 */
965 void
966 suspendsched(void)
967 {
968 CPU_INFO_ITERATOR cii;
969 struct cpu_info *ci;
970 struct lwp *l;
971 struct proc *p;
972
973 /*
974 * We do this by process in order not to violate the locking rules.
975 */
976 mutex_enter(&proc_lock);
977 PROCLIST_FOREACH(p, &allproc) {
978 mutex_enter(p->p_lock);
979 if ((p->p_flag & PK_SYSTEM) != 0) {
980 mutex_exit(p->p_lock);
981 continue;
982 }
983
984 if (p->p_stat != SSTOP) {
985 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
986 p->p_pptr->p_nstopchild++;
987 p->p_waited = 0;
988 }
989 p->p_stat = SSTOP;
990 }
991
992 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
993 if (l == curlwp)
994 continue;
995
996 lwp_lock(l);
997
998 /*
999 * Set L_WREBOOT so that the LWP will suspend itself
1000 * when it tries to return to user mode. We want to
1001 * try and get to get as many LWPs as possible to
1002 * the user / kernel boundary, so that they will
1003 * release any locks that they hold.
1004 */
1005 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1006
1007 if (l->l_stat == LSSLEEP &&
1008 (l->l_flag & LW_SINTR) != 0) {
1009 /* setrunnable() will release the lock. */
1010 setrunnable(l);
1011 continue;
1012 }
1013
1014 lwp_unlock(l);
1015 }
1016
1017 mutex_exit(p->p_lock);
1018 }
1019 mutex_exit(&proc_lock);
1020
1021 /*
1022 * Kick all CPUs to make them preempt any LWPs running in user mode.
1023 * They'll trap into the kernel and suspend themselves in userret().
1024 *
1025 * Unusually, we don't hold any other scheduler object locked, which
1026 * would keep preemption off for sched_resched_cpu(), so disable it
1027 * explicitly.
1028 */
1029 kpreempt_disable();
1030 for (CPU_INFO_FOREACH(cii, ci)) {
1031 spc_lock(ci);
1032 sched_resched_cpu(ci, PRI_KERNEL, true);
1033 /* spc now unlocked */
1034 }
1035 kpreempt_enable();
1036 }
1037
1038 /*
1039 * sched_unsleep:
1040 *
1041 * The is called when the LWP has not been awoken normally but instead
1042 * interrupted: for example, if the sleep timed out. Because of this,
1043 * it's not a valid action for running or idle LWPs.
1044 */
1045 static void
1046 sched_unsleep(struct lwp *l, bool cleanup)
1047 {
1048
1049 lwp_unlock(l);
1050 panic("sched_unsleep");
1051 }
1052
1053 static void
1054 sched_changepri(struct lwp *l, pri_t pri)
1055 {
1056 struct schedstate_percpu *spc;
1057 struct cpu_info *ci;
1058
1059 KASSERT(lwp_locked(l, NULL));
1060
1061 ci = l->l_cpu;
1062 spc = &ci->ci_schedstate;
1063
1064 if (l->l_stat == LSRUN) {
1065 KASSERT(lwp_locked(l, spc->spc_mutex));
1066 sched_dequeue(l);
1067 l->l_priority = pri;
1068 sched_enqueue(l);
1069 sched_resched_lwp(l, false);
1070 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1071 /* On priority drop, only evict realtime LWPs. */
1072 KASSERT(lwp_locked(l, spc->spc_lwplock));
1073 l->l_priority = pri;
1074 spc_lock(ci);
1075 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1076 /* spc now unlocked */
1077 } else {
1078 l->l_priority = pri;
1079 }
1080 }
1081
1082 static void
1083 sched_lendpri(struct lwp *l, pri_t pri)
1084 {
1085 struct schedstate_percpu *spc;
1086 struct cpu_info *ci;
1087
1088 KASSERT(lwp_locked(l, NULL));
1089
1090 ci = l->l_cpu;
1091 spc = &ci->ci_schedstate;
1092
1093 if (l->l_stat == LSRUN) {
1094 KASSERT(lwp_locked(l, spc->spc_mutex));
1095 sched_dequeue(l);
1096 l->l_inheritedprio = pri;
1097 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1098 sched_enqueue(l);
1099 sched_resched_lwp(l, false);
1100 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1101 /* On priority drop, only evict realtime LWPs. */
1102 KASSERT(lwp_locked(l, spc->spc_lwplock));
1103 l->l_inheritedprio = pri;
1104 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1105 spc_lock(ci);
1106 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1107 /* spc now unlocked */
1108 } else {
1109 l->l_inheritedprio = pri;
1110 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1111 }
1112 }
1113
1114 struct lwp *
1115 syncobj_noowner(wchan_t wchan)
1116 {
1117
1118 return NULL;
1119 }
1120
1121 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1122 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1123
1124 /*
1125 * Constants for averages over 1, 5 and 15 minutes when sampling at
1126 * 5 second intervals.
1127 */
1128 static const fixpt_t cexp[ ] = {
1129 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1130 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1131 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1132 };
1133
1134 /*
1135 * sched_pstats:
1136 *
1137 * => Update process statistics and check CPU resource allocation.
1138 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1139 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1140 */
1141 void
1142 sched_pstats(void)
1143 {
1144 struct loadavg *avg = &averunnable;
1145 const int clkhz = (stathz != 0 ? stathz : hz);
1146 static bool backwardslwp = false;
1147 static bool backwardsproc = false;
1148 static u_int lavg_count = 0;
1149 struct proc *p;
1150 int nrun;
1151
1152 sched_pstats_ticks++;
1153 if (++lavg_count >= 5) {
1154 lavg_count = 0;
1155 nrun = 0;
1156 }
1157 mutex_enter(&proc_lock);
1158 PROCLIST_FOREACH(p, &allproc) {
1159 struct lwp *l;
1160 struct rlimit *rlim;
1161 time_t runtm;
1162 int sig;
1163
1164 /* Increment sleep time (if sleeping), ignore overflow. */
1165 mutex_enter(p->p_lock);
1166 runtm = p->p_rtime.sec;
1167 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1168 fixpt_t lpctcpu;
1169 u_int lcpticks;
1170
1171 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1172 continue;
1173 lwp_lock(l);
1174 if (__predict_false(l->l_rtime.sec < 0) &&
1175 !backwardslwp) {
1176 backwardslwp = true;
1177 printf("WARNING: lwp %ld (%s%s%s): "
1178 "negative runtime: "
1179 "(%jd + 0x%016"PRIx64"/2^64) sec\n",
1180 (long)l->l_lid,
1181 l->l_proc->p_comm,
1182 l->l_name ? " " : "",
1183 l->l_name ? l->l_name : "",
1184 (intmax_t)l->l_rtime.sec,
1185 l->l_rtime.frac);
1186 }
1187 runtm += l->l_rtime.sec;
1188 l->l_swtime++;
1189 sched_lwp_stats(l);
1190
1191 /* For load average calculation. */
1192 if (__predict_false(lavg_count == 0) &&
1193 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1194 switch (l->l_stat) {
1195 case LSSLEEP:
1196 if (l->l_slptime > 1) {
1197 break;
1198 }
1199 /* FALLTHROUGH */
1200 case LSRUN:
1201 case LSONPROC:
1202 case LSIDL:
1203 nrun++;
1204 }
1205 }
1206 lwp_unlock(l);
1207
1208 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1209 if (l->l_slptime != 0)
1210 continue;
1211
1212 lpctcpu = l->l_pctcpu;
1213 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1214 lpctcpu += ((FSCALE - ccpu) *
1215 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1216 l->l_pctcpu = lpctcpu;
1217 }
1218 /* Calculating p_pctcpu only for ps(1) */
1219 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1220
1221 if (__predict_false(runtm < 0)) {
1222 if (!backwardsproc) {
1223 backwardsproc = true;
1224 printf("WARNING: pid %ld (%s): "
1225 "negative runtime; "
1226 "monotonic clock has gone backwards\n",
1227 (long)p->p_pid, p->p_comm);
1228 }
1229 mutex_exit(p->p_lock);
1230 continue;
1231 }
1232
1233 /*
1234 * Check if the process exceeds its CPU resource allocation.
1235 * If over the hard limit, kill it with SIGKILL.
1236 * If over the soft limit, send SIGXCPU and raise
1237 * the soft limit a little.
1238 */
1239 rlim = &p->p_rlimit[RLIMIT_CPU];
1240 sig = 0;
1241 if (__predict_false(runtm >= rlim->rlim_cur)) {
1242 if (runtm >= rlim->rlim_max) {
1243 sig = SIGKILL;
1244 log(LOG_NOTICE,
1245 "pid %d, command %s, is killed: %s\n",
1246 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1247 uprintf("pid %d, command %s, is killed: %s\n",
1248 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1249 } else {
1250 sig = SIGXCPU;
1251 if (rlim->rlim_cur < rlim->rlim_max)
1252 rlim->rlim_cur += 5;
1253 }
1254 }
1255 mutex_exit(p->p_lock);
1256 if (__predict_false(sig)) {
1257 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1258 psignal(p, sig);
1259 }
1260 }
1261
1262 /* Load average calculation. */
1263 if (__predict_false(lavg_count == 0)) {
1264 int i;
1265 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1266 for (i = 0; i < __arraycount(cexp); i++) {
1267 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1268 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1269 }
1270 }
1271
1272 /* Lightning bolt. */
1273 cv_broadcast(&lbolt);
1274
1275 mutex_exit(&proc_lock);
1276 }
1277