kern_synch.c revision 1.65.2.1 1 /* $NetBSD: kern_synch.c,v 1.65.2.1 1999/12/27 18:35:51 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/kernel.h>
87 #include <sys/buf.h>
88 #include <sys/signalvar.h>
89 #include <sys/resourcevar.h>
90 #include <vm/vm.h>
91 #include <sys/sched.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #define NICE_WEIGHT 2 /* priorities per nice level */
100 #define PPQ (128 / NQS) /* priorities per queue */
101
102 #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
103
104 #include <machine/cpu.h>
105
106 u_char curpriority; /* usrpri of curproc */
107 int lbolt; /* once a second sleep address */
108
109 void roundrobin __P((void *));
110 void schedcpu __P((void *));
111 void updatepri __P((struct proc *));
112 void endtsleep __P((void *));
113
114 __inline void awaken __P((struct proc *));
115
116 /*
117 * Force switch among equal priority processes every 100ms.
118 */
119 /* ARGSUSED */
120 void
121 roundrobin(arg)
122 void *arg;
123 {
124
125 need_resched();
126 timeout(roundrobin, NULL, hz / 10);
127 }
128
129 /*
130 * Constants for digital decay and forget:
131 * 90% of (p_estcpu) usage in 5 * loadav time
132 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
133 * Note that, as ps(1) mentions, this can let percentages
134 * total over 100% (I've seen 137.9% for 3 processes).
135 *
136 * Note that hardclock updates p_estcpu and p_cpticks independently.
137 *
138 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
139 * That is, the system wants to compute a value of decay such
140 * that the following for loop:
141 * for (i = 0; i < (5 * loadavg); i++)
142 * p_estcpu *= decay;
143 * will compute
144 * p_estcpu *= 0.1;
145 * for all values of loadavg:
146 *
147 * Mathematically this loop can be expressed by saying:
148 * decay ** (5 * loadavg) ~= .1
149 *
150 * The system computes decay as:
151 * decay = (2 * loadavg) / (2 * loadavg + 1)
152 *
153 * We wish to prove that the system's computation of decay
154 * will always fulfill the equation:
155 * decay ** (5 * loadavg) ~= .1
156 *
157 * If we compute b as:
158 * b = 2 * loadavg
159 * then
160 * decay = b / (b + 1)
161 *
162 * We now need to prove two things:
163 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
164 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
165 *
166 * Facts:
167 * For x close to zero, exp(x) =~ 1 + x, since
168 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
169 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
170 * For x close to zero, ln(1+x) =~ x, since
171 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
172 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
173 * ln(.1) =~ -2.30
174 *
175 * Proof of (1):
176 * Solve (factor)**(power) =~ .1 given power (5*loadav):
177 * solving for factor,
178 * ln(factor) =~ (-2.30/5*loadav), or
179 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
180 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
181 *
182 * Proof of (2):
183 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
184 * solving for power,
185 * power*ln(b/(b+1)) =~ -2.30, or
186 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
187 *
188 * Actual power values for the implemented algorithm are as follows:
189 * loadav: 1 2 3 4
190 * power: 5.68 10.32 14.94 19.55
191 */
192
193 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
194 #define loadfactor(loadav) (2 * (loadav))
195 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
196
197 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
198 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
199
200 /*
201 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
202 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
203 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
204 *
205 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
206 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
207 *
208 * If you dont want to bother with the faster/more-accurate formula, you
209 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
210 * (more general) method of calculating the %age of CPU used by a process.
211 */
212 #define CCPU_SHIFT 11
213
214 /*
215 * Recompute process priorities, every hz ticks.
216 */
217 /* ARGSUSED */
218 void
219 schedcpu(arg)
220 void *arg;
221 {
222 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
223 register struct proc *p;
224 register int s;
225 register unsigned int newcpu;
226 int clkhz;
227
228 proclist_lock_read();
229 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
230 /*
231 * Increment time in/out of memory and sleep time
232 * (if sleeping). We ignore overflow; with 16-bit int's
233 * (remember them?) overflow takes 45 days.
234 */
235 p->p_swtime++;
236 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
237 p->p_slptime++;
238 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
239 /*
240 * If the process has slept the entire second,
241 * stop recalculating its priority until it wakes up.
242 */
243 if (p->p_slptime > 1)
244 continue;
245 s = splstatclock(); /* prevent state changes */
246 /*
247 * p_pctcpu is only for ps.
248 */
249 clkhz = stathz != 0 ? stathz : hz;
250 #if (FSHIFT >= CCPU_SHIFT)
251 p->p_pctcpu += (clkhz == 100)?
252 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
253 100 * (((fixpt_t) p->p_cpticks)
254 << (FSHIFT - CCPU_SHIFT)) / clkhz;
255 #else
256 p->p_pctcpu += ((FSCALE - ccpu) *
257 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
258 #endif
259 p->p_cpticks = 0;
260 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
261 p->p_estcpu = newcpu;
262 resetpriority(p);
263 if (p->p_priority >= PUSER) {
264 if ((p != curproc) &&
265 p->p_stat == SRUN &&
266 (p->p_flag & P_INMEM) &&
267 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
268 remrunqueue(p);
269 p->p_priority = p->p_usrpri;
270 setrunqueue(p);
271 } else
272 p->p_priority = p->p_usrpri;
273 }
274 splx(s);
275 }
276 proclist_unlock_read();
277 uvm_meter();
278 wakeup((caddr_t)&lbolt);
279 timeout(schedcpu, (void *)0, hz);
280 }
281
282 /*
283 * Recalculate the priority of a process after it has slept for a while.
284 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
285 * least six times the loadfactor will decay p_estcpu to zero.
286 */
287 void
288 updatepri(p)
289 register struct proc *p;
290 {
291 register unsigned int newcpu = p->p_estcpu;
292 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
293
294 if (p->p_slptime > 5 * loadfac)
295 p->p_estcpu = 0;
296 else {
297 p->p_slptime--; /* the first time was done in schedcpu */
298 while (newcpu && --p->p_slptime)
299 newcpu = (int) decay_cpu(loadfac, newcpu);
300 p->p_estcpu = newcpu;
301 }
302 resetpriority(p);
303 }
304
305 /*
306 * We're only looking at 7 bits of the address; everything is
307 * aligned to 4, lots of things are aligned to greater powers
308 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
309 */
310 #define TABLESIZE 128
311 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
312 struct slpque {
313 struct proc *sq_head;
314 struct proc **sq_tailp;
315 } slpque[TABLESIZE];
316
317 /*
318 * During autoconfiguration or after a panic, a sleep will simply
319 * lower the priority briefly to allow interrupts, then return.
320 * The priority to be used (safepri) is machine-dependent, thus this
321 * value is initialized and maintained in the machine-dependent layers.
322 * This priority will typically be 0, or the lowest priority
323 * that is safe for use on the interrupt stack; it can be made
324 * higher to block network software interrupts after panics.
325 */
326 int safepri;
327
328 /*
329 * General sleep call. Suspends the current process until a wakeup is
330 * performed on the specified identifier. The process will then be made
331 * runnable with the specified priority. Sleeps at most timo/hz seconds
332 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
333 * before and after sleeping, else signals are not checked. Returns 0 if
334 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
335 * signal needs to be delivered, ERESTART is returned if the current system
336 * call should be restarted if possible, and EINTR is returned if the system
337 * call should be interrupted by the signal (return EINTR).
338 */
339 int
340 tsleep(ident, priority, wmesg, timo)
341 void *ident;
342 int priority, timo;
343 const char *wmesg;
344 {
345 register struct proc *p = curproc;
346 register struct slpque *qp;
347 register int s;
348 int sig, catch = priority & PCATCH;
349 void endtsleep __P((void *));
350
351 if (cold || panicstr) {
352 /*
353 * After a panic, or during autoconfiguration,
354 * just give interrupts a chance, then just return;
355 * don't run any other procs or panic below,
356 * in case this is the idle process and already asleep.
357 */
358 s = splhigh();
359 splx(safepri);
360 splx(s);
361 return (0);
362 }
363
364 #ifdef KTRACE
365 if (KTRPOINT(p, KTR_CSW))
366 ktrcsw(p->p_tracep, 1, 0);
367 #endif
368 s = splhigh();
369
370 #ifdef DIAGNOSTIC
371 if (ident == NULL)
372 panic("tsleep: ident == NULL");
373 if (p->p_stat != SRUN)
374 panic("tsleep: p_stat %d != SRUN", p->p_stat);
375 if (p->p_back != NULL)
376 panic("tsleep: p_back != NULL");
377 #endif
378 p->p_wchan = ident;
379 p->p_wmesg = wmesg;
380 p->p_slptime = 0;
381 p->p_priority = priority & PRIMASK;
382 qp = &slpque[LOOKUP(ident)];
383 if (qp->sq_head == 0)
384 qp->sq_head = p;
385 else
386 *qp->sq_tailp = p;
387 *(qp->sq_tailp = &p->p_forw) = 0;
388 if (timo)
389 timeout(endtsleep, (void *)p, timo);
390 /*
391 * We put ourselves on the sleep queue and start our timeout
392 * before calling CURSIG, as we could stop there, and a wakeup
393 * or a SIGCONT (or both) could occur while we were stopped.
394 * A SIGCONT would cause us to be marked as SSLEEP
395 * without resuming us, thus we must be ready for sleep
396 * when CURSIG is called. If the wakeup happens while we're
397 * stopped, p->p_wchan will be 0 upon return from CURSIG.
398 */
399 if (catch) {
400 p->p_flag |= P_SINTR;
401 if ((sig = CURSIG(p)) != 0) {
402 if (p->p_wchan)
403 unsleep(p);
404 p->p_stat = SRUN;
405 goto resume;
406 }
407 if (p->p_wchan == 0) {
408 catch = 0;
409 goto resume;
410 }
411 } else
412 sig = 0;
413 p->p_stat = SSLEEP;
414 p->p_stats->p_ru.ru_nvcsw++;
415 mi_switch();
416 #ifdef DDB
417 /* handy breakpoint location after process "wakes" */
418 asm(".globl bpendtsleep ; bpendtsleep:");
419 #endif
420 resume:
421 curpriority = p->p_usrpri;
422 splx(s);
423 p->p_flag &= ~P_SINTR;
424 if (p->p_flag & P_TIMEOUT) {
425 p->p_flag &= ~P_TIMEOUT;
426 if (sig == 0) {
427 #ifdef KTRACE
428 if (KTRPOINT(p, KTR_CSW))
429 ktrcsw(p->p_tracep, 0, 0);
430 #endif
431 return (EWOULDBLOCK);
432 }
433 } else if (timo)
434 untimeout(endtsleep, (void *)p);
435 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
436 #ifdef KTRACE
437 if (KTRPOINT(p, KTR_CSW))
438 ktrcsw(p->p_tracep, 0, 0);
439 #endif
440 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
441 return (EINTR);
442 return (ERESTART);
443 }
444 #ifdef KTRACE
445 if (KTRPOINT(p, KTR_CSW))
446 ktrcsw(p->p_tracep, 0, 0);
447 #endif
448 return (0);
449 }
450
451 /*
452 * Implement timeout for tsleep.
453 * If process hasn't been awakened (wchan non-zero),
454 * set timeout flag and undo the sleep. If proc
455 * is stopped, just unsleep so it will remain stopped.
456 */
457 void
458 endtsleep(arg)
459 void *arg;
460 {
461 register struct proc *p;
462 int s;
463
464 p = (struct proc *)arg;
465 s = splhigh();
466 if (p->p_wchan) {
467 if (p->p_stat == SSLEEP)
468 setrunnable(p);
469 else
470 unsleep(p);
471 p->p_flag |= P_TIMEOUT;
472 }
473 splx(s);
474 }
475
476 /*
477 * Short-term, non-interruptable sleep.
478 */
479 void
480 sleep(ident, priority)
481 void *ident;
482 int priority;
483 {
484 register struct proc *p = curproc;
485 register struct slpque *qp;
486 register int s;
487
488 #ifdef DIAGNOSTIC
489 if (priority > PZERO) {
490 printf("sleep called with priority %d > PZERO, wchan: %p\n",
491 priority, ident);
492 panic("old sleep");
493 }
494 #endif
495 s = splhigh();
496 if (cold || panicstr) {
497 /*
498 * After a panic, or during autoconfiguration,
499 * just give interrupts a chance, then just return;
500 * don't run any other procs or panic below,
501 * in case this is the idle process and already asleep.
502 */
503 splx(safepri);
504 splx(s);
505 return;
506 }
507 #ifdef DIAGNOSTIC
508 if (ident == NULL || p->p_stat != SRUN || p->p_back)
509 panic("sleep");
510 #endif
511 p->p_wchan = ident;
512 p->p_wmesg = NULL;
513 p->p_slptime = 0;
514 p->p_priority = priority;
515 qp = &slpque[LOOKUP(ident)];
516 if (qp->sq_head == 0)
517 qp->sq_head = p;
518 else
519 *qp->sq_tailp = p;
520 *(qp->sq_tailp = &p->p_forw) = 0;
521 p->p_stat = SSLEEP;
522 p->p_stats->p_ru.ru_nvcsw++;
523 #ifdef KTRACE
524 if (KTRPOINT(p, KTR_CSW))
525 ktrcsw(p->p_tracep, 1, 0);
526 #endif
527 mi_switch();
528 #ifdef DDB
529 /* handy breakpoint location after process "wakes" */
530 asm(".globl bpendsleep ; bpendsleep:");
531 #endif
532 #ifdef KTRACE
533 if (KTRPOINT(p, KTR_CSW))
534 ktrcsw(p->p_tracep, 0, 0);
535 #endif
536 curpriority = p->p_usrpri;
537 splx(s);
538 }
539
540 /*
541 * Remove a process from its wait queue
542 */
543 void
544 unsleep(p)
545 register struct proc *p;
546 {
547 register struct slpque *qp;
548 register struct proc **hp;
549 int s;
550
551 s = splhigh();
552 if (p->p_wchan) {
553 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
554 while (*hp != p)
555 hp = &(*hp)->p_forw;
556 *hp = p->p_forw;
557 if (qp->sq_tailp == &p->p_forw)
558 qp->sq_tailp = hp;
559 p->p_wchan = 0;
560 }
561 splx(s);
562 }
563
564 /*
565 * Optimized-for-wakeup() version of setrunnable().
566 */
567 __inline void
568 awaken(p)
569 struct proc *p;
570 {
571
572 if (p->p_slptime > 1)
573 updatepri(p);
574 p->p_slptime = 0;
575 p->p_stat = SRUN;
576 /*
577 * Since curpriority is a user priority, p->p_priority
578 * is always better than curpriority.
579 */
580 if (p->p_flag & P_INMEM) {
581 setrunqueue(p);
582 need_resched();
583 } else
584 wakeup((caddr_t)&proc0);
585 }
586
587 /*
588 * Make all processes sleeping on the specified identifier runnable.
589 */
590 void
591 wakeup(ident)
592 register void *ident;
593 {
594 register struct slpque *qp;
595 register struct proc *p, **q;
596 int s;
597
598 s = splhigh();
599 qp = &slpque[LOOKUP(ident)];
600 restart:
601 for (q = &qp->sq_head; (p = *q) != NULL; ) {
602 #ifdef DIAGNOSTIC
603 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
604 panic("wakeup");
605 #endif
606 if (p->p_wchan == ident) {
607 p->p_wchan = 0;
608 *q = p->p_forw;
609 if (qp->sq_tailp == &p->p_forw)
610 qp->sq_tailp = q;
611 if (p->p_stat == SSLEEP) {
612 awaken(p);
613 goto restart;
614 }
615 } else
616 q = &p->p_forw;
617 }
618 splx(s);
619 }
620
621 /*
622 * Make the highest priority process first in line on the specified
623 * identifier runnable.
624 */
625 void
626 wakeup_one(ident)
627 void *ident;
628 {
629 struct slpque *qp;
630 struct proc *p, **q;
631 struct proc *best_sleepp, **best_sleepq;
632 struct proc *best_stopp, **best_stopq;
633 int s;
634
635 best_sleepp = best_stopp = NULL;
636 best_sleepq = best_stopq = NULL;
637
638 s = splhigh();
639 qp = &slpque[LOOKUP(ident)];
640 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
641 #ifdef DIAGNOSTIC
642 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
643 panic("wakeup_one");
644 #endif
645 if (p->p_wchan == ident) {
646 if (p->p_stat == SSLEEP) {
647 if (best_sleepp == NULL ||
648 p->p_priority < best_sleepp->p_priority) {
649 best_sleepp = p;
650 best_sleepq = q;
651 }
652 } else {
653 if (best_stopp == NULL ||
654 p->p_priority < best_stopp->p_priority) {
655 best_stopp = p;
656 best_stopq = q;
657 }
658 }
659 }
660 }
661
662 /*
663 * Consider any SSLEEP process higher than the highest priority SSTOP
664 * process.
665 */
666 if (best_sleepp != NULL) {
667 p = best_sleepp;
668 q = best_sleepq;
669 } else {
670 p = best_stopp;
671 q = best_stopq;
672 }
673
674 if (p != NULL) {
675 p->p_wchan = 0;
676 *q = p->p_forw;
677 if (qp->sq_tailp == &p->p_forw)
678 qp->sq_tailp = q;
679 if (p->p_stat == SSLEEP)
680 awaken(p);
681 }
682 splx(s);
683 }
684
685 /*
686 * The machine independent parts of mi_switch().
687 * Must be called at splstatclock() or higher.
688 */
689 void
690 mi_switch()
691 {
692 register struct proc *p = curproc; /* XXX */
693 register struct rlimit *rlim;
694 register long s, u;
695 struct timeval tv;
696
697 #ifdef DEBUG
698 if (p->p_simple_locks) {
699 printf("p->p_simple_locks %d\n", p->p_simple_locks);
700 #ifdef LOCKDEBUG
701 simple_lock_dump();
702 #endif
703 panic("sleep: holding simple lock");
704 }
705 #endif
706 /*
707 * Compute the amount of time during which the current
708 * process was running, and add that to its total so far.
709 */
710 microtime(&tv);
711 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
712 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
713 if (u < 0) {
714 u += 1000000;
715 s--;
716 } else if (u >= 1000000) {
717 u -= 1000000;
718 s++;
719 }
720 p->p_rtime.tv_usec = u;
721 p->p_rtime.tv_sec = s;
722
723 /*
724 * Check if the process exceeds its cpu resource allocation.
725 * If over max, kill it. In any case, if it has run for more
726 * than 10 minutes, reduce priority to give others a chance.
727 */
728 rlim = &p->p_rlimit[RLIMIT_CPU];
729 if (s >= rlim->rlim_cur) {
730 if (s >= rlim->rlim_max)
731 psignal(p, SIGKILL);
732 else {
733 psignal(p, SIGXCPU);
734 if (rlim->rlim_cur < rlim->rlim_max)
735 rlim->rlim_cur += 5;
736 }
737 }
738 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
739 p->p_nice = autoniceval + NZERO;
740 resetpriority(p);
741 }
742
743 /*
744 * Pick a new current process and record its start time.
745 */
746 uvmexp.swtch++;
747 cpu_switch(p);
748 microtime(&runtime);
749 }
750
751 /*
752 * Initialize the (doubly-linked) run queues
753 * to be empty.
754 */
755 void
756 rqinit()
757 {
758 register int i;
759
760 for (i = 0; i < NQS; i++)
761 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
762 }
763
764 /*
765 * Change process state to be runnable,
766 * placing it on the run queue if it is in memory,
767 * and awakening the swapper if it isn't in memory.
768 */
769 void
770 setrunnable(p)
771 register struct proc *p;
772 {
773 register int s;
774
775 s = splhigh();
776 switch (p->p_stat) {
777 case 0:
778 case SRUN:
779 case SZOMB:
780 case SDEAD:
781 default:
782 panic("setrunnable");
783 case SSTOP:
784 /*
785 * If we're being traced (possibly because someone attached us
786 * while we were stopped), check for a signal from the debugger.
787 */
788 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
789 sigaddset(&p->p_siglist, p->p_xstat);
790 p->p_sigcheck = 1;
791 }
792 case SSLEEP:
793 unsleep(p); /* e.g. when sending signals */
794 break;
795
796 case SIDL:
797 break;
798 }
799 p->p_stat = SRUN;
800 if (p->p_flag & P_INMEM)
801 setrunqueue(p);
802 splx(s);
803 if (p->p_slptime > 1)
804 updatepri(p);
805 p->p_slptime = 0;
806 if ((p->p_flag & P_INMEM) == 0)
807 wakeup((caddr_t)&proc0);
808 else if (p->p_priority < curpriority)
809 need_resched();
810 }
811
812 /*
813 * Compute the priority of a process when running in user mode.
814 * Arrange to reschedule if the resulting priority is better
815 * than that of the current process.
816 */
817 void
818 resetpriority(p)
819 register struct proc *p;
820 {
821 register unsigned int newpriority;
822
823 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
824 newpriority = min(newpriority, MAXPRI);
825 p->p_usrpri = newpriority;
826 if (newpriority < curpriority)
827 need_resched();
828 }
829
830 /*
831 * We adjust the priority of the current process. The priority of a process
832 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
833 * is increased here. The formula for computing priorities (in kern_synch.c)
834 * will compute a different value each time p_estcpu increases. This can
835 * cause a switch, but unless the priority crosses a PPQ boundary the actual
836 * queue will not change. The cpu usage estimator ramps up quite quickly
837 * when the process is running (linearly), and decays away exponentially, at
838 * a rate which is proportionally slower when the system is busy. The basic
839 * principal is that the system will 90% forget that the process used a lot
840 * of CPU time in 5 * loadav seconds. This causes the system to favor
841 * processes which haven't run much recently, and to round-robin among other
842 * processes.
843 */
844
845 void
846 schedclock(p)
847 struct proc *p;
848 {
849 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
850 resetpriority(p);
851 if (p->p_priority >= PUSER)
852 p->p_priority = p->p_usrpri;
853 }
854