kern_synch.c revision 1.64 1 /* $NetBSD: kern_synch.c,v 1.64 1999/09/15 21:54:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/kernel.h>
87 #include <sys/buf.h>
88 #include <sys/signalvar.h>
89 #include <sys/resourcevar.h>
90 #include <vm/vm.h>
91 #include <sys/sched.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #define NICE_WEIGHT 2 /* priorities per nice level */
100 #define PPQ (128 / NQS) /* priorities per queue */
101
102 #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
103
104 #include <machine/cpu.h>
105
106 u_char curpriority; /* usrpri of curproc */
107 int lbolt; /* once a second sleep address */
108
109 void roundrobin __P((void *));
110 void schedcpu __P((void *));
111 void updatepri __P((struct proc *));
112 void endtsleep __P((void *));
113
114 __inline void awaken __P((struct proc *));
115
116 /*
117 * Force switch among equal priority processes every 100ms.
118 */
119 /* ARGSUSED */
120 void
121 roundrobin(arg)
122 void *arg;
123 {
124
125 need_resched();
126 timeout(roundrobin, NULL, hz / 10);
127 }
128
129 /*
130 * Constants for digital decay and forget:
131 * 90% of (p_estcpu) usage in 5 * loadav time
132 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
133 * Note that, as ps(1) mentions, this can let percentages
134 * total over 100% (I've seen 137.9% for 3 processes).
135 *
136 * Note that hardclock updates p_estcpu and p_cpticks independently.
137 *
138 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
139 * That is, the system wants to compute a value of decay such
140 * that the following for loop:
141 * for (i = 0; i < (5 * loadavg); i++)
142 * p_estcpu *= decay;
143 * will compute
144 * p_estcpu *= 0.1;
145 * for all values of loadavg:
146 *
147 * Mathematically this loop can be expressed by saying:
148 * decay ** (5 * loadavg) ~= .1
149 *
150 * The system computes decay as:
151 * decay = (2 * loadavg) / (2 * loadavg + 1)
152 *
153 * We wish to prove that the system's computation of decay
154 * will always fulfill the equation:
155 * decay ** (5 * loadavg) ~= .1
156 *
157 * If we compute b as:
158 * b = 2 * loadavg
159 * then
160 * decay = b / (b + 1)
161 *
162 * We now need to prove two things:
163 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
164 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
165 *
166 * Facts:
167 * For x close to zero, exp(x) =~ 1 + x, since
168 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
169 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
170 * For x close to zero, ln(1+x) =~ x, since
171 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
172 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
173 * ln(.1) =~ -2.30
174 *
175 * Proof of (1):
176 * Solve (factor)**(power) =~ .1 given power (5*loadav):
177 * solving for factor,
178 * ln(factor) =~ (-2.30/5*loadav), or
179 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
180 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
181 *
182 * Proof of (2):
183 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
184 * solving for power,
185 * power*ln(b/(b+1)) =~ -2.30, or
186 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
187 *
188 * Actual power values for the implemented algorithm are as follows:
189 * loadav: 1 2 3 4
190 * power: 5.68 10.32 14.94 19.55
191 */
192
193 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
194 #define loadfactor(loadav) (2 * (loadav))
195 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
196
197 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
198 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
199
200 /*
201 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
202 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
203 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
204 *
205 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
206 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
207 *
208 * If you dont want to bother with the faster/more-accurate formula, you
209 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
210 * (more general) method of calculating the %age of CPU used by a process.
211 */
212 #define CCPU_SHIFT 11
213
214 /*
215 * Recompute process priorities, every hz ticks.
216 */
217 /* ARGSUSED */
218 void
219 schedcpu(arg)
220 void *arg;
221 {
222 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
223 register struct proc *p;
224 register int s;
225 register unsigned int newcpu;
226
227 wakeup((caddr_t)&lbolt);
228 proclist_lock_read();
229 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
230 /*
231 * Increment time in/out of memory and sleep time
232 * (if sleeping). We ignore overflow; with 16-bit int's
233 * (remember them?) overflow takes 45 days.
234 */
235 p->p_swtime++;
236 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
237 p->p_slptime++;
238 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
239 /*
240 * If the process has slept the entire second,
241 * stop recalculating its priority until it wakes up.
242 */
243 if (p->p_slptime > 1)
244 continue;
245 s = splstatclock(); /* prevent state changes */
246 /*
247 * p_pctcpu is only for ps.
248 */
249 KASSERT(profhz);
250 #if (FSHIFT >= CCPU_SHIFT)
251 p->p_pctcpu += (profhz == 100)?
252 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
253 100 * (((fixpt_t) p->p_cpticks)
254 << (FSHIFT - CCPU_SHIFT)) / profhz;
255 #else
256 p->p_pctcpu += ((FSCALE - ccpu) *
257 (p->p_cpticks * FSCALE / profhz)) >> FSHIFT;
258 #endif
259 p->p_cpticks = 0;
260 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
261 p->p_estcpu = newcpu;
262 resetpriority(p);
263 if (p->p_priority >= PUSER) {
264 if ((p != curproc) &&
265 p->p_stat == SRUN &&
266 (p->p_flag & P_INMEM) &&
267 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
268 remrunqueue(p);
269 p->p_priority = p->p_usrpri;
270 setrunqueue(p);
271 } else
272 p->p_priority = p->p_usrpri;
273 }
274 splx(s);
275 }
276 proclist_unlock_read();
277 uvm_meter();
278 timeout(schedcpu, (void *)0, hz);
279 }
280
281 /*
282 * Recalculate the priority of a process after it has slept for a while.
283 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
284 * least six times the loadfactor will decay p_estcpu to zero.
285 */
286 void
287 updatepri(p)
288 register struct proc *p;
289 {
290 register unsigned int newcpu = p->p_estcpu;
291 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
292
293 if (p->p_slptime > 5 * loadfac)
294 p->p_estcpu = 0;
295 else {
296 p->p_slptime--; /* the first time was done in schedcpu */
297 while (newcpu && --p->p_slptime)
298 newcpu = (int) decay_cpu(loadfac, newcpu);
299 p->p_estcpu = newcpu;
300 }
301 resetpriority(p);
302 }
303
304 /*
305 * We're only looking at 7 bits of the address; everything is
306 * aligned to 4, lots of things are aligned to greater powers
307 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
308 */
309 #define TABLESIZE 128
310 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
311 struct slpque {
312 struct proc *sq_head;
313 struct proc **sq_tailp;
314 } slpque[TABLESIZE];
315
316 /*
317 * During autoconfiguration or after a panic, a sleep will simply
318 * lower the priority briefly to allow interrupts, then return.
319 * The priority to be used (safepri) is machine-dependent, thus this
320 * value is initialized and maintained in the machine-dependent layers.
321 * This priority will typically be 0, or the lowest priority
322 * that is safe for use on the interrupt stack; it can be made
323 * higher to block network software interrupts after panics.
324 */
325 int safepri;
326
327 /*
328 * General sleep call. Suspends the current process until a wakeup is
329 * performed on the specified identifier. The process will then be made
330 * runnable with the specified priority. Sleeps at most timo/hz seconds
331 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
332 * before and after sleeping, else signals are not checked. Returns 0 if
333 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
334 * signal needs to be delivered, ERESTART is returned if the current system
335 * call should be restarted if possible, and EINTR is returned if the system
336 * call should be interrupted by the signal (return EINTR).
337 */
338 int
339 tsleep(ident, priority, wmesg, timo)
340 void *ident;
341 int priority, timo;
342 const char *wmesg;
343 {
344 register struct proc *p = curproc;
345 register struct slpque *qp;
346 register int s;
347 int sig, catch = priority & PCATCH;
348 extern int cold;
349 void endtsleep __P((void *));
350
351 if (cold || panicstr) {
352 /*
353 * After a panic, or during autoconfiguration,
354 * just give interrupts a chance, then just return;
355 * don't run any other procs or panic below,
356 * in case this is the idle process and already asleep.
357 */
358 s = splhigh();
359 splx(safepri);
360 splx(s);
361 return (0);
362 }
363
364 #ifdef KTRACE
365 if (KTRPOINT(p, KTR_CSW))
366 ktrcsw(p->p_tracep, 1, 0);
367 #endif
368 s = splhigh();
369
370 #ifdef DIAGNOSTIC
371 if (ident == NULL)
372 panic("tsleep: ident == NULL");
373 if (p->p_stat != SRUN)
374 panic("tsleep: p_stat %d != SRUN", p->p_stat);
375 if (p->p_back != NULL)
376 panic("tsleep: p_back != NULL");
377 #endif
378 p->p_wchan = ident;
379 p->p_wmesg = wmesg;
380 p->p_slptime = 0;
381 p->p_priority = priority & PRIMASK;
382 qp = &slpque[LOOKUP(ident)];
383 if (qp->sq_head == 0)
384 qp->sq_head = p;
385 else
386 *qp->sq_tailp = p;
387 *(qp->sq_tailp = &p->p_forw) = 0;
388 if (timo)
389 timeout(endtsleep, (void *)p, timo);
390 /*
391 * We put ourselves on the sleep queue and start our timeout
392 * before calling CURSIG, as we could stop there, and a wakeup
393 * or a SIGCONT (or both) could occur while we were stopped.
394 * A SIGCONT would cause us to be marked as SSLEEP
395 * without resuming us, thus we must be ready for sleep
396 * when CURSIG is called. If the wakeup happens while we're
397 * stopped, p->p_wchan will be 0 upon return from CURSIG.
398 */
399 if (catch) {
400 p->p_flag |= P_SINTR;
401 if ((sig = CURSIG(p)) != 0) {
402 if (p->p_wchan)
403 unsleep(p);
404 p->p_stat = SRUN;
405 goto resume;
406 }
407 if (p->p_wchan == 0) {
408 catch = 0;
409 goto resume;
410 }
411 } else
412 sig = 0;
413 p->p_stat = SSLEEP;
414 p->p_stats->p_ru.ru_nvcsw++;
415 mi_switch();
416 #ifdef DDB
417 /* handy breakpoint location after process "wakes" */
418 asm(".globl bpendtsleep ; bpendtsleep:");
419 #endif
420 resume:
421 curpriority = p->p_usrpri;
422 splx(s);
423 p->p_flag &= ~P_SINTR;
424 if (p->p_flag & P_TIMEOUT) {
425 p->p_flag &= ~P_TIMEOUT;
426 if (sig == 0) {
427 #ifdef KTRACE
428 if (KTRPOINT(p, KTR_CSW))
429 ktrcsw(p->p_tracep, 0, 0);
430 #endif
431 return (EWOULDBLOCK);
432 }
433 } else if (timo)
434 untimeout(endtsleep, (void *)p);
435 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
436 #ifdef KTRACE
437 if (KTRPOINT(p, KTR_CSW))
438 ktrcsw(p->p_tracep, 0, 0);
439 #endif
440 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
441 return (EINTR);
442 return (ERESTART);
443 }
444 #ifdef KTRACE
445 if (KTRPOINT(p, KTR_CSW))
446 ktrcsw(p->p_tracep, 0, 0);
447 #endif
448 return (0);
449 }
450
451 /*
452 * Implement timeout for tsleep.
453 * If process hasn't been awakened (wchan non-zero),
454 * set timeout flag and undo the sleep. If proc
455 * is stopped, just unsleep so it will remain stopped.
456 */
457 void
458 endtsleep(arg)
459 void *arg;
460 {
461 register struct proc *p;
462 int s;
463
464 p = (struct proc *)arg;
465 s = splhigh();
466 if (p->p_wchan) {
467 if (p->p_stat == SSLEEP)
468 setrunnable(p);
469 else
470 unsleep(p);
471 p->p_flag |= P_TIMEOUT;
472 }
473 splx(s);
474 }
475
476 /*
477 * Short-term, non-interruptable sleep.
478 */
479 void
480 sleep(ident, priority)
481 void *ident;
482 int priority;
483 {
484 register struct proc *p = curproc;
485 register struct slpque *qp;
486 register int s;
487 extern int cold;
488
489 #ifdef DIAGNOSTIC
490 if (priority > PZERO) {
491 printf("sleep called with priority %d > PZERO, wchan: %p\n",
492 priority, ident);
493 panic("old sleep");
494 }
495 #endif
496 s = splhigh();
497 if (cold || panicstr) {
498 /*
499 * After a panic, or during autoconfiguration,
500 * just give interrupts a chance, then just return;
501 * don't run any other procs or panic below,
502 * in case this is the idle process and already asleep.
503 */
504 splx(safepri);
505 splx(s);
506 return;
507 }
508 #ifdef DIAGNOSTIC
509 if (ident == NULL || p->p_stat != SRUN || p->p_back)
510 panic("sleep");
511 #endif
512 p->p_wchan = ident;
513 p->p_wmesg = NULL;
514 p->p_slptime = 0;
515 p->p_priority = priority;
516 qp = &slpque[LOOKUP(ident)];
517 if (qp->sq_head == 0)
518 qp->sq_head = p;
519 else
520 *qp->sq_tailp = p;
521 *(qp->sq_tailp = &p->p_forw) = 0;
522 p->p_stat = SSLEEP;
523 p->p_stats->p_ru.ru_nvcsw++;
524 #ifdef KTRACE
525 if (KTRPOINT(p, KTR_CSW))
526 ktrcsw(p->p_tracep, 1, 0);
527 #endif
528 mi_switch();
529 #ifdef DDB
530 /* handy breakpoint location after process "wakes" */
531 asm(".globl bpendsleep ; bpendsleep:");
532 #endif
533 #ifdef KTRACE
534 if (KTRPOINT(p, KTR_CSW))
535 ktrcsw(p->p_tracep, 0, 0);
536 #endif
537 curpriority = p->p_usrpri;
538 splx(s);
539 }
540
541 /*
542 * Remove a process from its wait queue
543 */
544 void
545 unsleep(p)
546 register struct proc *p;
547 {
548 register struct slpque *qp;
549 register struct proc **hp;
550 int s;
551
552 s = splhigh();
553 if (p->p_wchan) {
554 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
555 while (*hp != p)
556 hp = &(*hp)->p_forw;
557 *hp = p->p_forw;
558 if (qp->sq_tailp == &p->p_forw)
559 qp->sq_tailp = hp;
560 p->p_wchan = 0;
561 }
562 splx(s);
563 }
564
565 /*
566 * Optimized-for-wakeup() version of setrunnable().
567 */
568 __inline void
569 awaken(p)
570 struct proc *p;
571 {
572
573 if (p->p_slptime > 1)
574 updatepri(p);
575 p->p_slptime = 0;
576 p->p_stat = SRUN;
577 /*
578 * Since curpriority is a user priority, p->p_priority
579 * is always better than curpriority.
580 */
581 if (p->p_flag & P_INMEM) {
582 setrunqueue(p);
583 need_resched();
584 } else
585 wakeup((caddr_t)&proc0);
586 }
587
588 /*
589 * Make all processes sleeping on the specified identifier runnable.
590 */
591 void
592 wakeup(ident)
593 register void *ident;
594 {
595 register struct slpque *qp;
596 register struct proc *p, **q;
597 int s;
598
599 s = splhigh();
600 qp = &slpque[LOOKUP(ident)];
601 restart:
602 for (q = &qp->sq_head; (p = *q) != NULL; ) {
603 #ifdef DIAGNOSTIC
604 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
605 panic("wakeup");
606 #endif
607 if (p->p_wchan == ident) {
608 p->p_wchan = 0;
609 *q = p->p_forw;
610 if (qp->sq_tailp == &p->p_forw)
611 qp->sq_tailp = q;
612 if (p->p_stat == SSLEEP) {
613 awaken(p);
614 goto restart;
615 }
616 } else
617 q = &p->p_forw;
618 }
619 splx(s);
620 }
621
622 /*
623 * Make the highest priority process first in line on the specified
624 * identifier runnable.
625 */
626 void
627 wakeup_one(ident)
628 void *ident;
629 {
630 struct slpque *qp;
631 struct proc *p, **q;
632 struct proc *best_sleepp, **best_sleepq;
633 struct proc *best_stopp, **best_stopq;
634 int s;
635
636 best_sleepp = best_stopp = NULL;
637 best_sleepq = best_stopq = NULL;
638
639 s = splhigh();
640 qp = &slpque[LOOKUP(ident)];
641 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
642 #ifdef DIAGNOSTIC
643 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
644 panic("wakeup_one");
645 #endif
646 if (p->p_wchan == ident) {
647 if (p->p_stat == SSLEEP) {
648 if (best_sleepp == NULL ||
649 p->p_priority < best_sleepp->p_priority) {
650 best_sleepp = p;
651 best_sleepq = q;
652 }
653 } else {
654 if (best_stopp == NULL ||
655 p->p_priority < best_stopp->p_priority) {
656 best_stopp = p;
657 best_stopq = q;
658 }
659 }
660 }
661 }
662
663 /*
664 * Consider any SSLEEP process higher than the highest priority SSTOP
665 * process.
666 */
667 if (best_sleepp != NULL) {
668 p = best_sleepp;
669 q = best_sleepq;
670 } else {
671 p = best_stopp;
672 q = best_stopq;
673 }
674
675 if (p != NULL) {
676 p->p_wchan = 0;
677 *q = p->p_forw;
678 if (qp->sq_tailp == &p->p_forw)
679 qp->sq_tailp = q;
680 if (p->p_stat == SSLEEP)
681 awaken(p);
682 }
683 splx(s);
684 }
685
686 /*
687 * The machine independent parts of mi_switch().
688 * Must be called at splstatclock() or higher.
689 */
690 void
691 mi_switch()
692 {
693 register struct proc *p = curproc; /* XXX */
694 register struct rlimit *rlim;
695 register long s, u;
696 struct timeval tv;
697
698 #ifdef DEBUG
699 if (p->p_simple_locks) {
700 printf("p->p_simple_locks %d\n", p->p_simple_locks);
701 #ifdef LOCKDEBUG
702 simple_lock_dump();
703 #endif
704 panic("sleep: holding simple lock");
705 }
706 #endif
707 /*
708 * Compute the amount of time during which the current
709 * process was running, and add that to its total so far.
710 */
711 microtime(&tv);
712 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
713 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
714 if (u < 0) {
715 u += 1000000;
716 s--;
717 } else if (u >= 1000000) {
718 u -= 1000000;
719 s++;
720 }
721 p->p_rtime.tv_usec = u;
722 p->p_rtime.tv_sec = s;
723
724 /*
725 * Check if the process exceeds its cpu resource allocation.
726 * If over max, kill it. In any case, if it has run for more
727 * than 10 minutes, reduce priority to give others a chance.
728 */
729 rlim = &p->p_rlimit[RLIMIT_CPU];
730 if (s >= rlim->rlim_cur) {
731 if (s >= rlim->rlim_max)
732 psignal(p, SIGKILL);
733 else {
734 psignal(p, SIGXCPU);
735 if (rlim->rlim_cur < rlim->rlim_max)
736 rlim->rlim_cur += 5;
737 }
738 }
739 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
740 p->p_nice = autoniceval + NZERO;
741 resetpriority(p);
742 }
743
744 /*
745 * Pick a new current process and record its start time.
746 */
747 uvmexp.swtch++;
748 cpu_switch(p);
749 microtime(&runtime);
750 }
751
752 /*
753 * Initialize the (doubly-linked) run queues
754 * to be empty.
755 */
756 void
757 rqinit()
758 {
759 register int i;
760
761 for (i = 0; i < NQS; i++)
762 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
763 }
764
765 /*
766 * Change process state to be runnable,
767 * placing it on the run queue if it is in memory,
768 * and awakening the swapper if it isn't in memory.
769 */
770 void
771 setrunnable(p)
772 register struct proc *p;
773 {
774 register int s;
775
776 s = splhigh();
777 switch (p->p_stat) {
778 case 0:
779 case SRUN:
780 case SZOMB:
781 case SDEAD:
782 default:
783 panic("setrunnable");
784 case SSTOP:
785 /*
786 * If we're being traced (possibly because someone attached us
787 * while we were stopped), check for a signal from the debugger.
788 */
789 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
790 sigaddset(&p->p_siglist, p->p_xstat);
791 p->p_sigcheck = 1;
792 }
793 case SSLEEP:
794 unsleep(p); /* e.g. when sending signals */
795 break;
796
797 case SIDL:
798 break;
799 }
800 p->p_stat = SRUN;
801 if (p->p_flag & P_INMEM)
802 setrunqueue(p);
803 splx(s);
804 if (p->p_slptime > 1)
805 updatepri(p);
806 p->p_slptime = 0;
807 if ((p->p_flag & P_INMEM) == 0)
808 wakeup((caddr_t)&proc0);
809 else if (p->p_priority < curpriority)
810 need_resched();
811 }
812
813 /*
814 * Compute the priority of a process when running in user mode.
815 * Arrange to reschedule if the resulting priority is better
816 * than that of the current process.
817 */
818 void
819 resetpriority(p)
820 register struct proc *p;
821 {
822 register unsigned int newpriority;
823
824 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
825 newpriority = min(newpriority, MAXPRI);
826 p->p_usrpri = newpriority;
827 if (newpriority < curpriority)
828 need_resched();
829 }
830
831 /*
832 * We adjust the priority of the current process. The priority of a process
833 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
834 * is increased here. The formula for computing priorities (in kern_synch.c)
835 * will compute a different value each time p_estcpu increases. This can
836 * cause a switch, but unless the priority crosses a PPQ boundary the actual
837 * queue will not change. The cpu usage estimator ramps up quite quickly
838 * when the process is running (linearly), and decays away exponentially, at
839 * a rate which is proportionally slower when the system is busy. The basic
840 * principal is that the system will 90% forget that the process used a lot
841 * of CPU time in 5 * loadav seconds. This causes the system to favor
842 * processes which haven't run much recently, and to round-robin among other
843 * processes.
844 */
845
846 void
847 schedclock(p)
848 struct proc *p;
849 {
850 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
851 resetpriority(p);
852 if (p->p_priority >= PUSER)
853 p->p_priority = p->p_usrpri;
854 }
855