kern_synch.c revision 1.47 1 /* $NetBSD: kern_synch.c,v 1.47 1998/02/05 07:59:55 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/buf.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <vm/vm.h>
51
52 #if defined(UVM)
53 #include <uvm/uvm_extern.h>
54 #endif
55
56 #ifdef KTRACE
57 #include <sys/ktrace.h>
58 #endif
59
60 #include <machine/cpu.h>
61
62 u_char curpriority; /* usrpri of curproc */
63 int lbolt; /* once a second sleep address */
64
65 void roundrobin __P((void *));
66 void schedcpu __P((void *));
67 void updatepri __P((struct proc *));
68 void endtsleep __P((void *));
69
70 /*
71 * Force switch among equal priority processes every 100ms.
72 */
73 /* ARGSUSED */
74 void
75 roundrobin(arg)
76 void *arg;
77 {
78
79 need_resched();
80 timeout(roundrobin, NULL, hz / 10);
81 }
82
83 /*
84 * Constants for digital decay and forget:
85 * 90% of (p_estcpu) usage in 5 * loadav time
86 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
87 * Note that, as ps(1) mentions, this can let percentages
88 * total over 100% (I've seen 137.9% for 3 processes).
89 *
90 * Note that hardclock updates p_estcpu and p_cpticks independently.
91 *
92 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
93 * That is, the system wants to compute a value of decay such
94 * that the following for loop:
95 * for (i = 0; i < (5 * loadavg); i++)
96 * p_estcpu *= decay;
97 * will compute
98 * p_estcpu *= 0.1;
99 * for all values of loadavg:
100 *
101 * Mathematically this loop can be expressed by saying:
102 * decay ** (5 * loadavg) ~= .1
103 *
104 * The system computes decay as:
105 * decay = (2 * loadavg) / (2 * loadavg + 1)
106 *
107 * We wish to prove that the system's computation of decay
108 * will always fulfill the equation:
109 * decay ** (5 * loadavg) ~= .1
110 *
111 * If we compute b as:
112 * b = 2 * loadavg
113 * then
114 * decay = b / (b + 1)
115 *
116 * We now need to prove two things:
117 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
118 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
119 *
120 * Facts:
121 * For x close to zero, exp(x) =~ 1 + x, since
122 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
123 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
124 * For x close to zero, ln(1+x) =~ x, since
125 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
126 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
127 * ln(.1) =~ -2.30
128 *
129 * Proof of (1):
130 * Solve (factor)**(power) =~ .1 given power (5*loadav):
131 * solving for factor,
132 * ln(factor) =~ (-2.30/5*loadav), or
133 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
134 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
135 *
136 * Proof of (2):
137 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
138 * solving for power,
139 * power*ln(b/(b+1)) =~ -2.30, or
140 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
141 *
142 * Actual power values for the implemented algorithm are as follows:
143 * loadav: 1 2 3 4
144 * power: 5.68 10.32 14.94 19.55
145 */
146
147 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
148 #define loadfactor(loadav) (2 * (loadav))
149 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
150
151 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
152 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
153
154 /*
155 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
156 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
157 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
158 *
159 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
160 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
161 *
162 * If you dont want to bother with the faster/more-accurate formula, you
163 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
164 * (more general) method of calculating the %age of CPU used by a process.
165 */
166 #define CCPU_SHIFT 11
167
168 /*
169 * Recompute process priorities, every hz ticks.
170 */
171 /* ARGSUSED */
172 void
173 schedcpu(arg)
174 void *arg;
175 {
176 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
177 register struct proc *p;
178 register int s;
179 register unsigned int newcpu;
180
181 wakeup((caddr_t)&lbolt);
182 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
183 /*
184 * Increment time in/out of memory and sleep time
185 * (if sleeping). We ignore overflow; with 16-bit int's
186 * (remember them?) overflow takes 45 days.
187 */
188 p->p_swtime++;
189 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
190 p->p_slptime++;
191 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
192 /*
193 * If the process has slept the entire second,
194 * stop recalculating its priority until it wakes up.
195 */
196 if (p->p_slptime > 1)
197 continue;
198 s = splstatclock(); /* prevent state changes */
199 /*
200 * p_pctcpu is only for ps.
201 */
202 #if (FSHIFT >= CCPU_SHIFT)
203 p->p_pctcpu += (hz == 100)?
204 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
205 100 * (((fixpt_t) p->p_cpticks)
206 << (FSHIFT - CCPU_SHIFT)) / hz;
207 #else
208 p->p_pctcpu += ((FSCALE - ccpu) *
209 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
210 #endif
211 p->p_cpticks = 0;
212 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
213 + p->p_nice - NZERO;
214 p->p_estcpu = min(newcpu, UCHAR_MAX);
215 resetpriority(p);
216 if (p->p_priority >= PUSER) {
217 #define PPQ (128 / NQS) /* priorities per queue */
218 if ((p != curproc) &&
219 p->p_stat == SRUN &&
220 (p->p_flag & P_INMEM) &&
221 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
222 remrunqueue(p);
223 p->p_priority = p->p_usrpri;
224 setrunqueue(p);
225 } else
226 p->p_priority = p->p_usrpri;
227 }
228 splx(s);
229 }
230 #if defined(UVM)
231 uvm_meter();
232 #else
233 vmmeter();
234 #endif
235 timeout(schedcpu, (void *)0, hz);
236 }
237
238 /*
239 * Recalculate the priority of a process after it has slept for a while.
240 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
241 * least six times the loadfactor will decay p_estcpu to zero.
242 */
243 void
244 updatepri(p)
245 register struct proc *p;
246 {
247 register unsigned int newcpu = p->p_estcpu;
248 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
249
250 if (p->p_slptime > 5 * loadfac)
251 p->p_estcpu = 0;
252 else {
253 p->p_slptime--; /* the first time was done in schedcpu */
254 while (newcpu && --p->p_slptime)
255 newcpu = (int) decay_cpu(loadfac, newcpu);
256 p->p_estcpu = min(newcpu, UCHAR_MAX);
257 }
258 resetpriority(p);
259 }
260
261 /*
262 * We're only looking at 7 bits of the address; everything is
263 * aligned to 4, lots of things are aligned to greater powers
264 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
265 */
266 #define TABLESIZE 128
267 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
268 struct slpque {
269 struct proc *sq_head;
270 struct proc **sq_tailp;
271 } slpque[TABLESIZE];
272
273 /*
274 * During autoconfiguration or after a panic, a sleep will simply
275 * lower the priority briefly to allow interrupts, then return.
276 * The priority to be used (safepri) is machine-dependent, thus this
277 * value is initialized and maintained in the machine-dependent layers.
278 * This priority will typically be 0, or the lowest priority
279 * that is safe for use on the interrupt stack; it can be made
280 * higher to block network software interrupts after panics.
281 */
282 int safepri;
283
284 /*
285 * General sleep call. Suspends the current process until a wakeup is
286 * performed on the specified identifier. The process will then be made
287 * runnable with the specified priority. Sleeps at most timo/hz seconds
288 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
289 * before and after sleeping, else signals are not checked. Returns 0 if
290 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
291 * signal needs to be delivered, ERESTART is returned if the current system
292 * call should be restarted if possible, and EINTR is returned if the system
293 * call should be interrupted by the signal (return EINTR).
294 */
295 int
296 tsleep(ident, priority, wmesg, timo)
297 void *ident;
298 int priority, timo;
299 const char *wmesg;
300 {
301 register struct proc *p = curproc;
302 register struct slpque *qp;
303 register s;
304 int sig, catch = priority & PCATCH;
305 extern int cold;
306 void endtsleep __P((void *));
307
308 if (cold || panicstr) {
309 /*
310 * After a panic, or during autoconfiguration,
311 * just give interrupts a chance, then just return;
312 * don't run any other procs or panic below,
313 * in case this is the idle process and already asleep.
314 */
315 s = splhigh();
316 splx(safepri);
317 splx(s);
318 return (0);
319 }
320
321 #ifdef KTRACE
322 if (KTRPOINT(p, KTR_CSW))
323 ktrcsw(p->p_tracep, 1, 0);
324 #endif
325 s = splhigh();
326
327 #ifdef DIAGNOSTIC
328 if (ident == NULL || p->p_stat != SRUN || p->p_back)
329 panic("tsleep");
330 #endif
331 p->p_wchan = ident;
332 p->p_wmesg = wmesg;
333 p->p_slptime = 0;
334 p->p_priority = priority & PRIMASK;
335 qp = &slpque[LOOKUP(ident)];
336 if (qp->sq_head == 0)
337 qp->sq_head = p;
338 else
339 *qp->sq_tailp = p;
340 *(qp->sq_tailp = &p->p_forw) = 0;
341 if (timo)
342 timeout(endtsleep, (void *)p, timo);
343 /*
344 * We put ourselves on the sleep queue and start our timeout
345 * before calling CURSIG, as we could stop there, and a wakeup
346 * or a SIGCONT (or both) could occur while we were stopped.
347 * A SIGCONT would cause us to be marked as SSLEEP
348 * without resuming us, thus we must be ready for sleep
349 * when CURSIG is called. If the wakeup happens while we're
350 * stopped, p->p_wchan will be 0 upon return from CURSIG.
351 */
352 if (catch) {
353 p->p_flag |= P_SINTR;
354 if ((sig = CURSIG(p)) != 0) {
355 if (p->p_wchan)
356 unsleep(p);
357 p->p_stat = SRUN;
358 goto resume;
359 }
360 if (p->p_wchan == 0) {
361 catch = 0;
362 goto resume;
363 }
364 } else
365 sig = 0;
366 p->p_stat = SSLEEP;
367 p->p_stats->p_ru.ru_nvcsw++;
368 mi_switch();
369 #ifdef DDB
370 /* handy breakpoint location after process "wakes" */
371 asm(".globl bpendtsleep ; bpendtsleep:");
372 #endif
373 resume:
374 curpriority = p->p_usrpri;
375 splx(s);
376 p->p_flag &= ~P_SINTR;
377 if (p->p_flag & P_TIMEOUT) {
378 p->p_flag &= ~P_TIMEOUT;
379 if (sig == 0) {
380 #ifdef KTRACE
381 if (KTRPOINT(p, KTR_CSW))
382 ktrcsw(p->p_tracep, 0, 0);
383 #endif
384 return (EWOULDBLOCK);
385 }
386 } else if (timo)
387 untimeout(endtsleep, (void *)p);
388 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
389 #ifdef KTRACE
390 if (KTRPOINT(p, KTR_CSW))
391 ktrcsw(p->p_tracep, 0, 0);
392 #endif
393 if (p->p_sigacts->ps_sigintr & sigmask(sig))
394 return (EINTR);
395 return (ERESTART);
396 }
397 #ifdef KTRACE
398 if (KTRPOINT(p, KTR_CSW))
399 ktrcsw(p->p_tracep, 0, 0);
400 #endif
401 return (0);
402 }
403
404 /*
405 * Implement timeout for tsleep.
406 * If process hasn't been awakened (wchan non-zero),
407 * set timeout flag and undo the sleep. If proc
408 * is stopped, just unsleep so it will remain stopped.
409 */
410 void
411 endtsleep(arg)
412 void *arg;
413 {
414 register struct proc *p;
415 int s;
416
417 p = (struct proc *)arg;
418 s = splhigh();
419 if (p->p_wchan) {
420 if (p->p_stat == SSLEEP)
421 setrunnable(p);
422 else
423 unsleep(p);
424 p->p_flag |= P_TIMEOUT;
425 }
426 splx(s);
427 }
428
429 /*
430 * Short-term, non-interruptable sleep.
431 */
432 void
433 sleep(ident, priority)
434 void *ident;
435 int priority;
436 {
437 register struct proc *p = curproc;
438 register struct slpque *qp;
439 register s;
440 extern int cold;
441
442 #ifdef DIAGNOSTIC
443 if (priority > PZERO) {
444 printf("sleep called with priority %d > PZERO, wchan: %p\n",
445 priority, ident);
446 panic("old sleep");
447 }
448 #endif
449 s = splhigh();
450 if (cold || panicstr) {
451 /*
452 * After a panic, or during autoconfiguration,
453 * just give interrupts a chance, then just return;
454 * don't run any other procs or panic below,
455 * in case this is the idle process and already asleep.
456 */
457 splx(safepri);
458 splx(s);
459 return;
460 }
461 #ifdef DIAGNOSTIC
462 if (ident == NULL || p->p_stat != SRUN || p->p_back)
463 panic("sleep");
464 #endif
465 p->p_wchan = ident;
466 p->p_wmesg = NULL;
467 p->p_slptime = 0;
468 p->p_priority = priority;
469 qp = &slpque[LOOKUP(ident)];
470 if (qp->sq_head == 0)
471 qp->sq_head = p;
472 else
473 *qp->sq_tailp = p;
474 *(qp->sq_tailp = &p->p_forw) = 0;
475 p->p_stat = SSLEEP;
476 p->p_stats->p_ru.ru_nvcsw++;
477 #ifdef KTRACE
478 if (KTRPOINT(p, KTR_CSW))
479 ktrcsw(p->p_tracep, 1, 0);
480 #endif
481 mi_switch();
482 #ifdef DDB
483 /* handy breakpoint location after process "wakes" */
484 asm(".globl bpendsleep ; bpendsleep:");
485 #endif
486 #ifdef KTRACE
487 if (KTRPOINT(p, KTR_CSW))
488 ktrcsw(p->p_tracep, 0, 0);
489 #endif
490 curpriority = p->p_usrpri;
491 splx(s);
492 }
493
494 /*
495 * Remove a process from its wait queue
496 */
497 void
498 unsleep(p)
499 register struct proc *p;
500 {
501 register struct slpque *qp;
502 register struct proc **hp;
503 int s;
504
505 s = splhigh();
506 if (p->p_wchan) {
507 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
508 while (*hp != p)
509 hp = &(*hp)->p_forw;
510 *hp = p->p_forw;
511 if (qp->sq_tailp == &p->p_forw)
512 qp->sq_tailp = hp;
513 p->p_wchan = 0;
514 }
515 splx(s);
516 }
517
518 /*
519 * Make all processes sleeping on the specified identifier runnable.
520 */
521 void
522 wakeup(ident)
523 register void *ident;
524 {
525 register struct slpque *qp;
526 register struct proc *p, **q;
527 int s;
528
529 s = splhigh();
530 qp = &slpque[LOOKUP(ident)];
531 restart:
532 for (q = &qp->sq_head; (p = *q) != NULL; ) {
533 #ifdef DIAGNOSTIC
534 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
535 panic("wakeup");
536 #endif
537 if (p->p_wchan == ident) {
538 p->p_wchan = 0;
539 *q = p->p_forw;
540 if (qp->sq_tailp == &p->p_forw)
541 qp->sq_tailp = q;
542 if (p->p_stat == SSLEEP) {
543 /* OPTIMIZED EXPANSION OF setrunnable(p); */
544 if (p->p_slptime > 1)
545 updatepri(p);
546 p->p_slptime = 0;
547 p->p_stat = SRUN;
548 if (p->p_flag & P_INMEM)
549 setrunqueue(p);
550 /*
551 * Since curpriority is a user priority,
552 * p->p_priority is always better than
553 * curpriority.
554 */
555 if ((p->p_flag & P_INMEM) == 0)
556 wakeup((caddr_t)&proc0);
557 else
558 need_resched();
559 /* END INLINE EXPANSION */
560 goto restart;
561 }
562 } else
563 q = &p->p_forw;
564 }
565 splx(s);
566 }
567
568 /*
569 * The machine independent parts of mi_switch().
570 * Must be called at splstatclock() or higher.
571 */
572 void
573 mi_switch()
574 {
575 register struct proc *p = curproc; /* XXX */
576 register struct rlimit *rlim;
577 register long s, u;
578 struct timeval tv;
579
580 /*
581 * Compute the amount of time during which the current
582 * process was running, and add that to its total so far.
583 */
584 microtime(&tv);
585 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
586 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
587 if (u < 0) {
588 u += 1000000;
589 s--;
590 } else if (u >= 1000000) {
591 u -= 1000000;
592 s++;
593 }
594 p->p_rtime.tv_usec = u;
595 p->p_rtime.tv_sec = s;
596
597 /*
598 * Check if the process exceeds its cpu resource allocation.
599 * If over max, kill it. In any case, if it has run for more
600 * than 10 minutes, reduce priority to give others a chance.
601 */
602 rlim = &p->p_rlimit[RLIMIT_CPU];
603 if (s >= rlim->rlim_cur) {
604 if (s >= rlim->rlim_max)
605 psignal(p, SIGKILL);
606 else {
607 psignal(p, SIGXCPU);
608 if (rlim->rlim_cur < rlim->rlim_max)
609 rlim->rlim_cur += 5;
610 }
611 }
612 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
613 p->p_nice = autoniceval + NZERO;
614 resetpriority(p);
615 }
616
617 /*
618 * Pick a new current process and record its start time.
619 */
620 #if defined(UVM)
621 uvmexp.swtch++;
622 #else
623 cnt.v_swtch++;
624 #endif
625 cpu_switch(p);
626 microtime(&runtime);
627 }
628
629 /*
630 * Initialize the (doubly-linked) run queues
631 * to be empty.
632 */
633 void
634 rqinit()
635 {
636 register int i;
637
638 for (i = 0; i < NQS; i++)
639 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
640 }
641
642 /*
643 * Change process state to be runnable,
644 * placing it on the run queue if it is in memory,
645 * and awakening the swapper if it isn't in memory.
646 */
647 void
648 setrunnable(p)
649 register struct proc *p;
650 {
651 register int s;
652
653 s = splhigh();
654 switch (p->p_stat) {
655 case 0:
656 case SRUN:
657 case SZOMB:
658 default:
659 panic("setrunnable");
660 case SSTOP:
661 /*
662 * If we're being traced (possibly because someone attached us
663 * while we were stopped), check for a signal from the debugger.
664 */
665 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
666 p->p_siglist |= sigmask(p->p_xstat);
667 case SSLEEP:
668 unsleep(p); /* e.g. when sending signals */
669 break;
670
671 case SIDL:
672 break;
673 }
674 p->p_stat = SRUN;
675 if (p->p_flag & P_INMEM)
676 setrunqueue(p);
677 splx(s);
678 if (p->p_slptime > 1)
679 updatepri(p);
680 p->p_slptime = 0;
681 if ((p->p_flag & P_INMEM) == 0)
682 wakeup((caddr_t)&proc0);
683 else if (p->p_priority < curpriority)
684 need_resched();
685 }
686
687 /*
688 * Compute the priority of a process when running in user mode.
689 * Arrange to reschedule if the resulting priority is better
690 * than that of the current process.
691 */
692 void
693 resetpriority(p)
694 register struct proc *p;
695 {
696 register unsigned int newpriority;
697
698 newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
699 newpriority = min(newpriority, MAXPRI);
700 p->p_usrpri = newpriority;
701 if (newpriority < curpriority)
702 need_resched();
703 }
704