Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.62
      1 /*	$NetBSD: kern_synch.c,v 1.62 1999/07/25 06:30:35 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     41  */
     42 
     43 #include "opt_ddb.h"
     44 #include "opt_ktrace.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/proc.h>
     49 #include <sys/kernel.h>
     50 #include <sys/buf.h>
     51 #include <sys/signalvar.h>
     52 #include <sys/resourcevar.h>
     53 #include <vm/vm.h>
     54 #include <sys/sched.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 
     58 #ifdef KTRACE
     59 #include <sys/ktrace.h>
     60 #endif
     61 
     62 #define NICE_WEIGHT 2			/* priorities per nice level */
     63 #define	PPQ	(128 / NQS)		/* priorities per queue */
     64 
     65 #define	ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
     66 
     67 #include <machine/cpu.h>
     68 
     69 u_char	curpriority;		/* usrpri of curproc */
     70 int	lbolt;			/* once a second sleep address */
     71 
     72 void roundrobin __P((void *));
     73 void schedcpu __P((void *));
     74 void updatepri __P((struct proc *));
     75 void endtsleep __P((void *));
     76 
     77 /*
     78  * Force switch among equal priority processes every 100ms.
     79  */
     80 /* ARGSUSED */
     81 void
     82 roundrobin(arg)
     83 	void *arg;
     84 {
     85 
     86 	need_resched();
     87 	timeout(roundrobin, NULL, hz / 10);
     88 }
     89 
     90 /*
     91  * Constants for digital decay and forget:
     92  *	90% of (p_estcpu) usage in 5 * loadav time
     93  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     94  *          Note that, as ps(1) mentions, this can let percentages
     95  *          total over 100% (I've seen 137.9% for 3 processes).
     96  *
     97  * Note that hardclock updates p_estcpu and p_cpticks independently.
     98  *
     99  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    100  * That is, the system wants to compute a value of decay such
    101  * that the following for loop:
    102  * 	for (i = 0; i < (5 * loadavg); i++)
    103  * 		p_estcpu *= decay;
    104  * will compute
    105  * 	p_estcpu *= 0.1;
    106  * for all values of loadavg:
    107  *
    108  * Mathematically this loop can be expressed by saying:
    109  * 	decay ** (5 * loadavg) ~= .1
    110  *
    111  * The system computes decay as:
    112  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    113  *
    114  * We wish to prove that the system's computation of decay
    115  * will always fulfill the equation:
    116  * 	decay ** (5 * loadavg) ~= .1
    117  *
    118  * If we compute b as:
    119  * 	b = 2 * loadavg
    120  * then
    121  * 	decay = b / (b + 1)
    122  *
    123  * We now need to prove two things:
    124  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    125  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    126  *
    127  * Facts:
    128  *         For x close to zero, exp(x) =~ 1 + x, since
    129  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    130  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    131  *         For x close to zero, ln(1+x) =~ x, since
    132  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    133  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    134  *         ln(.1) =~ -2.30
    135  *
    136  * Proof of (1):
    137  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    138  *	solving for factor,
    139  *      ln(factor) =~ (-2.30/5*loadav), or
    140  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    141  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    142  *
    143  * Proof of (2):
    144  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    145  *	solving for power,
    146  *      power*ln(b/(b+1)) =~ -2.30, or
    147  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    148  *
    149  * Actual power values for the implemented algorithm are as follows:
    150  *      loadav: 1       2       3       4
    151  *      power:  5.68    10.32   14.94   19.55
    152  */
    153 
    154 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    155 #define	loadfactor(loadav)	(2 * (loadav))
    156 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    157 
    158 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    159 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    160 
    161 /*
    162  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    163  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    164  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    165  *
    166  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    167  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    168  *
    169  * If you dont want to bother with the faster/more-accurate formula, you
    170  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    171  * (more general) method of calculating the %age of CPU used by a process.
    172  */
    173 #define	CCPU_SHIFT	11
    174 
    175 /*
    176  * Recompute process priorities, every hz ticks.
    177  */
    178 /* ARGSUSED */
    179 void
    180 schedcpu(arg)
    181 	void *arg;
    182 {
    183 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    184 	register struct proc *p;
    185 	register int s;
    186 	register unsigned int newcpu;
    187 
    188 	wakeup((caddr_t)&lbolt);
    189 	proclist_lock_read();
    190 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    191 		/*
    192 		 * Increment time in/out of memory and sleep time
    193 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    194 		 * (remember them?) overflow takes 45 days.
    195 		 */
    196 		p->p_swtime++;
    197 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    198 			p->p_slptime++;
    199 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    200 		/*
    201 		 * If the process has slept the entire second,
    202 		 * stop recalculating its priority until it wakes up.
    203 		 */
    204 		if (p->p_slptime > 1)
    205 			continue;
    206 		s = splstatclock();	/* prevent state changes */
    207 		/*
    208 		 * p_pctcpu is only for ps.
    209 		 */
    210 		KASSERT(profhz);
    211 #if	(FSHIFT >= CCPU_SHIFT)
    212 		p->p_pctcpu += (profhz == 100)?
    213 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    214                 	100 * (((fixpt_t) p->p_cpticks)
    215 				<< (FSHIFT - CCPU_SHIFT)) / profhz;
    216 #else
    217 		p->p_pctcpu += ((FSCALE - ccpu) *
    218 			(p->p_cpticks * FSCALE / profhz)) >> FSHIFT;
    219 #endif
    220 		p->p_cpticks = 0;
    221 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    222 		p->p_estcpu = newcpu;
    223 		resetpriority(p);
    224 		if (p->p_priority >= PUSER) {
    225 			if ((p != curproc) &&
    226 			    p->p_stat == SRUN &&
    227 			    (p->p_flag & P_INMEM) &&
    228 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    229 				remrunqueue(p);
    230 				p->p_priority = p->p_usrpri;
    231 				setrunqueue(p);
    232 			} else
    233 				p->p_priority = p->p_usrpri;
    234 		}
    235 		splx(s);
    236 	}
    237 	proclist_unlock_read();
    238 	uvm_meter();
    239 	timeout(schedcpu, (void *)0, hz);
    240 }
    241 
    242 /*
    243  * Recalculate the priority of a process after it has slept for a while.
    244  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    245  * least six times the loadfactor will decay p_estcpu to zero.
    246  */
    247 void
    248 updatepri(p)
    249 	register struct proc *p;
    250 {
    251 	register unsigned int newcpu = p->p_estcpu;
    252 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    253 
    254 	if (p->p_slptime > 5 * loadfac)
    255 		p->p_estcpu = 0;
    256 	else {
    257 		p->p_slptime--;	/* the first time was done in schedcpu */
    258 		while (newcpu && --p->p_slptime)
    259 			newcpu = (int) decay_cpu(loadfac, newcpu);
    260 		p->p_estcpu = newcpu;
    261 	}
    262 	resetpriority(p);
    263 }
    264 
    265 /*
    266  * We're only looking at 7 bits of the address; everything is
    267  * aligned to 4, lots of things are aligned to greater powers
    268  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    269  */
    270 #define TABLESIZE	128
    271 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    272 struct slpque {
    273 	struct proc *sq_head;
    274 	struct proc **sq_tailp;
    275 } slpque[TABLESIZE];
    276 
    277 /*
    278  * During autoconfiguration or after a panic, a sleep will simply
    279  * lower the priority briefly to allow interrupts, then return.
    280  * The priority to be used (safepri) is machine-dependent, thus this
    281  * value is initialized and maintained in the machine-dependent layers.
    282  * This priority will typically be 0, or the lowest priority
    283  * that is safe for use on the interrupt stack; it can be made
    284  * higher to block network software interrupts after panics.
    285  */
    286 int safepri;
    287 
    288 /*
    289  * General sleep call.  Suspends the current process until a wakeup is
    290  * performed on the specified identifier.  The process will then be made
    291  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    292  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    293  * before and after sleeping, else signals are not checked.  Returns 0 if
    294  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    295  * signal needs to be delivered, ERESTART is returned if the current system
    296  * call should be restarted if possible, and EINTR is returned if the system
    297  * call should be interrupted by the signal (return EINTR).
    298  */
    299 int
    300 tsleep(ident, priority, wmesg, timo)
    301 	void *ident;
    302 	int priority, timo;
    303 	const char *wmesg;
    304 {
    305 	register struct proc *p = curproc;
    306 	register struct slpque *qp;
    307 	register int s;
    308 	int sig, catch = priority & PCATCH;
    309 	extern int cold;
    310 	void endtsleep __P((void *));
    311 
    312 	if (cold || panicstr) {
    313 		/*
    314 		 * After a panic, or during autoconfiguration,
    315 		 * just give interrupts a chance, then just return;
    316 		 * don't run any other procs or panic below,
    317 		 * in case this is the idle process and already asleep.
    318 		 */
    319 		s = splhigh();
    320 		splx(safepri);
    321 		splx(s);
    322 		return (0);
    323 	}
    324 
    325 #ifdef KTRACE
    326 	if (KTRPOINT(p, KTR_CSW))
    327 		ktrcsw(p->p_tracep, 1, 0);
    328 #endif
    329 	s = splhigh();
    330 
    331 #ifdef DIAGNOSTIC
    332 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    333 		panic("tsleep");
    334 #endif
    335 	p->p_wchan = ident;
    336 	p->p_wmesg = wmesg;
    337 	p->p_slptime = 0;
    338 	p->p_priority = priority & PRIMASK;
    339 	qp = &slpque[LOOKUP(ident)];
    340 	if (qp->sq_head == 0)
    341 		qp->sq_head = p;
    342 	else
    343 		*qp->sq_tailp = p;
    344 	*(qp->sq_tailp = &p->p_forw) = 0;
    345 	if (timo)
    346 		timeout(endtsleep, (void *)p, timo);
    347 	/*
    348 	 * We put ourselves on the sleep queue and start our timeout
    349 	 * before calling CURSIG, as we could stop there, and a wakeup
    350 	 * or a SIGCONT (or both) could occur while we were stopped.
    351 	 * A SIGCONT would cause us to be marked as SSLEEP
    352 	 * without resuming us, thus we must be ready for sleep
    353 	 * when CURSIG is called.  If the wakeup happens while we're
    354 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    355 	 */
    356 	if (catch) {
    357 		p->p_flag |= P_SINTR;
    358 		if ((sig = CURSIG(p)) != 0) {
    359 			if (p->p_wchan)
    360 				unsleep(p);
    361 			p->p_stat = SRUN;
    362 			goto resume;
    363 		}
    364 		if (p->p_wchan == 0) {
    365 			catch = 0;
    366 			goto resume;
    367 		}
    368 	} else
    369 		sig = 0;
    370 	p->p_stat = SSLEEP;
    371 	p->p_stats->p_ru.ru_nvcsw++;
    372 	mi_switch();
    373 #ifdef	DDB
    374 	/* handy breakpoint location after process "wakes" */
    375 	asm(".globl bpendtsleep ; bpendtsleep:");
    376 #endif
    377 resume:
    378 	curpriority = p->p_usrpri;
    379 	splx(s);
    380 	p->p_flag &= ~P_SINTR;
    381 	if (p->p_flag & P_TIMEOUT) {
    382 		p->p_flag &= ~P_TIMEOUT;
    383 		if (sig == 0) {
    384 #ifdef KTRACE
    385 			if (KTRPOINT(p, KTR_CSW))
    386 				ktrcsw(p->p_tracep, 0, 0);
    387 #endif
    388 			return (EWOULDBLOCK);
    389 		}
    390 	} else if (timo)
    391 		untimeout(endtsleep, (void *)p);
    392 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    393 #ifdef KTRACE
    394 		if (KTRPOINT(p, KTR_CSW))
    395 			ktrcsw(p->p_tracep, 0, 0);
    396 #endif
    397 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    398 			return (EINTR);
    399 		return (ERESTART);
    400 	}
    401 #ifdef KTRACE
    402 	if (KTRPOINT(p, KTR_CSW))
    403 		ktrcsw(p->p_tracep, 0, 0);
    404 #endif
    405 	return (0);
    406 }
    407 
    408 /*
    409  * Implement timeout for tsleep.
    410  * If process hasn't been awakened (wchan non-zero),
    411  * set timeout flag and undo the sleep.  If proc
    412  * is stopped, just unsleep so it will remain stopped.
    413  */
    414 void
    415 endtsleep(arg)
    416 	void *arg;
    417 {
    418 	register struct proc *p;
    419 	int s;
    420 
    421 	p = (struct proc *)arg;
    422 	s = splhigh();
    423 	if (p->p_wchan) {
    424 		if (p->p_stat == SSLEEP)
    425 			setrunnable(p);
    426 		else
    427 			unsleep(p);
    428 		p->p_flag |= P_TIMEOUT;
    429 	}
    430 	splx(s);
    431 }
    432 
    433 /*
    434  * Short-term, non-interruptable sleep.
    435  */
    436 void
    437 sleep(ident, priority)
    438 	void *ident;
    439 	int priority;
    440 {
    441 	register struct proc *p = curproc;
    442 	register struct slpque *qp;
    443 	register int s;
    444 	extern int cold;
    445 
    446 #ifdef DIAGNOSTIC
    447 	if (priority > PZERO) {
    448 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
    449 		    priority, ident);
    450 		panic("old sleep");
    451 	}
    452 #endif
    453 	s = splhigh();
    454 	if (cold || panicstr) {
    455 		/*
    456 		 * After a panic, or during autoconfiguration,
    457 		 * just give interrupts a chance, then just return;
    458 		 * don't run any other procs or panic below,
    459 		 * in case this is the idle process and already asleep.
    460 		 */
    461 		splx(safepri);
    462 		splx(s);
    463 		return;
    464 	}
    465 #ifdef DIAGNOSTIC
    466 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    467 		panic("sleep");
    468 #endif
    469 	p->p_wchan = ident;
    470 	p->p_wmesg = NULL;
    471 	p->p_slptime = 0;
    472 	p->p_priority = priority;
    473 	qp = &slpque[LOOKUP(ident)];
    474 	if (qp->sq_head == 0)
    475 		qp->sq_head = p;
    476 	else
    477 		*qp->sq_tailp = p;
    478 	*(qp->sq_tailp = &p->p_forw) = 0;
    479 	p->p_stat = SSLEEP;
    480 	p->p_stats->p_ru.ru_nvcsw++;
    481 #ifdef KTRACE
    482 	if (KTRPOINT(p, KTR_CSW))
    483 		ktrcsw(p->p_tracep, 1, 0);
    484 #endif
    485 	mi_switch();
    486 #ifdef	DDB
    487 	/* handy breakpoint location after process "wakes" */
    488 	asm(".globl bpendsleep ; bpendsleep:");
    489 #endif
    490 #ifdef KTRACE
    491 	if (KTRPOINT(p, KTR_CSW))
    492 		ktrcsw(p->p_tracep, 0, 0);
    493 #endif
    494 	curpriority = p->p_usrpri;
    495 	splx(s);
    496 }
    497 
    498 /*
    499  * Remove a process from its wait queue
    500  */
    501 void
    502 unsleep(p)
    503 	register struct proc *p;
    504 {
    505 	register struct slpque *qp;
    506 	register struct proc **hp;
    507 	int s;
    508 
    509 	s = splhigh();
    510 	if (p->p_wchan) {
    511 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    512 		while (*hp != p)
    513 			hp = &(*hp)->p_forw;
    514 		*hp = p->p_forw;
    515 		if (qp->sq_tailp == &p->p_forw)
    516 			qp->sq_tailp = hp;
    517 		p->p_wchan = 0;
    518 	}
    519 	splx(s);
    520 }
    521 
    522 /*
    523  * Make all processes sleeping on the specified identifier runnable.
    524  */
    525 void
    526 wakeup(ident)
    527 	register void *ident;
    528 {
    529 	register struct slpque *qp;
    530 	register struct proc *p, **q;
    531 	int s;
    532 
    533 	s = splhigh();
    534 	qp = &slpque[LOOKUP(ident)];
    535 restart:
    536 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    537 #ifdef DIAGNOSTIC
    538 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    539 			panic("wakeup");
    540 #endif
    541 		if (p->p_wchan == ident) {
    542 			p->p_wchan = 0;
    543 			*q = p->p_forw;
    544 			if (qp->sq_tailp == &p->p_forw)
    545 				qp->sq_tailp = q;
    546 			if (p->p_stat == SSLEEP) {
    547 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    548 				if (p->p_slptime > 1)
    549 					updatepri(p);
    550 				p->p_slptime = 0;
    551 				p->p_stat = SRUN;
    552 				if (p->p_flag & P_INMEM)
    553 					setrunqueue(p);
    554 				/*
    555 				 * Since curpriority is a user priority,
    556 				 * p->p_priority is always better than
    557 				 * curpriority.
    558 				 */
    559 				if ((p->p_flag & P_INMEM) == 0)
    560 					wakeup((caddr_t)&proc0);
    561 				else
    562 					need_resched();
    563 				/* END INLINE EXPANSION */
    564 				goto restart;
    565 			}
    566 		} else
    567 			q = &p->p_forw;
    568 	}
    569 	splx(s);
    570 }
    571 
    572 /*
    573  * The machine independent parts of mi_switch().
    574  * Must be called at splstatclock() or higher.
    575  */
    576 void
    577 mi_switch()
    578 {
    579 	register struct proc *p = curproc;	/* XXX */
    580 	register struct rlimit *rlim;
    581 	register long s, u;
    582 	struct timeval tv;
    583 
    584 #ifdef DEBUG
    585 	if (p->p_simple_locks) {
    586 		printf("p->p_simple_locks %d\n", p->p_simple_locks);
    587 #ifdef LOCKDEBUG
    588 		simple_lock_dump();
    589 #endif
    590 		panic("sleep: holding simple lock");
    591 	}
    592 #endif
    593 	/*
    594 	 * Compute the amount of time during which the current
    595 	 * process was running, and add that to its total so far.
    596 	 */
    597 	microtime(&tv);
    598 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    599 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    600 	if (u < 0) {
    601 		u += 1000000;
    602 		s--;
    603 	} else if (u >= 1000000) {
    604 		u -= 1000000;
    605 		s++;
    606 	}
    607 	p->p_rtime.tv_usec = u;
    608 	p->p_rtime.tv_sec = s;
    609 
    610 	/*
    611 	 * Check if the process exceeds its cpu resource allocation.
    612 	 * If over max, kill it.  In any case, if it has run for more
    613 	 * than 10 minutes, reduce priority to give others a chance.
    614 	 */
    615 	rlim = &p->p_rlimit[RLIMIT_CPU];
    616 	if (s >= rlim->rlim_cur) {
    617 		if (s >= rlim->rlim_max)
    618 			psignal(p, SIGKILL);
    619 		else {
    620 			psignal(p, SIGXCPU);
    621 			if (rlim->rlim_cur < rlim->rlim_max)
    622 				rlim->rlim_cur += 5;
    623 		}
    624 	}
    625 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    626 		p->p_nice = autoniceval + NZERO;
    627 		resetpriority(p);
    628 	}
    629 
    630 	/*
    631 	 * Pick a new current process and record its start time.
    632 	 */
    633 	uvmexp.swtch++;
    634 	cpu_switch(p);
    635 	microtime(&runtime);
    636 }
    637 
    638 /*
    639  * Initialize the (doubly-linked) run queues
    640  * to be empty.
    641  */
    642 void
    643 rqinit()
    644 {
    645 	register int i;
    646 
    647 	for (i = 0; i < NQS; i++)
    648 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    649 }
    650 
    651 /*
    652  * Change process state to be runnable,
    653  * placing it on the run queue if it is in memory,
    654  * and awakening the swapper if it isn't in memory.
    655  */
    656 void
    657 setrunnable(p)
    658 	register struct proc *p;
    659 {
    660 	register int s;
    661 
    662 	s = splhigh();
    663 	switch (p->p_stat) {
    664 	case 0:
    665 	case SRUN:
    666 	case SZOMB:
    667 	case SDEAD:
    668 	default:
    669 		panic("setrunnable");
    670 	case SSTOP:
    671 		/*
    672 		 * If we're being traced (possibly because someone attached us
    673 		 * while we were stopped), check for a signal from the debugger.
    674 		 */
    675 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    676 			sigaddset(&p->p_siglist, p->p_xstat);
    677 			p->p_sigcheck = 1;
    678 		}
    679 	case SSLEEP:
    680 		unsleep(p);		/* e.g. when sending signals */
    681 		break;
    682 
    683 	case SIDL:
    684 		break;
    685 	}
    686 	p->p_stat = SRUN;
    687 	if (p->p_flag & P_INMEM)
    688 		setrunqueue(p);
    689 	splx(s);
    690 	if (p->p_slptime > 1)
    691 		updatepri(p);
    692 	p->p_slptime = 0;
    693 	if ((p->p_flag & P_INMEM) == 0)
    694 		wakeup((caddr_t)&proc0);
    695 	else if (p->p_priority < curpriority)
    696 		need_resched();
    697 }
    698 
    699 /*
    700  * Compute the priority of a process when running in user mode.
    701  * Arrange to reschedule if the resulting priority is better
    702  * than that of the current process.
    703  */
    704 void
    705 resetpriority(p)
    706 	register struct proc *p;
    707 {
    708 	register unsigned int newpriority;
    709 
    710 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    711 	newpriority = min(newpriority, MAXPRI);
    712 	p->p_usrpri = newpriority;
    713 	if (newpriority < curpriority)
    714 		need_resched();
    715 }
    716 
    717 /*
    718  * We adjust the priority of the current process.  The priority of a process
    719  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    720  * is increased here.  The formula for computing priorities (in kern_synch.c)
    721  * will compute a different value each time p_estcpu increases. This can
    722  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    723  * queue will not change.  The cpu usage estimator ramps up quite quickly
    724  * when the process is running (linearly), and decays away exponentially, at
    725  * a rate which is proportionally slower when the system is busy.  The basic
    726  * principal is that the system will 90% forget that the process used a lot
    727  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    728  * processes which haven't run much recently, and to round-robin among other
    729  * processes.
    730  */
    731 
    732 void
    733 schedclock(p)
    734 	struct proc *p;
    735 {
    736 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    737 	resetpriority(p);
    738 	if (p->p_priority >= PUSER)
    739 		p->p_priority = p->p_usrpri;
    740 }
    741