kern_synch.c revision 1.48 1 /* $NetBSD: kern_synch.c,v 1.48 1998/02/10 14:09:45 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
41 */
42
43 #include "opt_uvm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/buf.h>
50 #include <sys/signalvar.h>
51 #include <sys/resourcevar.h>
52 #include <vm/vm.h>
53
54 #if defined(UVM)
55 #include <uvm/uvm_extern.h>
56 #endif
57
58 #ifdef KTRACE
59 #include <sys/ktrace.h>
60 #endif
61
62 #include <machine/cpu.h>
63
64 u_char curpriority; /* usrpri of curproc */
65 int lbolt; /* once a second sleep address */
66
67 void roundrobin __P((void *));
68 void schedcpu __P((void *));
69 void updatepri __P((struct proc *));
70 void endtsleep __P((void *));
71
72 /*
73 * Force switch among equal priority processes every 100ms.
74 */
75 /* ARGSUSED */
76 void
77 roundrobin(arg)
78 void *arg;
79 {
80
81 need_resched();
82 timeout(roundrobin, NULL, hz / 10);
83 }
84
85 /*
86 * Constants for digital decay and forget:
87 * 90% of (p_estcpu) usage in 5 * loadav time
88 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
89 * Note that, as ps(1) mentions, this can let percentages
90 * total over 100% (I've seen 137.9% for 3 processes).
91 *
92 * Note that hardclock updates p_estcpu and p_cpticks independently.
93 *
94 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
95 * That is, the system wants to compute a value of decay such
96 * that the following for loop:
97 * for (i = 0; i < (5 * loadavg); i++)
98 * p_estcpu *= decay;
99 * will compute
100 * p_estcpu *= 0.1;
101 * for all values of loadavg:
102 *
103 * Mathematically this loop can be expressed by saying:
104 * decay ** (5 * loadavg) ~= .1
105 *
106 * The system computes decay as:
107 * decay = (2 * loadavg) / (2 * loadavg + 1)
108 *
109 * We wish to prove that the system's computation of decay
110 * will always fulfill the equation:
111 * decay ** (5 * loadavg) ~= .1
112 *
113 * If we compute b as:
114 * b = 2 * loadavg
115 * then
116 * decay = b / (b + 1)
117 *
118 * We now need to prove two things:
119 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
120 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
121 *
122 * Facts:
123 * For x close to zero, exp(x) =~ 1 + x, since
124 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
125 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
126 * For x close to zero, ln(1+x) =~ x, since
127 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
128 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
129 * ln(.1) =~ -2.30
130 *
131 * Proof of (1):
132 * Solve (factor)**(power) =~ .1 given power (5*loadav):
133 * solving for factor,
134 * ln(factor) =~ (-2.30/5*loadav), or
135 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
136 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
137 *
138 * Proof of (2):
139 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
140 * solving for power,
141 * power*ln(b/(b+1)) =~ -2.30, or
142 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
143 *
144 * Actual power values for the implemented algorithm are as follows:
145 * loadav: 1 2 3 4
146 * power: 5.68 10.32 14.94 19.55
147 */
148
149 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
150 #define loadfactor(loadav) (2 * (loadav))
151 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
152
153 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
154 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
155
156 /*
157 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
158 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
159 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
160 *
161 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
162 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
163 *
164 * If you dont want to bother with the faster/more-accurate formula, you
165 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
166 * (more general) method of calculating the %age of CPU used by a process.
167 */
168 #define CCPU_SHIFT 11
169
170 /*
171 * Recompute process priorities, every hz ticks.
172 */
173 /* ARGSUSED */
174 void
175 schedcpu(arg)
176 void *arg;
177 {
178 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
179 register struct proc *p;
180 register int s;
181 register unsigned int newcpu;
182
183 wakeup((caddr_t)&lbolt);
184 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
185 /*
186 * Increment time in/out of memory and sleep time
187 * (if sleeping). We ignore overflow; with 16-bit int's
188 * (remember them?) overflow takes 45 days.
189 */
190 p->p_swtime++;
191 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
192 p->p_slptime++;
193 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
194 /*
195 * If the process has slept the entire second,
196 * stop recalculating its priority until it wakes up.
197 */
198 if (p->p_slptime > 1)
199 continue;
200 s = splstatclock(); /* prevent state changes */
201 /*
202 * p_pctcpu is only for ps.
203 */
204 #if (FSHIFT >= CCPU_SHIFT)
205 p->p_pctcpu += (hz == 100)?
206 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
207 100 * (((fixpt_t) p->p_cpticks)
208 << (FSHIFT - CCPU_SHIFT)) / hz;
209 #else
210 p->p_pctcpu += ((FSCALE - ccpu) *
211 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
212 #endif
213 p->p_cpticks = 0;
214 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
215 + p->p_nice - NZERO;
216 p->p_estcpu = min(newcpu, UCHAR_MAX);
217 resetpriority(p);
218 if (p->p_priority >= PUSER) {
219 #define PPQ (128 / NQS) /* priorities per queue */
220 if ((p != curproc) &&
221 p->p_stat == SRUN &&
222 (p->p_flag & P_INMEM) &&
223 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
224 remrunqueue(p);
225 p->p_priority = p->p_usrpri;
226 setrunqueue(p);
227 } else
228 p->p_priority = p->p_usrpri;
229 }
230 splx(s);
231 }
232 #if defined(UVM)
233 uvm_meter();
234 #else
235 vmmeter();
236 #endif
237 timeout(schedcpu, (void *)0, hz);
238 }
239
240 /*
241 * Recalculate the priority of a process after it has slept for a while.
242 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
243 * least six times the loadfactor will decay p_estcpu to zero.
244 */
245 void
246 updatepri(p)
247 register struct proc *p;
248 {
249 register unsigned int newcpu = p->p_estcpu;
250 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
251
252 if (p->p_slptime > 5 * loadfac)
253 p->p_estcpu = 0;
254 else {
255 p->p_slptime--; /* the first time was done in schedcpu */
256 while (newcpu && --p->p_slptime)
257 newcpu = (int) decay_cpu(loadfac, newcpu);
258 p->p_estcpu = min(newcpu, UCHAR_MAX);
259 }
260 resetpriority(p);
261 }
262
263 /*
264 * We're only looking at 7 bits of the address; everything is
265 * aligned to 4, lots of things are aligned to greater powers
266 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
267 */
268 #define TABLESIZE 128
269 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
270 struct slpque {
271 struct proc *sq_head;
272 struct proc **sq_tailp;
273 } slpque[TABLESIZE];
274
275 /*
276 * During autoconfiguration or after a panic, a sleep will simply
277 * lower the priority briefly to allow interrupts, then return.
278 * The priority to be used (safepri) is machine-dependent, thus this
279 * value is initialized and maintained in the machine-dependent layers.
280 * This priority will typically be 0, or the lowest priority
281 * that is safe for use on the interrupt stack; it can be made
282 * higher to block network software interrupts after panics.
283 */
284 int safepri;
285
286 /*
287 * General sleep call. Suspends the current process until a wakeup is
288 * performed on the specified identifier. The process will then be made
289 * runnable with the specified priority. Sleeps at most timo/hz seconds
290 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
291 * before and after sleeping, else signals are not checked. Returns 0 if
292 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
293 * signal needs to be delivered, ERESTART is returned if the current system
294 * call should be restarted if possible, and EINTR is returned if the system
295 * call should be interrupted by the signal (return EINTR).
296 */
297 int
298 tsleep(ident, priority, wmesg, timo)
299 void *ident;
300 int priority, timo;
301 const char *wmesg;
302 {
303 register struct proc *p = curproc;
304 register struct slpque *qp;
305 register s;
306 int sig, catch = priority & PCATCH;
307 extern int cold;
308 void endtsleep __P((void *));
309
310 if (cold || panicstr) {
311 /*
312 * After a panic, or during autoconfiguration,
313 * just give interrupts a chance, then just return;
314 * don't run any other procs or panic below,
315 * in case this is the idle process and already asleep.
316 */
317 s = splhigh();
318 splx(safepri);
319 splx(s);
320 return (0);
321 }
322
323 #ifdef KTRACE
324 if (KTRPOINT(p, KTR_CSW))
325 ktrcsw(p->p_tracep, 1, 0);
326 #endif
327 s = splhigh();
328
329 #ifdef DIAGNOSTIC
330 if (ident == NULL || p->p_stat != SRUN || p->p_back)
331 panic("tsleep");
332 #endif
333 p->p_wchan = ident;
334 p->p_wmesg = wmesg;
335 p->p_slptime = 0;
336 p->p_priority = priority & PRIMASK;
337 qp = &slpque[LOOKUP(ident)];
338 if (qp->sq_head == 0)
339 qp->sq_head = p;
340 else
341 *qp->sq_tailp = p;
342 *(qp->sq_tailp = &p->p_forw) = 0;
343 if (timo)
344 timeout(endtsleep, (void *)p, timo);
345 /*
346 * We put ourselves on the sleep queue and start our timeout
347 * before calling CURSIG, as we could stop there, and a wakeup
348 * or a SIGCONT (or both) could occur while we were stopped.
349 * A SIGCONT would cause us to be marked as SSLEEP
350 * without resuming us, thus we must be ready for sleep
351 * when CURSIG is called. If the wakeup happens while we're
352 * stopped, p->p_wchan will be 0 upon return from CURSIG.
353 */
354 if (catch) {
355 p->p_flag |= P_SINTR;
356 if ((sig = CURSIG(p)) != 0) {
357 if (p->p_wchan)
358 unsleep(p);
359 p->p_stat = SRUN;
360 goto resume;
361 }
362 if (p->p_wchan == 0) {
363 catch = 0;
364 goto resume;
365 }
366 } else
367 sig = 0;
368 p->p_stat = SSLEEP;
369 p->p_stats->p_ru.ru_nvcsw++;
370 mi_switch();
371 #ifdef DDB
372 /* handy breakpoint location after process "wakes" */
373 asm(".globl bpendtsleep ; bpendtsleep:");
374 #endif
375 resume:
376 curpriority = p->p_usrpri;
377 splx(s);
378 p->p_flag &= ~P_SINTR;
379 if (p->p_flag & P_TIMEOUT) {
380 p->p_flag &= ~P_TIMEOUT;
381 if (sig == 0) {
382 #ifdef KTRACE
383 if (KTRPOINT(p, KTR_CSW))
384 ktrcsw(p->p_tracep, 0, 0);
385 #endif
386 return (EWOULDBLOCK);
387 }
388 } else if (timo)
389 untimeout(endtsleep, (void *)p);
390 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
391 #ifdef KTRACE
392 if (KTRPOINT(p, KTR_CSW))
393 ktrcsw(p->p_tracep, 0, 0);
394 #endif
395 if (p->p_sigacts->ps_sigintr & sigmask(sig))
396 return (EINTR);
397 return (ERESTART);
398 }
399 #ifdef KTRACE
400 if (KTRPOINT(p, KTR_CSW))
401 ktrcsw(p->p_tracep, 0, 0);
402 #endif
403 return (0);
404 }
405
406 /*
407 * Implement timeout for tsleep.
408 * If process hasn't been awakened (wchan non-zero),
409 * set timeout flag and undo the sleep. If proc
410 * is stopped, just unsleep so it will remain stopped.
411 */
412 void
413 endtsleep(arg)
414 void *arg;
415 {
416 register struct proc *p;
417 int s;
418
419 p = (struct proc *)arg;
420 s = splhigh();
421 if (p->p_wchan) {
422 if (p->p_stat == SSLEEP)
423 setrunnable(p);
424 else
425 unsleep(p);
426 p->p_flag |= P_TIMEOUT;
427 }
428 splx(s);
429 }
430
431 /*
432 * Short-term, non-interruptable sleep.
433 */
434 void
435 sleep(ident, priority)
436 void *ident;
437 int priority;
438 {
439 register struct proc *p = curproc;
440 register struct slpque *qp;
441 register s;
442 extern int cold;
443
444 #ifdef DIAGNOSTIC
445 if (priority > PZERO) {
446 printf("sleep called with priority %d > PZERO, wchan: %p\n",
447 priority, ident);
448 panic("old sleep");
449 }
450 #endif
451 s = splhigh();
452 if (cold || panicstr) {
453 /*
454 * After a panic, or during autoconfiguration,
455 * just give interrupts a chance, then just return;
456 * don't run any other procs or panic below,
457 * in case this is the idle process and already asleep.
458 */
459 splx(safepri);
460 splx(s);
461 return;
462 }
463 #ifdef DIAGNOSTIC
464 if (ident == NULL || p->p_stat != SRUN || p->p_back)
465 panic("sleep");
466 #endif
467 p->p_wchan = ident;
468 p->p_wmesg = NULL;
469 p->p_slptime = 0;
470 p->p_priority = priority;
471 qp = &slpque[LOOKUP(ident)];
472 if (qp->sq_head == 0)
473 qp->sq_head = p;
474 else
475 *qp->sq_tailp = p;
476 *(qp->sq_tailp = &p->p_forw) = 0;
477 p->p_stat = SSLEEP;
478 p->p_stats->p_ru.ru_nvcsw++;
479 #ifdef KTRACE
480 if (KTRPOINT(p, KTR_CSW))
481 ktrcsw(p->p_tracep, 1, 0);
482 #endif
483 mi_switch();
484 #ifdef DDB
485 /* handy breakpoint location after process "wakes" */
486 asm(".globl bpendsleep ; bpendsleep:");
487 #endif
488 #ifdef KTRACE
489 if (KTRPOINT(p, KTR_CSW))
490 ktrcsw(p->p_tracep, 0, 0);
491 #endif
492 curpriority = p->p_usrpri;
493 splx(s);
494 }
495
496 /*
497 * Remove a process from its wait queue
498 */
499 void
500 unsleep(p)
501 register struct proc *p;
502 {
503 register struct slpque *qp;
504 register struct proc **hp;
505 int s;
506
507 s = splhigh();
508 if (p->p_wchan) {
509 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
510 while (*hp != p)
511 hp = &(*hp)->p_forw;
512 *hp = p->p_forw;
513 if (qp->sq_tailp == &p->p_forw)
514 qp->sq_tailp = hp;
515 p->p_wchan = 0;
516 }
517 splx(s);
518 }
519
520 /*
521 * Make all processes sleeping on the specified identifier runnable.
522 */
523 void
524 wakeup(ident)
525 register void *ident;
526 {
527 register struct slpque *qp;
528 register struct proc *p, **q;
529 int s;
530
531 s = splhigh();
532 qp = &slpque[LOOKUP(ident)];
533 restart:
534 for (q = &qp->sq_head; (p = *q) != NULL; ) {
535 #ifdef DIAGNOSTIC
536 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
537 panic("wakeup");
538 #endif
539 if (p->p_wchan == ident) {
540 p->p_wchan = 0;
541 *q = p->p_forw;
542 if (qp->sq_tailp == &p->p_forw)
543 qp->sq_tailp = q;
544 if (p->p_stat == SSLEEP) {
545 /* OPTIMIZED EXPANSION OF setrunnable(p); */
546 if (p->p_slptime > 1)
547 updatepri(p);
548 p->p_slptime = 0;
549 p->p_stat = SRUN;
550 if (p->p_flag & P_INMEM)
551 setrunqueue(p);
552 /*
553 * Since curpriority is a user priority,
554 * p->p_priority is always better than
555 * curpriority.
556 */
557 if ((p->p_flag & P_INMEM) == 0)
558 wakeup((caddr_t)&proc0);
559 else
560 need_resched();
561 /* END INLINE EXPANSION */
562 goto restart;
563 }
564 } else
565 q = &p->p_forw;
566 }
567 splx(s);
568 }
569
570 /*
571 * The machine independent parts of mi_switch().
572 * Must be called at splstatclock() or higher.
573 */
574 void
575 mi_switch()
576 {
577 register struct proc *p = curproc; /* XXX */
578 register struct rlimit *rlim;
579 register long s, u;
580 struct timeval tv;
581
582 /*
583 * Compute the amount of time during which the current
584 * process was running, and add that to its total so far.
585 */
586 microtime(&tv);
587 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
588 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
589 if (u < 0) {
590 u += 1000000;
591 s--;
592 } else if (u >= 1000000) {
593 u -= 1000000;
594 s++;
595 }
596 p->p_rtime.tv_usec = u;
597 p->p_rtime.tv_sec = s;
598
599 /*
600 * Check if the process exceeds its cpu resource allocation.
601 * If over max, kill it. In any case, if it has run for more
602 * than 10 minutes, reduce priority to give others a chance.
603 */
604 rlim = &p->p_rlimit[RLIMIT_CPU];
605 if (s >= rlim->rlim_cur) {
606 if (s >= rlim->rlim_max)
607 psignal(p, SIGKILL);
608 else {
609 psignal(p, SIGXCPU);
610 if (rlim->rlim_cur < rlim->rlim_max)
611 rlim->rlim_cur += 5;
612 }
613 }
614 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
615 p->p_nice = autoniceval + NZERO;
616 resetpriority(p);
617 }
618
619 /*
620 * Pick a new current process and record its start time.
621 */
622 #if defined(UVM)
623 uvmexp.swtch++;
624 #else
625 cnt.v_swtch++;
626 #endif
627 cpu_switch(p);
628 microtime(&runtime);
629 }
630
631 /*
632 * Initialize the (doubly-linked) run queues
633 * to be empty.
634 */
635 void
636 rqinit()
637 {
638 register int i;
639
640 for (i = 0; i < NQS; i++)
641 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
642 }
643
644 /*
645 * Change process state to be runnable,
646 * placing it on the run queue if it is in memory,
647 * and awakening the swapper if it isn't in memory.
648 */
649 void
650 setrunnable(p)
651 register struct proc *p;
652 {
653 register int s;
654
655 s = splhigh();
656 switch (p->p_stat) {
657 case 0:
658 case SRUN:
659 case SZOMB:
660 default:
661 panic("setrunnable");
662 case SSTOP:
663 /*
664 * If we're being traced (possibly because someone attached us
665 * while we were stopped), check for a signal from the debugger.
666 */
667 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
668 p->p_siglist |= sigmask(p->p_xstat);
669 case SSLEEP:
670 unsleep(p); /* e.g. when sending signals */
671 break;
672
673 case SIDL:
674 break;
675 }
676 p->p_stat = SRUN;
677 if (p->p_flag & P_INMEM)
678 setrunqueue(p);
679 splx(s);
680 if (p->p_slptime > 1)
681 updatepri(p);
682 p->p_slptime = 0;
683 if ((p->p_flag & P_INMEM) == 0)
684 wakeup((caddr_t)&proc0);
685 else if (p->p_priority < curpriority)
686 need_resched();
687 }
688
689 /*
690 * Compute the priority of a process when running in user mode.
691 * Arrange to reschedule if the resulting priority is better
692 * than that of the current process.
693 */
694 void
695 resetpriority(p)
696 register struct proc *p;
697 {
698 register unsigned int newpriority;
699
700 newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
701 newpriority = min(newpriority, MAXPRI);
702 p->p_usrpri = newpriority;
703 if (newpriority < curpriority)
704 need_resched();
705 }
706