kern_synch.c revision 1.38 1 /* $NetBSD: kern_synch.c,v 1.38 1996/07/17 21:54:06 explorer Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/buf.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <vm/vm.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54
55 #include <machine/cpu.h>
56
57 u_char curpriority; /* usrpri of curproc */
58 int lbolt; /* once a second sleep address */
59
60 void roundrobin __P((void *));
61 void schedcpu __P((void *));
62 void updatepri __P((struct proc *));
63 void endtsleep __P((void *));
64
65 /*
66 * Force switch among equal priority processes every 100ms.
67 */
68 /* ARGSUSED */
69 void
70 roundrobin(arg)
71 void *arg;
72 {
73
74 need_resched();
75 timeout(roundrobin, NULL, hz / 10);
76 }
77
78 /*
79 * Constants for digital decay and forget:
80 * 90% of (p_estcpu) usage in 5 * loadav time
81 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
82 * Note that, as ps(1) mentions, this can let percentages
83 * total over 100% (I've seen 137.9% for 3 processes).
84 *
85 * Note that hardclock updates p_estcpu and p_cpticks independently.
86 *
87 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
88 * That is, the system wants to compute a value of decay such
89 * that the following for loop:
90 * for (i = 0; i < (5 * loadavg); i++)
91 * p_estcpu *= decay;
92 * will compute
93 * p_estcpu *= 0.1;
94 * for all values of loadavg:
95 *
96 * Mathematically this loop can be expressed by saying:
97 * decay ** (5 * loadavg) ~= .1
98 *
99 * The system computes decay as:
100 * decay = (2 * loadavg) / (2 * loadavg + 1)
101 *
102 * We wish to prove that the system's computation of decay
103 * will always fulfill the equation:
104 * decay ** (5 * loadavg) ~= .1
105 *
106 * If we compute b as:
107 * b = 2 * loadavg
108 * then
109 * decay = b / (b + 1)
110 *
111 * We now need to prove two things:
112 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
113 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
114 *
115 * Facts:
116 * For x close to zero, exp(x) =~ 1 + x, since
117 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
118 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
119 * For x close to zero, ln(1+x) =~ x, since
120 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
121 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
122 * ln(.1) =~ -2.30
123 *
124 * Proof of (1):
125 * Solve (factor)**(power) =~ .1 given power (5*loadav):
126 * solving for factor,
127 * ln(factor) =~ (-2.30/5*loadav), or
128 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
129 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
130 *
131 * Proof of (2):
132 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
133 * solving for power,
134 * power*ln(b/(b+1)) =~ -2.30, or
135 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
136 *
137 * Actual power values for the implemented algorithm are as follows:
138 * loadav: 1 2 3 4
139 * power: 5.68 10.32 14.94 19.55
140 */
141
142 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
143 #define loadfactor(loadav) (2 * (loadav))
144 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
145
146 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
147 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
148
149 /*
150 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
151 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
152 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
153 *
154 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
155 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
156 *
157 * If you dont want to bother with the faster/more-accurate formula, you
158 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
159 * (more general) method of calculating the %age of CPU used by a process.
160 */
161 #define CCPU_SHIFT 11
162
163 /*
164 * Recompute process priorities, every hz ticks.
165 */
166 /* ARGSUSED */
167 void
168 schedcpu(arg)
169 void *arg;
170 {
171 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
172 register struct proc *p;
173 register int s;
174 register unsigned int newcpu;
175
176 wakeup((caddr_t)&lbolt);
177 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
178 /*
179 * Increment time in/out of memory and sleep time
180 * (if sleeping). We ignore overflow; with 16-bit int's
181 * (remember them?) overflow takes 45 days.
182 */
183 p->p_swtime++;
184 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
185 p->p_slptime++;
186 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
187 /*
188 * If the process has slept the entire second,
189 * stop recalculating its priority until it wakes up.
190 */
191 if (p->p_slptime > 1)
192 continue;
193 s = splstatclock(); /* prevent state changes */
194 /*
195 * p_pctcpu is only for ps.
196 */
197 #if (FSHIFT >= CCPU_SHIFT)
198 p->p_pctcpu += (hz == 100)?
199 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
200 100 * (((fixpt_t) p->p_cpticks)
201 << (FSHIFT - CCPU_SHIFT)) / hz;
202 #else
203 p->p_pctcpu += ((FSCALE - ccpu) *
204 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
205 #endif
206 p->p_cpticks = 0;
207 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
208 p->p_estcpu = min(newcpu, UCHAR_MAX);
209 resetpriority(p);
210 if (p->p_priority >= PUSER) {
211 #define PPQ (128 / NQS) /* priorities per queue */
212 if ((p != curproc) &&
213 p->p_stat == SRUN &&
214 (p->p_flag & P_INMEM) &&
215 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
216 remrq(p);
217 p->p_priority = p->p_usrpri;
218 setrunqueue(p);
219 } else
220 p->p_priority = p->p_usrpri;
221 }
222 splx(s);
223 }
224 vmmeter();
225 if (bclnlist != NULL)
226 wakeup((caddr_t)pageproc);
227 timeout(schedcpu, (void *)0, hz);
228 }
229
230 /*
231 * Recalculate the priority of a process after it has slept for a while.
232 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
233 * least six times the loadfactor will decay p_estcpu to zero.
234 */
235 void
236 updatepri(p)
237 register struct proc *p;
238 {
239 register unsigned int newcpu = p->p_estcpu;
240 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
241
242 if (p->p_slptime > 5 * loadfac)
243 p->p_estcpu = 0;
244 else {
245 p->p_slptime--; /* the first time was done in schedcpu */
246 while (newcpu && --p->p_slptime)
247 newcpu = (int) decay_cpu(loadfac, newcpu);
248 p->p_estcpu = min(newcpu, UCHAR_MAX);
249 }
250 resetpriority(p);
251 }
252
253 /*
254 * We're only looking at 7 bits of the address; everything is
255 * aligned to 4, lots of things are aligned to greater powers
256 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
257 */
258 #define TABLESIZE 128
259 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
260 struct slpque {
261 struct proc *sq_head;
262 struct proc **sq_tailp;
263 } slpque[TABLESIZE];
264
265 /*
266 * During autoconfiguration or after a panic, a sleep will simply
267 * lower the priority briefly to allow interrupts, then return.
268 * The priority to be used (safepri) is machine-dependent, thus this
269 * value is initialized and maintained in the machine-dependent layers.
270 * This priority will typically be 0, or the lowest priority
271 * that is safe for use on the interrupt stack; it can be made
272 * higher to block network software interrupts after panics.
273 */
274 int safepri;
275
276 /*
277 * General sleep call. Suspends the current process until a wakeup is
278 * performed on the specified identifier. The process will then be made
279 * runnable with the specified priority. Sleeps at most timo/hz seconds
280 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
281 * before and after sleeping, else signals are not checked. Returns 0 if
282 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
283 * signal needs to be delivered, ERESTART is returned if the current system
284 * call should be restarted if possible, and EINTR is returned if the system
285 * call should be interrupted by the signal (return EINTR).
286 */
287 int
288 tsleep(ident, priority, wmesg, timo)
289 void *ident;
290 int priority, timo;
291 char *wmesg;
292 {
293 register struct proc *p = curproc;
294 register struct slpque *qp;
295 register s;
296 int sig, catch = priority & PCATCH;
297 extern int cold;
298 void endtsleep __P((void *));
299
300 #ifdef KTRACE
301 if (KTRPOINT(p, KTR_CSW))
302 ktrcsw(p->p_tracep, 1, 0);
303 #endif
304 s = splhigh();
305 if (cold || panicstr) {
306 /*
307 * After a panic, or during autoconfiguration,
308 * just give interrupts a chance, then just return;
309 * don't run any other procs or panic below,
310 * in case this is the idle process and already asleep.
311 */
312 splx(safepri);
313 splx(s);
314 return (0);
315 }
316 #ifdef DIAGNOSTIC
317 if (ident == NULL || p->p_stat != SRUN || p->p_back)
318 panic("tsleep");
319 #endif
320 p->p_wchan = ident;
321 p->p_wmesg = wmesg;
322 p->p_slptime = 0;
323 p->p_priority = priority & PRIMASK;
324 qp = &slpque[LOOKUP(ident)];
325 if (qp->sq_head == 0)
326 qp->sq_head = p;
327 else
328 *qp->sq_tailp = p;
329 *(qp->sq_tailp = &p->p_forw) = 0;
330 if (timo)
331 timeout(endtsleep, (void *)p, timo);
332 /*
333 * We put ourselves on the sleep queue and start our timeout
334 * before calling CURSIG, as we could stop there, and a wakeup
335 * or a SIGCONT (or both) could occur while we were stopped.
336 * A SIGCONT would cause us to be marked as SSLEEP
337 * without resuming us, thus we must be ready for sleep
338 * when CURSIG is called. If the wakeup happens while we're
339 * stopped, p->p_wchan will be 0 upon return from CURSIG.
340 */
341 if (catch) {
342 p->p_flag |= P_SINTR;
343 if ((sig = CURSIG(p)) != 0) {
344 if (p->p_wchan)
345 unsleep(p);
346 p->p_stat = SRUN;
347 goto resume;
348 }
349 if (p->p_wchan == 0) {
350 catch = 0;
351 goto resume;
352 }
353 } else
354 sig = 0;
355 p->p_stat = SSLEEP;
356 p->p_stats->p_ru.ru_nvcsw++;
357 mi_switch();
358 #ifdef DDB
359 /* handy breakpoint location after process "wakes" */
360 asm(".globl bpendtsleep ; bpendtsleep:");
361 #endif
362 resume:
363 curpriority = p->p_usrpri;
364 splx(s);
365 p->p_flag &= ~P_SINTR;
366 if (p->p_flag & P_TIMEOUT) {
367 p->p_flag &= ~P_TIMEOUT;
368 if (sig == 0) {
369 #ifdef KTRACE
370 if (KTRPOINT(p, KTR_CSW))
371 ktrcsw(p->p_tracep, 0, 0);
372 #endif
373 return (EWOULDBLOCK);
374 }
375 } else if (timo)
376 untimeout(endtsleep, (void *)p);
377 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
378 #ifdef KTRACE
379 if (KTRPOINT(p, KTR_CSW))
380 ktrcsw(p->p_tracep, 0, 0);
381 #endif
382 if (p->p_sigacts->ps_sigintr & sigmask(sig))
383 return (EINTR);
384 return (ERESTART);
385 }
386 #ifdef KTRACE
387 if (KTRPOINT(p, KTR_CSW))
388 ktrcsw(p->p_tracep, 0, 0);
389 #endif
390 return (0);
391 }
392
393 /*
394 * Implement timeout for tsleep.
395 * If process hasn't been awakened (wchan non-zero),
396 * set timeout flag and undo the sleep. If proc
397 * is stopped, just unsleep so it will remain stopped.
398 */
399 void
400 endtsleep(arg)
401 void *arg;
402 {
403 register struct proc *p;
404 int s;
405
406 p = (struct proc *)arg;
407 s = splhigh();
408 if (p->p_wchan) {
409 if (p->p_stat == SSLEEP)
410 setrunnable(p);
411 else
412 unsleep(p);
413 p->p_flag |= P_TIMEOUT;
414 }
415 splx(s);
416 }
417
418 /*
419 * Short-term, non-interruptable sleep.
420 */
421 void
422 sleep(ident, priority)
423 void *ident;
424 int priority;
425 {
426 register struct proc *p = curproc;
427 register struct slpque *qp;
428 register s;
429 extern int cold;
430
431 #ifdef DIAGNOSTIC
432 if (priority > PZERO) {
433 printf("sleep called with priority %d > PZERO, wchan: %p\n",
434 priority, ident);
435 panic("old sleep");
436 }
437 #endif
438 s = splhigh();
439 if (cold || panicstr) {
440 /*
441 * After a panic, or during autoconfiguration,
442 * just give interrupts a chance, then just return;
443 * don't run any other procs or panic below,
444 * in case this is the idle process and already asleep.
445 */
446 splx(safepri);
447 splx(s);
448 return;
449 }
450 #ifdef DIAGNOSTIC
451 if (ident == NULL || p->p_stat != SRUN || p->p_back)
452 panic("sleep");
453 #endif
454 p->p_wchan = ident;
455 p->p_wmesg = NULL;
456 p->p_slptime = 0;
457 p->p_priority = priority;
458 qp = &slpque[LOOKUP(ident)];
459 if (qp->sq_head == 0)
460 qp->sq_head = p;
461 else
462 *qp->sq_tailp = p;
463 *(qp->sq_tailp = &p->p_forw) = 0;
464 p->p_stat = SSLEEP;
465 p->p_stats->p_ru.ru_nvcsw++;
466 #ifdef KTRACE
467 if (KTRPOINT(p, KTR_CSW))
468 ktrcsw(p->p_tracep, 1, 0);
469 #endif
470 mi_switch();
471 #ifdef DDB
472 /* handy breakpoint location after process "wakes" */
473 asm(".globl bpendsleep ; bpendsleep:");
474 #endif
475 #ifdef KTRACE
476 if (KTRPOINT(p, KTR_CSW))
477 ktrcsw(p->p_tracep, 0, 0);
478 #endif
479 curpriority = p->p_usrpri;
480 splx(s);
481 }
482
483 /*
484 * Remove a process from its wait queue
485 */
486 void
487 unsleep(p)
488 register struct proc *p;
489 {
490 register struct slpque *qp;
491 register struct proc **hp;
492 int s;
493
494 s = splhigh();
495 if (p->p_wchan) {
496 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
497 while (*hp != p)
498 hp = &(*hp)->p_forw;
499 *hp = p->p_forw;
500 if (qp->sq_tailp == &p->p_forw)
501 qp->sq_tailp = hp;
502 p->p_wchan = 0;
503 }
504 splx(s);
505 }
506
507 /*
508 * Make all processes sleeping on the specified identifier runnable.
509 */
510 void
511 wakeup(ident)
512 register void *ident;
513 {
514 register struct slpque *qp;
515 register struct proc *p, **q;
516 int s;
517
518 s = splhigh();
519 qp = &slpque[LOOKUP(ident)];
520 restart:
521 for (q = &qp->sq_head; (p = *q) != NULL; ) {
522 #ifdef DIAGNOSTIC
523 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
524 panic("wakeup");
525 #endif
526 if (p->p_wchan == ident) {
527 p->p_wchan = 0;
528 *q = p->p_forw;
529 if (qp->sq_tailp == &p->p_forw)
530 qp->sq_tailp = q;
531 if (p->p_stat == SSLEEP) {
532 /* OPTIMIZED EXPANSION OF setrunnable(p); */
533 if (p->p_slptime > 1)
534 updatepri(p);
535 p->p_slptime = 0;
536 p->p_stat = SRUN;
537 if (p->p_flag & P_INMEM)
538 setrunqueue(p);
539 /*
540 * Since curpriority is a user priority,
541 * p->p_priority is always better than
542 * curpriority.
543 */
544 if ((p->p_flag & P_INMEM) == 0)
545 wakeup((caddr_t)&proc0);
546 else
547 need_resched();
548 /* END INLINE EXPANSION */
549 goto restart;
550 }
551 } else
552 q = &p->p_forw;
553 }
554 splx(s);
555 }
556
557 /*
558 * The machine independent parts of mi_switch().
559 * Must be called at splstatclock() or higher.
560 */
561 void
562 mi_switch()
563 {
564 register struct proc *p = curproc; /* XXX */
565 register struct rlimit *rlim;
566 register long s, u;
567 struct timeval tv;
568
569 /*
570 * Compute the amount of time during which the current
571 * process was running, and add that to its total so far.
572 */
573 microtime(&tv);
574 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
575 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
576 if (u < 0) {
577 u += 1000000;
578 s--;
579 } else if (u >= 1000000) {
580 u -= 1000000;
581 s++;
582 }
583 p->p_rtime.tv_usec = u;
584 p->p_rtime.tv_sec = s;
585
586 /*
587 * Check if the process exceeds its cpu resource allocation.
588 * If over max, kill it. In any case, if it has run for more
589 * than 10 minutes, reduce priority to give others a chance.
590 */
591 rlim = &p->p_rlimit[RLIMIT_CPU];
592 if (s >= rlim->rlim_cur) {
593 if (s >= rlim->rlim_max)
594 psignal(p, SIGKILL);
595 else {
596 psignal(p, SIGXCPU);
597 if (rlim->rlim_cur < rlim->rlim_max)
598 rlim->rlim_cur += 5;
599 }
600 }
601 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
602 p->p_nice = autoniceval;
603 resetpriority(p);
604 }
605
606 /*
607 * Pick a new current process and record its start time.
608 */
609 cnt.v_swtch++;
610 cpu_switch(p);
611 microtime(&runtime);
612 }
613
614 /*
615 * Initialize the (doubly-linked) run queues
616 * to be empty.
617 */
618 void
619 rqinit()
620 {
621 register int i;
622
623 for (i = 0; i < NQS; i++)
624 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
625 }
626
627 /*
628 * Change process state to be runnable,
629 * placing it on the run queue if it is in memory,
630 * and awakening the swapper if it isn't in memory.
631 */
632 void
633 setrunnable(p)
634 register struct proc *p;
635 {
636 register int s;
637
638 s = splhigh();
639 switch (p->p_stat) {
640 case 0:
641 case SRUN:
642 case SZOMB:
643 default:
644 panic("setrunnable");
645 case SSTOP:
646 /*
647 * If we're being traced (possibly because someone attached us
648 * while we were stopped), check for a signal from the debugger.
649 */
650 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
651 p->p_siglist |= sigmask(p->p_xstat);
652 case SSLEEP:
653 unsleep(p); /* e.g. when sending signals */
654 break;
655
656 case SIDL:
657 break;
658 }
659 p->p_stat = SRUN;
660 if (p->p_flag & P_INMEM)
661 setrunqueue(p);
662 splx(s);
663 if (p->p_slptime > 1)
664 updatepri(p);
665 p->p_slptime = 0;
666 if ((p->p_flag & P_INMEM) == 0)
667 wakeup((caddr_t)&proc0);
668 else if (p->p_priority < curpriority)
669 need_resched();
670 }
671
672 /*
673 * Compute the priority of a process when running in user mode.
674 * Arrange to reschedule if the resulting priority is better
675 * than that of the current process.
676 */
677 void
678 resetpriority(p)
679 register struct proc *p;
680 {
681 register unsigned int newpriority;
682
683 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
684 newpriority = min(newpriority, MAXPRI);
685 p->p_usrpri = newpriority;
686 if (newpriority < curpriority)
687 need_resched();
688 }
689
690 #ifdef DDB
691 #include <machine/db_machdep.h>
692
693 #include <ddb/db_interface.h>
694 #include <ddb/db_output.h>
695
696 void
697 db_show_all_procs(addr, haddr, count, modif)
698 db_expr_t addr;
699 int haddr;
700 db_expr_t count;
701 char *modif;
702 {
703 int map = modif[0] == 'm';
704 int doingzomb = 0;
705 struct proc *p, *pp;
706
707 p = allproc.lh_first;
708 db_printf(" pid proc addr %s comm wchan\n",
709 map ? "map " : "uid ppid pgrp flag stat em ");
710 while (p != 0) {
711 pp = p->p_pptr;
712 if (p->p_stat) {
713 db_printf("%5d %p %p ",
714 p->p_pid, p, p->p_addr);
715 if (map)
716 db_printf("%p %s ",
717 p->p_vmspace, p->p_comm);
718 else
719 db_printf("%3d %5d %5d %06x %d %s %s ",
720 p->p_cred->p_ruid, pp ? pp->p_pid : -1,
721 p->p_pgrp->pg_id, p->p_flag, p->p_stat,
722 p->p_emul->e_name, p->p_comm);
723 if (p->p_wchan) {
724 if (p->p_wmesg)
725 db_printf("%s ", p->p_wmesg);
726 db_printf("%p", p->p_wchan);
727 }
728 db_printf("\n");
729 }
730 p = p->p_list.le_next;
731 if (p == 0 && doingzomb == 0) {
732 doingzomb = 1;
733 p = zombproc.lh_first;
734 }
735 }
736 }
737 #endif
738