kern_synch.c revision 1.68 1 /* $NetBSD: kern_synch.c,v 1.68 2000/03/23 06:30:12 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/proc.h>
87 #include <sys/kernel.h>
88 #include <sys/buf.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <vm/vm.h>
92 #include <sys/sched.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #ifdef KTRACE
97 #include <sys/ktrace.h>
98 #endif
99
100 #define NICE_WEIGHT 2 /* priorities per nice level */
101 #define PPQ (128 / NQS) /* priorities per queue */
102
103 #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
104
105 #include <machine/cpu.h>
106
107 u_char curpriority; /* usrpri of curproc */
108 int lbolt; /* once a second sleep address */
109
110 void roundrobin __P((void *));
111 void schedcpu __P((void *));
112 void updatepri __P((struct proc *));
113 void endtsleep __P((void *));
114
115 __inline void awaken __P((struct proc *));
116
117 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
118 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
119
120 /*
121 * Force switch among equal priority processes every 100ms.
122 */
123 /* ARGSUSED */
124 void
125 roundrobin(arg)
126 void *arg;
127 {
128
129 need_resched();
130 callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
131 }
132
133 /*
134 * Constants for digital decay and forget:
135 * 90% of (p_estcpu) usage in 5 * loadav time
136 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
137 * Note that, as ps(1) mentions, this can let percentages
138 * total over 100% (I've seen 137.9% for 3 processes).
139 *
140 * Note that hardclock updates p_estcpu and p_cpticks independently.
141 *
142 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
143 * That is, the system wants to compute a value of decay such
144 * that the following for loop:
145 * for (i = 0; i < (5 * loadavg); i++)
146 * p_estcpu *= decay;
147 * will compute
148 * p_estcpu *= 0.1;
149 * for all values of loadavg:
150 *
151 * Mathematically this loop can be expressed by saying:
152 * decay ** (5 * loadavg) ~= .1
153 *
154 * The system computes decay as:
155 * decay = (2 * loadavg) / (2 * loadavg + 1)
156 *
157 * We wish to prove that the system's computation of decay
158 * will always fulfill the equation:
159 * decay ** (5 * loadavg) ~= .1
160 *
161 * If we compute b as:
162 * b = 2 * loadavg
163 * then
164 * decay = b / (b + 1)
165 *
166 * We now need to prove two things:
167 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
168 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
169 *
170 * Facts:
171 * For x close to zero, exp(x) =~ 1 + x, since
172 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
173 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
174 * For x close to zero, ln(1+x) =~ x, since
175 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
176 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
177 * ln(.1) =~ -2.30
178 *
179 * Proof of (1):
180 * Solve (factor)**(power) =~ .1 given power (5*loadav):
181 * solving for factor,
182 * ln(factor) =~ (-2.30/5*loadav), or
183 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
184 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
185 *
186 * Proof of (2):
187 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
188 * solving for power,
189 * power*ln(b/(b+1)) =~ -2.30, or
190 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
191 *
192 * Actual power values for the implemented algorithm are as follows:
193 * loadav: 1 2 3 4
194 * power: 5.68 10.32 14.94 19.55
195 */
196
197 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
198 #define loadfactor(loadav) (2 * (loadav))
199 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
200
201 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
202 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
203
204 /*
205 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
206 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
207 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
208 *
209 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
210 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
211 *
212 * If you dont want to bother with the faster/more-accurate formula, you
213 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
214 * (more general) method of calculating the %age of CPU used by a process.
215 */
216 #define CCPU_SHIFT 11
217
218 /*
219 * Recompute process priorities, every hz ticks.
220 */
221 /* ARGSUSED */
222 void
223 schedcpu(arg)
224 void *arg;
225 {
226 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
227 register struct proc *p;
228 register int s;
229 register unsigned int newcpu;
230 int clkhz;
231
232 proclist_lock_read();
233 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
234 /*
235 * Increment time in/out of memory and sleep time
236 * (if sleeping). We ignore overflow; with 16-bit int's
237 * (remember them?) overflow takes 45 days.
238 */
239 p->p_swtime++;
240 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
241 p->p_slptime++;
242 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
243 /*
244 * If the process has slept the entire second,
245 * stop recalculating its priority until it wakes up.
246 */
247 if (p->p_slptime > 1)
248 continue;
249 s = splstatclock(); /* prevent state changes */
250 /*
251 * p_pctcpu is only for ps.
252 */
253 clkhz = stathz != 0 ? stathz : hz;
254 #if (FSHIFT >= CCPU_SHIFT)
255 p->p_pctcpu += (clkhz == 100)?
256 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
257 100 * (((fixpt_t) p->p_cpticks)
258 << (FSHIFT - CCPU_SHIFT)) / clkhz;
259 #else
260 p->p_pctcpu += ((FSCALE - ccpu) *
261 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
262 #endif
263 p->p_cpticks = 0;
264 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
265 p->p_estcpu = newcpu;
266 resetpriority(p);
267 if (p->p_priority >= PUSER) {
268 if ((p != curproc) &&
269 p->p_stat == SRUN &&
270 (p->p_flag & P_INMEM) &&
271 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
272 remrunqueue(p);
273 p->p_priority = p->p_usrpri;
274 setrunqueue(p);
275 } else
276 p->p_priority = p->p_usrpri;
277 }
278 splx(s);
279 }
280 proclist_unlock_read();
281 uvm_meter();
282 wakeup((caddr_t)&lbolt);
283 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
284 }
285
286 /*
287 * Recalculate the priority of a process after it has slept for a while.
288 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
289 * least six times the loadfactor will decay p_estcpu to zero.
290 */
291 void
292 updatepri(p)
293 register struct proc *p;
294 {
295 register unsigned int newcpu = p->p_estcpu;
296 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
297
298 if (p->p_slptime > 5 * loadfac)
299 p->p_estcpu = 0;
300 else {
301 p->p_slptime--; /* the first time was done in schedcpu */
302 while (newcpu && --p->p_slptime)
303 newcpu = (int) decay_cpu(loadfac, newcpu);
304 p->p_estcpu = newcpu;
305 }
306 resetpriority(p);
307 }
308
309 /*
310 * We're only looking at 7 bits of the address; everything is
311 * aligned to 4, lots of things are aligned to greater powers
312 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
313 */
314 #define TABLESIZE 128
315 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
316 struct slpque {
317 struct proc *sq_head;
318 struct proc **sq_tailp;
319 } slpque[TABLESIZE];
320
321 /*
322 * During autoconfiguration or after a panic, a sleep will simply
323 * lower the priority briefly to allow interrupts, then return.
324 * The priority to be used (safepri) is machine-dependent, thus this
325 * value is initialized and maintained in the machine-dependent layers.
326 * This priority will typically be 0, or the lowest priority
327 * that is safe for use on the interrupt stack; it can be made
328 * higher to block network software interrupts after panics.
329 */
330 int safepri;
331
332 /*
333 * General sleep call. Suspends the current process until a wakeup is
334 * performed on the specified identifier. The process will then be made
335 * runnable with the specified priority. Sleeps at most timo/hz seconds
336 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
337 * before and after sleeping, else signals are not checked. Returns 0 if
338 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
339 * signal needs to be delivered, ERESTART is returned if the current system
340 * call should be restarted if possible, and EINTR is returned if the system
341 * call should be interrupted by the signal (return EINTR).
342 */
343 int
344 tsleep(ident, priority, wmesg, timo)
345 void *ident;
346 int priority, timo;
347 const char *wmesg;
348 {
349 register struct proc *p = curproc;
350 register struct slpque *qp;
351 register int s;
352 int sig, catch = priority & PCATCH;
353 void endtsleep __P((void *));
354
355 if (cold || panicstr) {
356 /*
357 * After a panic, or during autoconfiguration,
358 * just give interrupts a chance, then just return;
359 * don't run any other procs or panic below,
360 * in case this is the idle process and already asleep.
361 */
362 s = splhigh();
363 splx(safepri);
364 splx(s);
365 return (0);
366 }
367
368 #ifdef KTRACE
369 if (KTRPOINT(p, KTR_CSW))
370 ktrcsw(p->p_tracep, 1, 0);
371 #endif
372 s = splhigh();
373
374 #ifdef DIAGNOSTIC
375 if (ident == NULL)
376 panic("tsleep: ident == NULL");
377 if (p->p_stat != SRUN)
378 panic("tsleep: p_stat %d != SRUN", p->p_stat);
379 if (p->p_back != NULL)
380 panic("tsleep: p_back != NULL");
381 #endif
382 p->p_wchan = ident;
383 p->p_wmesg = wmesg;
384 p->p_slptime = 0;
385 p->p_priority = priority & PRIMASK;
386 qp = &slpque[LOOKUP(ident)];
387 if (qp->sq_head == 0)
388 qp->sq_head = p;
389 else
390 *qp->sq_tailp = p;
391 *(qp->sq_tailp = &p->p_forw) = 0;
392 if (timo)
393 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
394 /*
395 * We put ourselves on the sleep queue and start our timeout
396 * before calling CURSIG, as we could stop there, and a wakeup
397 * or a SIGCONT (or both) could occur while we were stopped.
398 * A SIGCONT would cause us to be marked as SSLEEP
399 * without resuming us, thus we must be ready for sleep
400 * when CURSIG is called. If the wakeup happens while we're
401 * stopped, p->p_wchan will be 0 upon return from CURSIG.
402 */
403 if (catch) {
404 p->p_flag |= P_SINTR;
405 if ((sig = CURSIG(p)) != 0) {
406 if (p->p_wchan)
407 unsleep(p);
408 p->p_stat = SRUN;
409 goto resume;
410 }
411 if (p->p_wchan == 0) {
412 catch = 0;
413 goto resume;
414 }
415 } else
416 sig = 0;
417 p->p_stat = SSLEEP;
418 p->p_stats->p_ru.ru_nvcsw++;
419 mi_switch();
420 #ifdef DDB
421 /* handy breakpoint location after process "wakes" */
422 asm(".globl bpendtsleep ; bpendtsleep:");
423 #endif
424 resume:
425 curpriority = p->p_usrpri;
426 splx(s);
427 p->p_flag &= ~P_SINTR;
428 if (p->p_flag & P_TIMEOUT) {
429 p->p_flag &= ~P_TIMEOUT;
430 if (sig == 0) {
431 #ifdef KTRACE
432 if (KTRPOINT(p, KTR_CSW))
433 ktrcsw(p->p_tracep, 0, 0);
434 #endif
435 return (EWOULDBLOCK);
436 }
437 } else if (timo)
438 callout_stop(&p->p_tsleep_ch);
439 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
440 #ifdef KTRACE
441 if (KTRPOINT(p, KTR_CSW))
442 ktrcsw(p->p_tracep, 0, 0);
443 #endif
444 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
445 return (EINTR);
446 return (ERESTART);
447 }
448 #ifdef KTRACE
449 if (KTRPOINT(p, KTR_CSW))
450 ktrcsw(p->p_tracep, 0, 0);
451 #endif
452 return (0);
453 }
454
455 /*
456 * Implement timeout for tsleep.
457 * If process hasn't been awakened (wchan non-zero),
458 * set timeout flag and undo the sleep. If proc
459 * is stopped, just unsleep so it will remain stopped.
460 */
461 void
462 endtsleep(arg)
463 void *arg;
464 {
465 register struct proc *p;
466 int s;
467
468 p = (struct proc *)arg;
469 s = splhigh();
470 if (p->p_wchan) {
471 if (p->p_stat == SSLEEP)
472 setrunnable(p);
473 else
474 unsleep(p);
475 p->p_flag |= P_TIMEOUT;
476 }
477 splx(s);
478 }
479
480 /*
481 * Short-term, non-interruptable sleep.
482 */
483 void
484 sleep(ident, priority)
485 void *ident;
486 int priority;
487 {
488 register struct proc *p = curproc;
489 register struct slpque *qp;
490 register int s;
491
492 #ifdef DIAGNOSTIC
493 if (priority > PZERO) {
494 printf("sleep called with priority %d > PZERO, wchan: %p\n",
495 priority, ident);
496 panic("old sleep");
497 }
498 #endif
499 s = splhigh();
500 if (cold || panicstr) {
501 /*
502 * After a panic, or during autoconfiguration,
503 * just give interrupts a chance, then just return;
504 * don't run any other procs or panic below,
505 * in case this is the idle process and already asleep.
506 */
507 splx(safepri);
508 splx(s);
509 return;
510 }
511 #ifdef DIAGNOSTIC
512 if (ident == NULL || p->p_stat != SRUN || p->p_back)
513 panic("sleep");
514 #endif
515 p->p_wchan = ident;
516 p->p_wmesg = NULL;
517 p->p_slptime = 0;
518 p->p_priority = priority;
519 qp = &slpque[LOOKUP(ident)];
520 if (qp->sq_head == 0)
521 qp->sq_head = p;
522 else
523 *qp->sq_tailp = p;
524 *(qp->sq_tailp = &p->p_forw) = 0;
525 p->p_stat = SSLEEP;
526 p->p_stats->p_ru.ru_nvcsw++;
527 #ifdef KTRACE
528 if (KTRPOINT(p, KTR_CSW))
529 ktrcsw(p->p_tracep, 1, 0);
530 #endif
531 mi_switch();
532 #ifdef DDB
533 /* handy breakpoint location after process "wakes" */
534 asm(".globl bpendsleep ; bpendsleep:");
535 #endif
536 #ifdef KTRACE
537 if (KTRPOINT(p, KTR_CSW))
538 ktrcsw(p->p_tracep, 0, 0);
539 #endif
540 curpriority = p->p_usrpri;
541 splx(s);
542 }
543
544 /*
545 * Remove a process from its wait queue
546 */
547 void
548 unsleep(p)
549 register struct proc *p;
550 {
551 register struct slpque *qp;
552 register struct proc **hp;
553 int s;
554
555 s = splhigh();
556 if (p->p_wchan) {
557 hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
558 while (*hp != p)
559 hp = &(*hp)->p_forw;
560 *hp = p->p_forw;
561 if (qp->sq_tailp == &p->p_forw)
562 qp->sq_tailp = hp;
563 p->p_wchan = 0;
564 }
565 splx(s);
566 }
567
568 /*
569 * Optimized-for-wakeup() version of setrunnable().
570 */
571 __inline void
572 awaken(p)
573 struct proc *p;
574 {
575
576 if (p->p_slptime > 1)
577 updatepri(p);
578 p->p_slptime = 0;
579 p->p_stat = SRUN;
580 /*
581 * Since curpriority is a user priority, p->p_priority
582 * is always better than curpriority.
583 */
584 if (p->p_flag & P_INMEM) {
585 setrunqueue(p);
586 need_resched();
587 } else
588 wakeup((caddr_t)&proc0);
589 }
590
591 /*
592 * Make all processes sleeping on the specified identifier runnable.
593 */
594 void
595 wakeup(ident)
596 register void *ident;
597 {
598 register struct slpque *qp;
599 register struct proc *p, **q;
600 int s;
601
602 s = splhigh();
603 qp = &slpque[LOOKUP(ident)];
604 restart:
605 for (q = &qp->sq_head; (p = *q) != NULL; ) {
606 #ifdef DIAGNOSTIC
607 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
608 panic("wakeup");
609 #endif
610 if (p->p_wchan == ident) {
611 p->p_wchan = 0;
612 *q = p->p_forw;
613 if (qp->sq_tailp == &p->p_forw)
614 qp->sq_tailp = q;
615 if (p->p_stat == SSLEEP) {
616 awaken(p);
617 goto restart;
618 }
619 } else
620 q = &p->p_forw;
621 }
622 splx(s);
623 }
624
625 /*
626 * Make the highest priority process first in line on the specified
627 * identifier runnable.
628 */
629 void
630 wakeup_one(ident)
631 void *ident;
632 {
633 struct slpque *qp;
634 struct proc *p, **q;
635 struct proc *best_sleepp, **best_sleepq;
636 struct proc *best_stopp, **best_stopq;
637 int s;
638
639 best_sleepp = best_stopp = NULL;
640 best_sleepq = best_stopq = NULL;
641
642 s = splhigh();
643 qp = &slpque[LOOKUP(ident)];
644 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
645 #ifdef DIAGNOSTIC
646 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
647 panic("wakeup_one");
648 #endif
649 if (p->p_wchan == ident) {
650 if (p->p_stat == SSLEEP) {
651 if (best_sleepp == NULL ||
652 p->p_priority < best_sleepp->p_priority) {
653 best_sleepp = p;
654 best_sleepq = q;
655 }
656 } else {
657 if (best_stopp == NULL ||
658 p->p_priority < best_stopp->p_priority) {
659 best_stopp = p;
660 best_stopq = q;
661 }
662 }
663 }
664 }
665
666 /*
667 * Consider any SSLEEP process higher than the highest priority SSTOP
668 * process.
669 */
670 if (best_sleepp != NULL) {
671 p = best_sleepp;
672 q = best_sleepq;
673 } else {
674 p = best_stopp;
675 q = best_stopq;
676 }
677
678 if (p != NULL) {
679 p->p_wchan = 0;
680 *q = p->p_forw;
681 if (qp->sq_tailp == &p->p_forw)
682 qp->sq_tailp = q;
683 if (p->p_stat == SSLEEP)
684 awaken(p);
685 }
686 splx(s);
687 }
688
689 /*
690 * The machine independent parts of mi_switch().
691 * Must be called at splstatclock() or higher.
692 */
693 void
694 mi_switch()
695 {
696 register struct proc *p = curproc; /* XXX */
697 register struct rlimit *rlim;
698 register long s, u;
699 struct timeval tv;
700
701 #ifdef DEBUG
702 if (p->p_simple_locks) {
703 printf("p->p_simple_locks %d\n", p->p_simple_locks);
704 #ifdef LOCKDEBUG
705 simple_lock_dump();
706 #endif
707 panic("sleep: holding simple lock");
708 }
709 #endif
710 /*
711 * Compute the amount of time during which the current
712 * process was running, and add that to its total so far.
713 */
714 microtime(&tv);
715 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
716 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
717 if (u < 0) {
718 u += 1000000;
719 s--;
720 } else if (u >= 1000000) {
721 u -= 1000000;
722 s++;
723 }
724 p->p_rtime.tv_usec = u;
725 p->p_rtime.tv_sec = s;
726
727 /*
728 * Check if the process exceeds its cpu resource allocation.
729 * If over max, kill it. In any case, if it has run for more
730 * than 10 minutes, reduce priority to give others a chance.
731 */
732 rlim = &p->p_rlimit[RLIMIT_CPU];
733 if (s >= rlim->rlim_cur) {
734 if (s >= rlim->rlim_max)
735 psignal(p, SIGKILL);
736 else {
737 psignal(p, SIGXCPU);
738 if (rlim->rlim_cur < rlim->rlim_max)
739 rlim->rlim_cur += 5;
740 }
741 }
742 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
743 p->p_nice = autoniceval + NZERO;
744 resetpriority(p);
745 }
746
747 /*
748 * Pick a new current process and record its start time.
749 */
750 uvmexp.swtch++;
751 cpu_switch(p);
752 microtime(&runtime);
753 }
754
755 /*
756 * Initialize the (doubly-linked) run queues
757 * to be empty.
758 */
759 void
760 rqinit()
761 {
762 register int i;
763
764 for (i = 0; i < NQS; i++)
765 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
766 }
767
768 /*
769 * Change process state to be runnable,
770 * placing it on the run queue if it is in memory,
771 * and awakening the swapper if it isn't in memory.
772 */
773 void
774 setrunnable(p)
775 register struct proc *p;
776 {
777 register int s;
778
779 s = splhigh();
780 switch (p->p_stat) {
781 case 0:
782 case SRUN:
783 case SZOMB:
784 case SDEAD:
785 default:
786 panic("setrunnable");
787 case SSTOP:
788 /*
789 * If we're being traced (possibly because someone attached us
790 * while we were stopped), check for a signal from the debugger.
791 */
792 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
793 sigaddset(&p->p_siglist, p->p_xstat);
794 p->p_sigcheck = 1;
795 }
796 case SSLEEP:
797 unsleep(p); /* e.g. when sending signals */
798 break;
799
800 case SIDL:
801 break;
802 }
803 p->p_stat = SRUN;
804 if (p->p_flag & P_INMEM)
805 setrunqueue(p);
806 splx(s);
807 if (p->p_slptime > 1)
808 updatepri(p);
809 p->p_slptime = 0;
810 if ((p->p_flag & P_INMEM) == 0)
811 wakeup((caddr_t)&proc0);
812 else if (p->p_priority < curpriority)
813 need_resched();
814 }
815
816 /*
817 * Compute the priority of a process when running in user mode.
818 * Arrange to reschedule if the resulting priority is better
819 * than that of the current process.
820 */
821 void
822 resetpriority(p)
823 register struct proc *p;
824 {
825 register unsigned int newpriority;
826
827 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
828 newpriority = min(newpriority, MAXPRI);
829 p->p_usrpri = newpriority;
830 if (newpriority < curpriority)
831 need_resched();
832 }
833
834 /*
835 * We adjust the priority of the current process. The priority of a process
836 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
837 * is increased here. The formula for computing priorities (in kern_synch.c)
838 * will compute a different value each time p_estcpu increases. This can
839 * cause a switch, but unless the priority crosses a PPQ boundary the actual
840 * queue will not change. The cpu usage estimator ramps up quite quickly
841 * when the process is running (linearly), and decays away exponentially, at
842 * a rate which is proportionally slower when the system is busy. The basic
843 * principal is that the system will 90% forget that the process used a lot
844 * of CPU time in 5 * loadav seconds. This causes the system to favor
845 * processes which haven't run much recently, and to round-robin among other
846 * processes.
847 */
848
849 void
850 schedclock(p)
851 struct proc *p;
852 {
853 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
854 resetpriority(p);
855 if (p->p_priority >= PUSER)
856 p->p_priority = p->p_usrpri;
857 }
858