Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.46
      1 /*	$NetBSD: kern_synch.c,v 1.46 1997/10/10 08:19:44 mycroft Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/buf.h>
     48 #include <sys/signalvar.h>
     49 #include <sys/resourcevar.h>
     50 #include <vm/vm.h>
     51 #ifdef KTRACE
     52 #include <sys/ktrace.h>
     53 #endif
     54 
     55 #include <machine/cpu.h>
     56 
     57 u_char	curpriority;		/* usrpri of curproc */
     58 int	lbolt;			/* once a second sleep address */
     59 
     60 void roundrobin __P((void *));
     61 void schedcpu __P((void *));
     62 void updatepri __P((struct proc *));
     63 void endtsleep __P((void *));
     64 
     65 /*
     66  * Force switch among equal priority processes every 100ms.
     67  */
     68 /* ARGSUSED */
     69 void
     70 roundrobin(arg)
     71 	void *arg;
     72 {
     73 
     74 	need_resched();
     75 	timeout(roundrobin, NULL, hz / 10);
     76 }
     77 
     78 /*
     79  * Constants for digital decay and forget:
     80  *	90% of (p_estcpu) usage in 5 * loadav time
     81  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     82  *          Note that, as ps(1) mentions, this can let percentages
     83  *          total over 100% (I've seen 137.9% for 3 processes).
     84  *
     85  * Note that hardclock updates p_estcpu and p_cpticks independently.
     86  *
     87  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     88  * That is, the system wants to compute a value of decay such
     89  * that the following for loop:
     90  * 	for (i = 0; i < (5 * loadavg); i++)
     91  * 		p_estcpu *= decay;
     92  * will compute
     93  * 	p_estcpu *= 0.1;
     94  * for all values of loadavg:
     95  *
     96  * Mathematically this loop can be expressed by saying:
     97  * 	decay ** (5 * loadavg) ~= .1
     98  *
     99  * The system computes decay as:
    100  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    101  *
    102  * We wish to prove that the system's computation of decay
    103  * will always fulfill the equation:
    104  * 	decay ** (5 * loadavg) ~= .1
    105  *
    106  * If we compute b as:
    107  * 	b = 2 * loadavg
    108  * then
    109  * 	decay = b / (b + 1)
    110  *
    111  * We now need to prove two things:
    112  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    113  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    114  *
    115  * Facts:
    116  *         For x close to zero, exp(x) =~ 1 + x, since
    117  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    118  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    119  *         For x close to zero, ln(1+x) =~ x, since
    120  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    121  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    122  *         ln(.1) =~ -2.30
    123  *
    124  * Proof of (1):
    125  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    126  *	solving for factor,
    127  *      ln(factor) =~ (-2.30/5*loadav), or
    128  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    129  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    130  *
    131  * Proof of (2):
    132  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    133  *	solving for power,
    134  *      power*ln(b/(b+1)) =~ -2.30, or
    135  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    136  *
    137  * Actual power values for the implemented algorithm are as follows:
    138  *      loadav: 1       2       3       4
    139  *      power:  5.68    10.32   14.94   19.55
    140  */
    141 
    142 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    143 #define	loadfactor(loadav)	(2 * (loadav))
    144 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    145 
    146 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    147 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    148 
    149 /*
    150  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    151  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    152  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    153  *
    154  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    155  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    156  *
    157  * If you dont want to bother with the faster/more-accurate formula, you
    158  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    159  * (more general) method of calculating the %age of CPU used by a process.
    160  */
    161 #define	CCPU_SHIFT	11
    162 
    163 /*
    164  * Recompute process priorities, every hz ticks.
    165  */
    166 /* ARGSUSED */
    167 void
    168 schedcpu(arg)
    169 	void *arg;
    170 {
    171 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    172 	register struct proc *p;
    173 	register int s;
    174 	register unsigned int newcpu;
    175 
    176 	wakeup((caddr_t)&lbolt);
    177 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    178 		/*
    179 		 * Increment time in/out of memory and sleep time
    180 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    181 		 * (remember them?) overflow takes 45 days.
    182 		 */
    183 		p->p_swtime++;
    184 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    185 			p->p_slptime++;
    186 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    187 		/*
    188 		 * If the process has slept the entire second,
    189 		 * stop recalculating its priority until it wakes up.
    190 		 */
    191 		if (p->p_slptime > 1)
    192 			continue;
    193 		s = splstatclock();	/* prevent state changes */
    194 		/*
    195 		 * p_pctcpu is only for ps.
    196 		 */
    197 #if	(FSHIFT >= CCPU_SHIFT)
    198 		p->p_pctcpu += (hz == 100)?
    199 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    200                 	100 * (((fixpt_t) p->p_cpticks)
    201 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    202 #else
    203 		p->p_pctcpu += ((FSCALE - ccpu) *
    204 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    205 #endif
    206 		p->p_cpticks = 0;
    207 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
    208 		    + p->p_nice - NZERO;
    209 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    210 		resetpriority(p);
    211 		if (p->p_priority >= PUSER) {
    212 #define	PPQ	(128 / NQS)		/* priorities per queue */
    213 			if ((p != curproc) &&
    214 			    p->p_stat == SRUN &&
    215 			    (p->p_flag & P_INMEM) &&
    216 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    217 				remrunqueue(p);
    218 				p->p_priority = p->p_usrpri;
    219 				setrunqueue(p);
    220 			} else
    221 				p->p_priority = p->p_usrpri;
    222 		}
    223 		splx(s);
    224 	}
    225 	vmmeter();
    226 	timeout(schedcpu, (void *)0, hz);
    227 }
    228 
    229 /*
    230  * Recalculate the priority of a process after it has slept for a while.
    231  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    232  * least six times the loadfactor will decay p_estcpu to zero.
    233  */
    234 void
    235 updatepri(p)
    236 	register struct proc *p;
    237 {
    238 	register unsigned int newcpu = p->p_estcpu;
    239 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    240 
    241 	if (p->p_slptime > 5 * loadfac)
    242 		p->p_estcpu = 0;
    243 	else {
    244 		p->p_slptime--;	/* the first time was done in schedcpu */
    245 		while (newcpu && --p->p_slptime)
    246 			newcpu = (int) decay_cpu(loadfac, newcpu);
    247 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    248 	}
    249 	resetpriority(p);
    250 }
    251 
    252 /*
    253  * We're only looking at 7 bits of the address; everything is
    254  * aligned to 4, lots of things are aligned to greater powers
    255  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    256  */
    257 #define TABLESIZE	128
    258 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    259 struct slpque {
    260 	struct proc *sq_head;
    261 	struct proc **sq_tailp;
    262 } slpque[TABLESIZE];
    263 
    264 /*
    265  * During autoconfiguration or after a panic, a sleep will simply
    266  * lower the priority briefly to allow interrupts, then return.
    267  * The priority to be used (safepri) is machine-dependent, thus this
    268  * value is initialized and maintained in the machine-dependent layers.
    269  * This priority will typically be 0, or the lowest priority
    270  * that is safe for use on the interrupt stack; it can be made
    271  * higher to block network software interrupts after panics.
    272  */
    273 int safepri;
    274 
    275 /*
    276  * General sleep call.  Suspends the current process until a wakeup is
    277  * performed on the specified identifier.  The process will then be made
    278  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    279  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    280  * before and after sleeping, else signals are not checked.  Returns 0 if
    281  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    282  * signal needs to be delivered, ERESTART is returned if the current system
    283  * call should be restarted if possible, and EINTR is returned if the system
    284  * call should be interrupted by the signal (return EINTR).
    285  */
    286 int
    287 tsleep(ident, priority, wmesg, timo)
    288 	void *ident;
    289 	int priority, timo;
    290 	const char *wmesg;
    291 {
    292 	register struct proc *p = curproc;
    293 	register struct slpque *qp;
    294 	register s;
    295 	int sig, catch = priority & PCATCH;
    296 	extern int cold;
    297 	void endtsleep __P((void *));
    298 
    299 	if (cold || panicstr) {
    300 		/*
    301 		 * After a panic, or during autoconfiguration,
    302 		 * just give interrupts a chance, then just return;
    303 		 * don't run any other procs or panic below,
    304 		 * in case this is the idle process and already asleep.
    305 		 */
    306 		s = splhigh();
    307 		splx(safepri);
    308 		splx(s);
    309 		return (0);
    310 	}
    311 
    312 #ifdef KTRACE
    313 	if (KTRPOINT(p, KTR_CSW))
    314 		ktrcsw(p->p_tracep, 1, 0);
    315 #endif
    316 	s = splhigh();
    317 
    318 #ifdef DIAGNOSTIC
    319 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    320 		panic("tsleep");
    321 #endif
    322 	p->p_wchan = ident;
    323 	p->p_wmesg = wmesg;
    324 	p->p_slptime = 0;
    325 	p->p_priority = priority & PRIMASK;
    326 	qp = &slpque[LOOKUP(ident)];
    327 	if (qp->sq_head == 0)
    328 		qp->sq_head = p;
    329 	else
    330 		*qp->sq_tailp = p;
    331 	*(qp->sq_tailp = &p->p_forw) = 0;
    332 	if (timo)
    333 		timeout(endtsleep, (void *)p, timo);
    334 	/*
    335 	 * We put ourselves on the sleep queue and start our timeout
    336 	 * before calling CURSIG, as we could stop there, and a wakeup
    337 	 * or a SIGCONT (or both) could occur while we were stopped.
    338 	 * A SIGCONT would cause us to be marked as SSLEEP
    339 	 * without resuming us, thus we must be ready for sleep
    340 	 * when CURSIG is called.  If the wakeup happens while we're
    341 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    342 	 */
    343 	if (catch) {
    344 		p->p_flag |= P_SINTR;
    345 		if ((sig = CURSIG(p)) != 0) {
    346 			if (p->p_wchan)
    347 				unsleep(p);
    348 			p->p_stat = SRUN;
    349 			goto resume;
    350 		}
    351 		if (p->p_wchan == 0) {
    352 			catch = 0;
    353 			goto resume;
    354 		}
    355 	} else
    356 		sig = 0;
    357 	p->p_stat = SSLEEP;
    358 	p->p_stats->p_ru.ru_nvcsw++;
    359 	mi_switch();
    360 #ifdef	DDB
    361 	/* handy breakpoint location after process "wakes" */
    362 	asm(".globl bpendtsleep ; bpendtsleep:");
    363 #endif
    364 resume:
    365 	curpriority = p->p_usrpri;
    366 	splx(s);
    367 	p->p_flag &= ~P_SINTR;
    368 	if (p->p_flag & P_TIMEOUT) {
    369 		p->p_flag &= ~P_TIMEOUT;
    370 		if (sig == 0) {
    371 #ifdef KTRACE
    372 			if (KTRPOINT(p, KTR_CSW))
    373 				ktrcsw(p->p_tracep, 0, 0);
    374 #endif
    375 			return (EWOULDBLOCK);
    376 		}
    377 	} else if (timo)
    378 		untimeout(endtsleep, (void *)p);
    379 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    380 #ifdef KTRACE
    381 		if (KTRPOINT(p, KTR_CSW))
    382 			ktrcsw(p->p_tracep, 0, 0);
    383 #endif
    384 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    385 			return (EINTR);
    386 		return (ERESTART);
    387 	}
    388 #ifdef KTRACE
    389 	if (KTRPOINT(p, KTR_CSW))
    390 		ktrcsw(p->p_tracep, 0, 0);
    391 #endif
    392 	return (0);
    393 }
    394 
    395 /*
    396  * Implement timeout for tsleep.
    397  * If process hasn't been awakened (wchan non-zero),
    398  * set timeout flag and undo the sleep.  If proc
    399  * is stopped, just unsleep so it will remain stopped.
    400  */
    401 void
    402 endtsleep(arg)
    403 	void *arg;
    404 {
    405 	register struct proc *p;
    406 	int s;
    407 
    408 	p = (struct proc *)arg;
    409 	s = splhigh();
    410 	if (p->p_wchan) {
    411 		if (p->p_stat == SSLEEP)
    412 			setrunnable(p);
    413 		else
    414 			unsleep(p);
    415 		p->p_flag |= P_TIMEOUT;
    416 	}
    417 	splx(s);
    418 }
    419 
    420 /*
    421  * Short-term, non-interruptable sleep.
    422  */
    423 void
    424 sleep(ident, priority)
    425 	void *ident;
    426 	int priority;
    427 {
    428 	register struct proc *p = curproc;
    429 	register struct slpque *qp;
    430 	register s;
    431 	extern int cold;
    432 
    433 #ifdef DIAGNOSTIC
    434 	if (priority > PZERO) {
    435 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
    436 		    priority, ident);
    437 		panic("old sleep");
    438 	}
    439 #endif
    440 	s = splhigh();
    441 	if (cold || panicstr) {
    442 		/*
    443 		 * After a panic, or during autoconfiguration,
    444 		 * just give interrupts a chance, then just return;
    445 		 * don't run any other procs or panic below,
    446 		 * in case this is the idle process and already asleep.
    447 		 */
    448 		splx(safepri);
    449 		splx(s);
    450 		return;
    451 	}
    452 #ifdef DIAGNOSTIC
    453 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    454 		panic("sleep");
    455 #endif
    456 	p->p_wchan = ident;
    457 	p->p_wmesg = NULL;
    458 	p->p_slptime = 0;
    459 	p->p_priority = priority;
    460 	qp = &slpque[LOOKUP(ident)];
    461 	if (qp->sq_head == 0)
    462 		qp->sq_head = p;
    463 	else
    464 		*qp->sq_tailp = p;
    465 	*(qp->sq_tailp = &p->p_forw) = 0;
    466 	p->p_stat = SSLEEP;
    467 	p->p_stats->p_ru.ru_nvcsw++;
    468 #ifdef KTRACE
    469 	if (KTRPOINT(p, KTR_CSW))
    470 		ktrcsw(p->p_tracep, 1, 0);
    471 #endif
    472 	mi_switch();
    473 #ifdef	DDB
    474 	/* handy breakpoint location after process "wakes" */
    475 	asm(".globl bpendsleep ; bpendsleep:");
    476 #endif
    477 #ifdef KTRACE
    478 	if (KTRPOINT(p, KTR_CSW))
    479 		ktrcsw(p->p_tracep, 0, 0);
    480 #endif
    481 	curpriority = p->p_usrpri;
    482 	splx(s);
    483 }
    484 
    485 /*
    486  * Remove a process from its wait queue
    487  */
    488 void
    489 unsleep(p)
    490 	register struct proc *p;
    491 {
    492 	register struct slpque *qp;
    493 	register struct proc **hp;
    494 	int s;
    495 
    496 	s = splhigh();
    497 	if (p->p_wchan) {
    498 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    499 		while (*hp != p)
    500 			hp = &(*hp)->p_forw;
    501 		*hp = p->p_forw;
    502 		if (qp->sq_tailp == &p->p_forw)
    503 			qp->sq_tailp = hp;
    504 		p->p_wchan = 0;
    505 	}
    506 	splx(s);
    507 }
    508 
    509 /*
    510  * Make all processes sleeping on the specified identifier runnable.
    511  */
    512 void
    513 wakeup(ident)
    514 	register void *ident;
    515 {
    516 	register struct slpque *qp;
    517 	register struct proc *p, **q;
    518 	int s;
    519 
    520 	s = splhigh();
    521 	qp = &slpque[LOOKUP(ident)];
    522 restart:
    523 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    524 #ifdef DIAGNOSTIC
    525 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    526 			panic("wakeup");
    527 #endif
    528 		if (p->p_wchan == ident) {
    529 			p->p_wchan = 0;
    530 			*q = p->p_forw;
    531 			if (qp->sq_tailp == &p->p_forw)
    532 				qp->sq_tailp = q;
    533 			if (p->p_stat == SSLEEP) {
    534 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    535 				if (p->p_slptime > 1)
    536 					updatepri(p);
    537 				p->p_slptime = 0;
    538 				p->p_stat = SRUN;
    539 				if (p->p_flag & P_INMEM)
    540 					setrunqueue(p);
    541 				/*
    542 				 * Since curpriority is a user priority,
    543 				 * p->p_priority is always better than
    544 				 * curpriority.
    545 				 */
    546 				if ((p->p_flag & P_INMEM) == 0)
    547 					wakeup((caddr_t)&proc0);
    548 				else
    549 					need_resched();
    550 				/* END INLINE EXPANSION */
    551 				goto restart;
    552 			}
    553 		} else
    554 			q = &p->p_forw;
    555 	}
    556 	splx(s);
    557 }
    558 
    559 /*
    560  * The machine independent parts of mi_switch().
    561  * Must be called at splstatclock() or higher.
    562  */
    563 void
    564 mi_switch()
    565 {
    566 	register struct proc *p = curproc;	/* XXX */
    567 	register struct rlimit *rlim;
    568 	register long s, u;
    569 	struct timeval tv;
    570 
    571 	/*
    572 	 * Compute the amount of time during which the current
    573 	 * process was running, and add that to its total so far.
    574 	 */
    575 	microtime(&tv);
    576 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    577 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    578 	if (u < 0) {
    579 		u += 1000000;
    580 		s--;
    581 	} else if (u >= 1000000) {
    582 		u -= 1000000;
    583 		s++;
    584 	}
    585 	p->p_rtime.tv_usec = u;
    586 	p->p_rtime.tv_sec = s;
    587 
    588 	/*
    589 	 * Check if the process exceeds its cpu resource allocation.
    590 	 * If over max, kill it.  In any case, if it has run for more
    591 	 * than 10 minutes, reduce priority to give others a chance.
    592 	 */
    593 	rlim = &p->p_rlimit[RLIMIT_CPU];
    594 	if (s >= rlim->rlim_cur) {
    595 		if (s >= rlim->rlim_max)
    596 			psignal(p, SIGKILL);
    597 		else {
    598 			psignal(p, SIGXCPU);
    599 			if (rlim->rlim_cur < rlim->rlim_max)
    600 				rlim->rlim_cur += 5;
    601 		}
    602 	}
    603 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    604 		p->p_nice = autoniceval + NZERO;
    605 		resetpriority(p);
    606 	}
    607 
    608 	/*
    609 	 * Pick a new current process and record its start time.
    610 	 */
    611 	cnt.v_swtch++;
    612 	cpu_switch(p);
    613 	microtime(&runtime);
    614 }
    615 
    616 /*
    617  * Initialize the (doubly-linked) run queues
    618  * to be empty.
    619  */
    620 void
    621 rqinit()
    622 {
    623 	register int i;
    624 
    625 	for (i = 0; i < NQS; i++)
    626 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    627 }
    628 
    629 /*
    630  * Change process state to be runnable,
    631  * placing it on the run queue if it is in memory,
    632  * and awakening the swapper if it isn't in memory.
    633  */
    634 void
    635 setrunnable(p)
    636 	register struct proc *p;
    637 {
    638 	register int s;
    639 
    640 	s = splhigh();
    641 	switch (p->p_stat) {
    642 	case 0:
    643 	case SRUN:
    644 	case SZOMB:
    645 	default:
    646 		panic("setrunnable");
    647 	case SSTOP:
    648 		/*
    649 		 * If we're being traced (possibly because someone attached us
    650 		 * while we were stopped), check for a signal from the debugger.
    651 		 */
    652 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
    653 			p->p_siglist |= sigmask(p->p_xstat);
    654 	case SSLEEP:
    655 		unsleep(p);		/* e.g. when sending signals */
    656 		break;
    657 
    658 	case SIDL:
    659 		break;
    660 	}
    661 	p->p_stat = SRUN;
    662 	if (p->p_flag & P_INMEM)
    663 		setrunqueue(p);
    664 	splx(s);
    665 	if (p->p_slptime > 1)
    666 		updatepri(p);
    667 	p->p_slptime = 0;
    668 	if ((p->p_flag & P_INMEM) == 0)
    669 		wakeup((caddr_t)&proc0);
    670 	else if (p->p_priority < curpriority)
    671 		need_resched();
    672 }
    673 
    674 /*
    675  * Compute the priority of a process when running in user mode.
    676  * Arrange to reschedule if the resulting priority is better
    677  * than that of the current process.
    678  */
    679 void
    680 resetpriority(p)
    681 	register struct proc *p;
    682 {
    683 	register unsigned int newpriority;
    684 
    685 	newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
    686 	newpriority = min(newpriority, MAXPRI);
    687 	p->p_usrpri = newpriority;
    688 	if (newpriority < curpriority)
    689 		need_resched();
    690 }
    691