kern_synch.c revision 1.46 1 /* $NetBSD: kern_synch.c,v 1.46 1997/10/10 08:19:44 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/buf.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <vm/vm.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54
55 #include <machine/cpu.h>
56
57 u_char curpriority; /* usrpri of curproc */
58 int lbolt; /* once a second sleep address */
59
60 void roundrobin __P((void *));
61 void schedcpu __P((void *));
62 void updatepri __P((struct proc *));
63 void endtsleep __P((void *));
64
65 /*
66 * Force switch among equal priority processes every 100ms.
67 */
68 /* ARGSUSED */
69 void
70 roundrobin(arg)
71 void *arg;
72 {
73
74 need_resched();
75 timeout(roundrobin, NULL, hz / 10);
76 }
77
78 /*
79 * Constants for digital decay and forget:
80 * 90% of (p_estcpu) usage in 5 * loadav time
81 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
82 * Note that, as ps(1) mentions, this can let percentages
83 * total over 100% (I've seen 137.9% for 3 processes).
84 *
85 * Note that hardclock updates p_estcpu and p_cpticks independently.
86 *
87 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
88 * That is, the system wants to compute a value of decay such
89 * that the following for loop:
90 * for (i = 0; i < (5 * loadavg); i++)
91 * p_estcpu *= decay;
92 * will compute
93 * p_estcpu *= 0.1;
94 * for all values of loadavg:
95 *
96 * Mathematically this loop can be expressed by saying:
97 * decay ** (5 * loadavg) ~= .1
98 *
99 * The system computes decay as:
100 * decay = (2 * loadavg) / (2 * loadavg + 1)
101 *
102 * We wish to prove that the system's computation of decay
103 * will always fulfill the equation:
104 * decay ** (5 * loadavg) ~= .1
105 *
106 * If we compute b as:
107 * b = 2 * loadavg
108 * then
109 * decay = b / (b + 1)
110 *
111 * We now need to prove two things:
112 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
113 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
114 *
115 * Facts:
116 * For x close to zero, exp(x) =~ 1 + x, since
117 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
118 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
119 * For x close to zero, ln(1+x) =~ x, since
120 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
121 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
122 * ln(.1) =~ -2.30
123 *
124 * Proof of (1):
125 * Solve (factor)**(power) =~ .1 given power (5*loadav):
126 * solving for factor,
127 * ln(factor) =~ (-2.30/5*loadav), or
128 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
129 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
130 *
131 * Proof of (2):
132 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
133 * solving for power,
134 * power*ln(b/(b+1)) =~ -2.30, or
135 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
136 *
137 * Actual power values for the implemented algorithm are as follows:
138 * loadav: 1 2 3 4
139 * power: 5.68 10.32 14.94 19.55
140 */
141
142 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
143 #define loadfactor(loadav) (2 * (loadav))
144 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
145
146 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
147 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
148
149 /*
150 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
151 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
152 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
153 *
154 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
155 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
156 *
157 * If you dont want to bother with the faster/more-accurate formula, you
158 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
159 * (more general) method of calculating the %age of CPU used by a process.
160 */
161 #define CCPU_SHIFT 11
162
163 /*
164 * Recompute process priorities, every hz ticks.
165 */
166 /* ARGSUSED */
167 void
168 schedcpu(arg)
169 void *arg;
170 {
171 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
172 register struct proc *p;
173 register int s;
174 register unsigned int newcpu;
175
176 wakeup((caddr_t)&lbolt);
177 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
178 /*
179 * Increment time in/out of memory and sleep time
180 * (if sleeping). We ignore overflow; with 16-bit int's
181 * (remember them?) overflow takes 45 days.
182 */
183 p->p_swtime++;
184 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
185 p->p_slptime++;
186 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
187 /*
188 * If the process has slept the entire second,
189 * stop recalculating its priority until it wakes up.
190 */
191 if (p->p_slptime > 1)
192 continue;
193 s = splstatclock(); /* prevent state changes */
194 /*
195 * p_pctcpu is only for ps.
196 */
197 #if (FSHIFT >= CCPU_SHIFT)
198 p->p_pctcpu += (hz == 100)?
199 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
200 100 * (((fixpt_t) p->p_cpticks)
201 << (FSHIFT - CCPU_SHIFT)) / hz;
202 #else
203 p->p_pctcpu += ((FSCALE - ccpu) *
204 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
205 #endif
206 p->p_cpticks = 0;
207 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
208 + p->p_nice - NZERO;
209 p->p_estcpu = min(newcpu, UCHAR_MAX);
210 resetpriority(p);
211 if (p->p_priority >= PUSER) {
212 #define PPQ (128 / NQS) /* priorities per queue */
213 if ((p != curproc) &&
214 p->p_stat == SRUN &&
215 (p->p_flag & P_INMEM) &&
216 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
217 remrunqueue(p);
218 p->p_priority = p->p_usrpri;
219 setrunqueue(p);
220 } else
221 p->p_priority = p->p_usrpri;
222 }
223 splx(s);
224 }
225 vmmeter();
226 timeout(schedcpu, (void *)0, hz);
227 }
228
229 /*
230 * Recalculate the priority of a process after it has slept for a while.
231 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
232 * least six times the loadfactor will decay p_estcpu to zero.
233 */
234 void
235 updatepri(p)
236 register struct proc *p;
237 {
238 register unsigned int newcpu = p->p_estcpu;
239 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240
241 if (p->p_slptime > 5 * loadfac)
242 p->p_estcpu = 0;
243 else {
244 p->p_slptime--; /* the first time was done in schedcpu */
245 while (newcpu && --p->p_slptime)
246 newcpu = (int) decay_cpu(loadfac, newcpu);
247 p->p_estcpu = min(newcpu, UCHAR_MAX);
248 }
249 resetpriority(p);
250 }
251
252 /*
253 * We're only looking at 7 bits of the address; everything is
254 * aligned to 4, lots of things are aligned to greater powers
255 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
256 */
257 #define TABLESIZE 128
258 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
259 struct slpque {
260 struct proc *sq_head;
261 struct proc **sq_tailp;
262 } slpque[TABLESIZE];
263
264 /*
265 * During autoconfiguration or after a panic, a sleep will simply
266 * lower the priority briefly to allow interrupts, then return.
267 * The priority to be used (safepri) is machine-dependent, thus this
268 * value is initialized and maintained in the machine-dependent layers.
269 * This priority will typically be 0, or the lowest priority
270 * that is safe for use on the interrupt stack; it can be made
271 * higher to block network software interrupts after panics.
272 */
273 int safepri;
274
275 /*
276 * General sleep call. Suspends the current process until a wakeup is
277 * performed on the specified identifier. The process will then be made
278 * runnable with the specified priority. Sleeps at most timo/hz seconds
279 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
280 * before and after sleeping, else signals are not checked. Returns 0 if
281 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
282 * signal needs to be delivered, ERESTART is returned if the current system
283 * call should be restarted if possible, and EINTR is returned if the system
284 * call should be interrupted by the signal (return EINTR).
285 */
286 int
287 tsleep(ident, priority, wmesg, timo)
288 void *ident;
289 int priority, timo;
290 const char *wmesg;
291 {
292 register struct proc *p = curproc;
293 register struct slpque *qp;
294 register s;
295 int sig, catch = priority & PCATCH;
296 extern int cold;
297 void endtsleep __P((void *));
298
299 if (cold || panicstr) {
300 /*
301 * After a panic, or during autoconfiguration,
302 * just give interrupts a chance, then just return;
303 * don't run any other procs or panic below,
304 * in case this is the idle process and already asleep.
305 */
306 s = splhigh();
307 splx(safepri);
308 splx(s);
309 return (0);
310 }
311
312 #ifdef KTRACE
313 if (KTRPOINT(p, KTR_CSW))
314 ktrcsw(p->p_tracep, 1, 0);
315 #endif
316 s = splhigh();
317
318 #ifdef DIAGNOSTIC
319 if (ident == NULL || p->p_stat != SRUN || p->p_back)
320 panic("tsleep");
321 #endif
322 p->p_wchan = ident;
323 p->p_wmesg = wmesg;
324 p->p_slptime = 0;
325 p->p_priority = priority & PRIMASK;
326 qp = &slpque[LOOKUP(ident)];
327 if (qp->sq_head == 0)
328 qp->sq_head = p;
329 else
330 *qp->sq_tailp = p;
331 *(qp->sq_tailp = &p->p_forw) = 0;
332 if (timo)
333 timeout(endtsleep, (void *)p, timo);
334 /*
335 * We put ourselves on the sleep queue and start our timeout
336 * before calling CURSIG, as we could stop there, and a wakeup
337 * or a SIGCONT (or both) could occur while we were stopped.
338 * A SIGCONT would cause us to be marked as SSLEEP
339 * without resuming us, thus we must be ready for sleep
340 * when CURSIG is called. If the wakeup happens while we're
341 * stopped, p->p_wchan will be 0 upon return from CURSIG.
342 */
343 if (catch) {
344 p->p_flag |= P_SINTR;
345 if ((sig = CURSIG(p)) != 0) {
346 if (p->p_wchan)
347 unsleep(p);
348 p->p_stat = SRUN;
349 goto resume;
350 }
351 if (p->p_wchan == 0) {
352 catch = 0;
353 goto resume;
354 }
355 } else
356 sig = 0;
357 p->p_stat = SSLEEP;
358 p->p_stats->p_ru.ru_nvcsw++;
359 mi_switch();
360 #ifdef DDB
361 /* handy breakpoint location after process "wakes" */
362 asm(".globl bpendtsleep ; bpendtsleep:");
363 #endif
364 resume:
365 curpriority = p->p_usrpri;
366 splx(s);
367 p->p_flag &= ~P_SINTR;
368 if (p->p_flag & P_TIMEOUT) {
369 p->p_flag &= ~P_TIMEOUT;
370 if (sig == 0) {
371 #ifdef KTRACE
372 if (KTRPOINT(p, KTR_CSW))
373 ktrcsw(p->p_tracep, 0, 0);
374 #endif
375 return (EWOULDBLOCK);
376 }
377 } else if (timo)
378 untimeout(endtsleep, (void *)p);
379 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
380 #ifdef KTRACE
381 if (KTRPOINT(p, KTR_CSW))
382 ktrcsw(p->p_tracep, 0, 0);
383 #endif
384 if (p->p_sigacts->ps_sigintr & sigmask(sig))
385 return (EINTR);
386 return (ERESTART);
387 }
388 #ifdef KTRACE
389 if (KTRPOINT(p, KTR_CSW))
390 ktrcsw(p->p_tracep, 0, 0);
391 #endif
392 return (0);
393 }
394
395 /*
396 * Implement timeout for tsleep.
397 * If process hasn't been awakened (wchan non-zero),
398 * set timeout flag and undo the sleep. If proc
399 * is stopped, just unsleep so it will remain stopped.
400 */
401 void
402 endtsleep(arg)
403 void *arg;
404 {
405 register struct proc *p;
406 int s;
407
408 p = (struct proc *)arg;
409 s = splhigh();
410 if (p->p_wchan) {
411 if (p->p_stat == SSLEEP)
412 setrunnable(p);
413 else
414 unsleep(p);
415 p->p_flag |= P_TIMEOUT;
416 }
417 splx(s);
418 }
419
420 /*
421 * Short-term, non-interruptable sleep.
422 */
423 void
424 sleep(ident, priority)
425 void *ident;
426 int priority;
427 {
428 register struct proc *p = curproc;
429 register struct slpque *qp;
430 register s;
431 extern int cold;
432
433 #ifdef DIAGNOSTIC
434 if (priority > PZERO) {
435 printf("sleep called with priority %d > PZERO, wchan: %p\n",
436 priority, ident);
437 panic("old sleep");
438 }
439 #endif
440 s = splhigh();
441 if (cold || panicstr) {
442 /*
443 * After a panic, or during autoconfiguration,
444 * just give interrupts a chance, then just return;
445 * don't run any other procs or panic below,
446 * in case this is the idle process and already asleep.
447 */
448 splx(safepri);
449 splx(s);
450 return;
451 }
452 #ifdef DIAGNOSTIC
453 if (ident == NULL || p->p_stat != SRUN || p->p_back)
454 panic("sleep");
455 #endif
456 p->p_wchan = ident;
457 p->p_wmesg = NULL;
458 p->p_slptime = 0;
459 p->p_priority = priority;
460 qp = &slpque[LOOKUP(ident)];
461 if (qp->sq_head == 0)
462 qp->sq_head = p;
463 else
464 *qp->sq_tailp = p;
465 *(qp->sq_tailp = &p->p_forw) = 0;
466 p->p_stat = SSLEEP;
467 p->p_stats->p_ru.ru_nvcsw++;
468 #ifdef KTRACE
469 if (KTRPOINT(p, KTR_CSW))
470 ktrcsw(p->p_tracep, 1, 0);
471 #endif
472 mi_switch();
473 #ifdef DDB
474 /* handy breakpoint location after process "wakes" */
475 asm(".globl bpendsleep ; bpendsleep:");
476 #endif
477 #ifdef KTRACE
478 if (KTRPOINT(p, KTR_CSW))
479 ktrcsw(p->p_tracep, 0, 0);
480 #endif
481 curpriority = p->p_usrpri;
482 splx(s);
483 }
484
485 /*
486 * Remove a process from its wait queue
487 */
488 void
489 unsleep(p)
490 register struct proc *p;
491 {
492 register struct slpque *qp;
493 register struct proc **hp;
494 int s;
495
496 s = splhigh();
497 if (p->p_wchan) {
498 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
499 while (*hp != p)
500 hp = &(*hp)->p_forw;
501 *hp = p->p_forw;
502 if (qp->sq_tailp == &p->p_forw)
503 qp->sq_tailp = hp;
504 p->p_wchan = 0;
505 }
506 splx(s);
507 }
508
509 /*
510 * Make all processes sleeping on the specified identifier runnable.
511 */
512 void
513 wakeup(ident)
514 register void *ident;
515 {
516 register struct slpque *qp;
517 register struct proc *p, **q;
518 int s;
519
520 s = splhigh();
521 qp = &slpque[LOOKUP(ident)];
522 restart:
523 for (q = &qp->sq_head; (p = *q) != NULL; ) {
524 #ifdef DIAGNOSTIC
525 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
526 panic("wakeup");
527 #endif
528 if (p->p_wchan == ident) {
529 p->p_wchan = 0;
530 *q = p->p_forw;
531 if (qp->sq_tailp == &p->p_forw)
532 qp->sq_tailp = q;
533 if (p->p_stat == SSLEEP) {
534 /* OPTIMIZED EXPANSION OF setrunnable(p); */
535 if (p->p_slptime > 1)
536 updatepri(p);
537 p->p_slptime = 0;
538 p->p_stat = SRUN;
539 if (p->p_flag & P_INMEM)
540 setrunqueue(p);
541 /*
542 * Since curpriority is a user priority,
543 * p->p_priority is always better than
544 * curpriority.
545 */
546 if ((p->p_flag & P_INMEM) == 0)
547 wakeup((caddr_t)&proc0);
548 else
549 need_resched();
550 /* END INLINE EXPANSION */
551 goto restart;
552 }
553 } else
554 q = &p->p_forw;
555 }
556 splx(s);
557 }
558
559 /*
560 * The machine independent parts of mi_switch().
561 * Must be called at splstatclock() or higher.
562 */
563 void
564 mi_switch()
565 {
566 register struct proc *p = curproc; /* XXX */
567 register struct rlimit *rlim;
568 register long s, u;
569 struct timeval tv;
570
571 /*
572 * Compute the amount of time during which the current
573 * process was running, and add that to its total so far.
574 */
575 microtime(&tv);
576 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
577 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
578 if (u < 0) {
579 u += 1000000;
580 s--;
581 } else if (u >= 1000000) {
582 u -= 1000000;
583 s++;
584 }
585 p->p_rtime.tv_usec = u;
586 p->p_rtime.tv_sec = s;
587
588 /*
589 * Check if the process exceeds its cpu resource allocation.
590 * If over max, kill it. In any case, if it has run for more
591 * than 10 minutes, reduce priority to give others a chance.
592 */
593 rlim = &p->p_rlimit[RLIMIT_CPU];
594 if (s >= rlim->rlim_cur) {
595 if (s >= rlim->rlim_max)
596 psignal(p, SIGKILL);
597 else {
598 psignal(p, SIGXCPU);
599 if (rlim->rlim_cur < rlim->rlim_max)
600 rlim->rlim_cur += 5;
601 }
602 }
603 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
604 p->p_nice = autoniceval + NZERO;
605 resetpriority(p);
606 }
607
608 /*
609 * Pick a new current process and record its start time.
610 */
611 cnt.v_swtch++;
612 cpu_switch(p);
613 microtime(&runtime);
614 }
615
616 /*
617 * Initialize the (doubly-linked) run queues
618 * to be empty.
619 */
620 void
621 rqinit()
622 {
623 register int i;
624
625 for (i = 0; i < NQS; i++)
626 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
627 }
628
629 /*
630 * Change process state to be runnable,
631 * placing it on the run queue if it is in memory,
632 * and awakening the swapper if it isn't in memory.
633 */
634 void
635 setrunnable(p)
636 register struct proc *p;
637 {
638 register int s;
639
640 s = splhigh();
641 switch (p->p_stat) {
642 case 0:
643 case SRUN:
644 case SZOMB:
645 default:
646 panic("setrunnable");
647 case SSTOP:
648 /*
649 * If we're being traced (possibly because someone attached us
650 * while we were stopped), check for a signal from the debugger.
651 */
652 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
653 p->p_siglist |= sigmask(p->p_xstat);
654 case SSLEEP:
655 unsleep(p); /* e.g. when sending signals */
656 break;
657
658 case SIDL:
659 break;
660 }
661 p->p_stat = SRUN;
662 if (p->p_flag & P_INMEM)
663 setrunqueue(p);
664 splx(s);
665 if (p->p_slptime > 1)
666 updatepri(p);
667 p->p_slptime = 0;
668 if ((p->p_flag & P_INMEM) == 0)
669 wakeup((caddr_t)&proc0);
670 else if (p->p_priority < curpriority)
671 need_resched();
672 }
673
674 /*
675 * Compute the priority of a process when running in user mode.
676 * Arrange to reschedule if the resulting priority is better
677 * than that of the current process.
678 */
679 void
680 resetpriority(p)
681 register struct proc *p;
682 {
683 register unsigned int newpriority;
684
685 newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
686 newpriority = min(newpriority, MAXPRI);
687 p->p_usrpri = newpriority;
688 if (newpriority < curpriority)
689 need_resched();
690 }
691