Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.76
      1 /*	$NetBSD: kern_synch.c,v 1.76 2000/05/31 05:02:33 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_ktrace.h"
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/callout.h>
     86 #include <sys/proc.h>
     87 #include <sys/kernel.h>
     88 #include <sys/buf.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/resourcevar.h>
     91 #include <vm/vm.h>
     92 #include <sys/sched.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 
     96 #ifdef KTRACE
     97 #include <sys/ktrace.h>
     98 #endif
     99 
    100 #include <machine/cpu.h>
    101 
    102 int	lbolt;			/* once a second sleep address */
    103 
    104 /*
    105  * The global scheduler state.
    106  */
    107 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    108 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    109 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    110 
    111 void roundrobin __P((void *));
    112 void schedcpu __P((void *));
    113 void updatepri __P((struct proc *));
    114 void endtsleep __P((void *));
    115 
    116 __inline void awaken __P((struct proc *));
    117 
    118 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
    119 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    120 
    121 /*
    122  * Force switch among equal priority processes every 100ms.
    123  */
    124 /* ARGSUSED */
    125 void
    126 roundrobin(arg)
    127 	void *arg;
    128 {
    129 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
    130 	int s;
    131 
    132 	if (curproc != NULL) {
    133 		s = splstatclock();
    134 		if (spc->spc_flags & SPCF_SEENRR) {
    135 			/*
    136 			 * The process has already been through a roundrobin
    137 			 * without switching and may be hogging the CPU.
    138 			 * Indicate that the process should yield.
    139 			 */
    140 			spc->spc_flags |= SPCF_SHOULDYIELD;
    141 		} else
    142 			spc->spc_flags |= SPCF_SEENRR;
    143 		splx(s);
    144 	}
    145 	need_resched();
    146 	callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
    147 }
    148 
    149 /*
    150  * Constants for digital decay and forget:
    151  *	90% of (p_estcpu) usage in 5 * loadav time
    152  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    153  *          Note that, as ps(1) mentions, this can let percentages
    154  *          total over 100% (I've seen 137.9% for 3 processes).
    155  *
    156  * Note that hardclock updates p_estcpu and p_cpticks independently.
    157  *
    158  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    159  * That is, the system wants to compute a value of decay such
    160  * that the following for loop:
    161  * 	for (i = 0; i < (5 * loadavg); i++)
    162  * 		p_estcpu *= decay;
    163  * will compute
    164  * 	p_estcpu *= 0.1;
    165  * for all values of loadavg:
    166  *
    167  * Mathematically this loop can be expressed by saying:
    168  * 	decay ** (5 * loadavg) ~= .1
    169  *
    170  * The system computes decay as:
    171  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    172  *
    173  * We wish to prove that the system's computation of decay
    174  * will always fulfill the equation:
    175  * 	decay ** (5 * loadavg) ~= .1
    176  *
    177  * If we compute b as:
    178  * 	b = 2 * loadavg
    179  * then
    180  * 	decay = b / (b + 1)
    181  *
    182  * We now need to prove two things:
    183  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    184  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    185  *
    186  * Facts:
    187  *         For x close to zero, exp(x) =~ 1 + x, since
    188  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    189  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    190  *         For x close to zero, ln(1+x) =~ x, since
    191  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    192  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    193  *         ln(.1) =~ -2.30
    194  *
    195  * Proof of (1):
    196  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    197  *	solving for factor,
    198  *      ln(factor) =~ (-2.30/5*loadav), or
    199  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    200  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    201  *
    202  * Proof of (2):
    203  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    204  *	solving for power,
    205  *      power*ln(b/(b+1)) =~ -2.30, or
    206  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    207  *
    208  * Actual power values for the implemented algorithm are as follows:
    209  *      loadav: 1       2       3       4
    210  *      power:  5.68    10.32   14.94   19.55
    211  */
    212 
    213 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    214 #define	loadfactor(loadav)	(2 * (loadav))
    215 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    216 
    217 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    218 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    219 
    220 /*
    221  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    222  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    223  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    224  *
    225  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    226  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    227  *
    228  * If you dont want to bother with the faster/more-accurate formula, you
    229  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    230  * (more general) method of calculating the %age of CPU used by a process.
    231  */
    232 #define	CCPU_SHIFT	11
    233 
    234 /*
    235  * Recompute process priorities, every hz ticks.
    236  */
    237 /* ARGSUSED */
    238 void
    239 schedcpu(arg)
    240 	void *arg;
    241 {
    242 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    243 	struct proc *p;
    244 	int s;
    245 	unsigned int newcpu;
    246 	int clkhz;
    247 
    248 	proclist_lock_read();
    249 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    250 		/*
    251 		 * Increment time in/out of memory and sleep time
    252 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    253 		 * (remember them?) overflow takes 45 days.
    254 		 */
    255 		p->p_swtime++;
    256 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    257 			p->p_slptime++;
    258 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    259 		/*
    260 		 * If the process has slept the entire second,
    261 		 * stop recalculating its priority until it wakes up.
    262 		 */
    263 		if (p->p_slptime > 1)
    264 			continue;
    265 		s = splstatclock();	/* prevent state changes */
    266 		/*
    267 		 * p_pctcpu is only for ps.
    268 		 */
    269 		clkhz = stathz != 0 ? stathz : hz;
    270 #if	(FSHIFT >= CCPU_SHIFT)
    271 		p->p_pctcpu += (clkhz == 100)?
    272 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    273                 	100 * (((fixpt_t) p->p_cpticks)
    274 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    275 #else
    276 		p->p_pctcpu += ((FSCALE - ccpu) *
    277 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    278 #endif
    279 		p->p_cpticks = 0;
    280 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    281 		p->p_estcpu = newcpu;
    282 		resetpriority(p);
    283 		if (p->p_priority >= PUSER) {
    284 			if (p->p_stat == SRUN &&
    285 			    (p->p_flag & P_INMEM) &&
    286 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    287 				remrunqueue(p);
    288 				p->p_priority = p->p_usrpri;
    289 				setrunqueue(p);
    290 			} else
    291 				p->p_priority = p->p_usrpri;
    292 		}
    293 		splx(s);
    294 	}
    295 	proclist_unlock_read();
    296 	uvm_meter();
    297 	wakeup((caddr_t)&lbolt);
    298 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    299 }
    300 
    301 /*
    302  * Recalculate the priority of a process after it has slept for a while.
    303  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    304  * least six times the loadfactor will decay p_estcpu to zero.
    305  */
    306 void
    307 updatepri(p)
    308 	struct proc *p;
    309 {
    310 	unsigned int newcpu = p->p_estcpu;
    311 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    312 
    313 	if (p->p_slptime > 5 * loadfac)
    314 		p->p_estcpu = 0;
    315 	else {
    316 		p->p_slptime--;	/* the first time was done in schedcpu */
    317 		while (newcpu && --p->p_slptime)
    318 			newcpu = (int) decay_cpu(loadfac, newcpu);
    319 		p->p_estcpu = newcpu;
    320 	}
    321 	resetpriority(p);
    322 }
    323 
    324 /*
    325  * During autoconfiguration or after a panic, a sleep will simply
    326  * lower the priority briefly to allow interrupts, then return.
    327  * The priority to be used (safepri) is machine-dependent, thus this
    328  * value is initialized and maintained in the machine-dependent layers.
    329  * This priority will typically be 0, or the lowest priority
    330  * that is safe for use on the interrupt stack; it can be made
    331  * higher to block network software interrupts after panics.
    332  */
    333 int safepri;
    334 
    335 /*
    336  * General sleep call.  Suspends the current process until a wakeup is
    337  * performed on the specified identifier.  The process will then be made
    338  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    339  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    340  * before and after sleeping, else signals are not checked.  Returns 0 if
    341  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    342  * signal needs to be delivered, ERESTART is returned if the current system
    343  * call should be restarted if possible, and EINTR is returned if the system
    344  * call should be interrupted by the signal (return EINTR).
    345  */
    346 int
    347 tsleep(ident, priority, wmesg, timo)
    348 	void *ident;
    349 	int priority, timo;
    350 	const char *wmesg;
    351 {
    352 	struct proc *p = curproc;
    353 	struct slpque *qp;
    354 	int s;
    355 	int sig, catch = priority & PCATCH;
    356 
    357 	if (cold || panicstr) {
    358 		/*
    359 		 * After a panic, or during autoconfiguration,
    360 		 * just give interrupts a chance, then just return;
    361 		 * don't run any other procs or panic below,
    362 		 * in case this is the idle process and already asleep.
    363 		 */
    364 		s = splhigh();
    365 		splx(safepri);
    366 		splx(s);
    367 		return (0);
    368 	}
    369 
    370 #ifdef KTRACE
    371 	if (KTRPOINT(p, KTR_CSW))
    372 		ktrcsw(p, 1, 0);
    373 #endif
    374 	s = splhigh();
    375 
    376 #ifdef DIAGNOSTIC
    377 	if (ident == NULL)
    378 		panic("tsleep: ident == NULL");
    379 	if (p->p_stat != SONPROC)
    380 		panic("tsleep: p_stat %d != SONPROC", p->p_stat);
    381 	if (p->p_back != NULL)
    382 		panic("tsleep: p_back != NULL");
    383 #endif
    384 	p->p_wchan = ident;
    385 	p->p_wmesg = wmesg;
    386 	p->p_slptime = 0;
    387 	p->p_priority = priority & PRIMASK;
    388 	qp = SLPQUE(ident);
    389 	if (qp->sq_head == 0)
    390 		qp->sq_head = p;
    391 	else
    392 		*qp->sq_tailp = p;
    393 	*(qp->sq_tailp = &p->p_forw) = 0;
    394 	if (timo)
    395 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    396 	/*
    397 	 * We put ourselves on the sleep queue and start our timeout
    398 	 * before calling CURSIG, as we could stop there, and a wakeup
    399 	 * or a SIGCONT (or both) could occur while we were stopped.
    400 	 * A SIGCONT would cause us to be marked as SSLEEP
    401 	 * without resuming us, thus we must be ready for sleep
    402 	 * when CURSIG is called.  If the wakeup happens while we're
    403 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    404 	 */
    405 	if (catch) {
    406 		p->p_flag |= P_SINTR;
    407 		if ((sig = CURSIG(p)) != 0) {
    408 			if (p->p_wchan)
    409 				unsleep(p);
    410 			p->p_stat = SONPROC;
    411 			goto resume;
    412 		}
    413 		if (p->p_wchan == 0) {
    414 			catch = 0;
    415 			goto resume;
    416 		}
    417 	} else
    418 		sig = 0;
    419 	p->p_stat = SSLEEP;
    420 	p->p_stats->p_ru.ru_nvcsw++;
    421 	mi_switch(p);
    422 #ifdef	DDB
    423 	/* handy breakpoint location after process "wakes" */
    424 	asm(".globl bpendtsleep ; bpendtsleep:");
    425 #endif
    426 resume:
    427 	KDASSERT(p->p_cpu != NULL);
    428 	KDASSERT(p->p_cpu == curcpu());
    429 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    430 	splx(s);
    431 	p->p_flag &= ~P_SINTR;
    432 	if (p->p_flag & P_TIMEOUT) {
    433 		p->p_flag &= ~P_TIMEOUT;
    434 		if (sig == 0) {
    435 #ifdef KTRACE
    436 			if (KTRPOINT(p, KTR_CSW))
    437 				ktrcsw(p, 0, 0);
    438 #endif
    439 			return (EWOULDBLOCK);
    440 		}
    441 	} else if (timo)
    442 		callout_stop(&p->p_tsleep_ch);
    443 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    444 #ifdef KTRACE
    445 		if (KTRPOINT(p, KTR_CSW))
    446 			ktrcsw(p, 0, 0);
    447 #endif
    448 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    449 			return (EINTR);
    450 		return (ERESTART);
    451 	}
    452 #ifdef KTRACE
    453 	if (KTRPOINT(p, KTR_CSW))
    454 		ktrcsw(p, 0, 0);
    455 #endif
    456 	return (0);
    457 }
    458 
    459 /*
    460  * Implement timeout for tsleep.
    461  * If process hasn't been awakened (wchan non-zero),
    462  * set timeout flag and undo the sleep.  If proc
    463  * is stopped, just unsleep so it will remain stopped.
    464  */
    465 void
    466 endtsleep(arg)
    467 	void *arg;
    468 {
    469 	struct proc *p;
    470 	int s;
    471 
    472 	p = (struct proc *)arg;
    473 	s = splhigh();
    474 	if (p->p_wchan) {
    475 		if (p->p_stat == SSLEEP)
    476 			setrunnable(p);
    477 		else
    478 			unsleep(p);
    479 		p->p_flag |= P_TIMEOUT;
    480 	}
    481 	splx(s);
    482 }
    483 
    484 /*
    485  * Remove a process from its wait queue
    486  */
    487 void
    488 unsleep(p)
    489 	struct proc *p;
    490 {
    491 	struct slpque *qp;
    492 	struct proc **hp;
    493 	int s;
    494 
    495 	s = splhigh();
    496 	if (p->p_wchan) {
    497 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    498 		while (*hp != p)
    499 			hp = &(*hp)->p_forw;
    500 		*hp = p->p_forw;
    501 		if (qp->sq_tailp == &p->p_forw)
    502 			qp->sq_tailp = hp;
    503 		p->p_wchan = 0;
    504 	}
    505 	splx(s);
    506 }
    507 
    508 /*
    509  * Optimized-for-wakeup() version of setrunnable().
    510  */
    511 __inline void
    512 awaken(p)
    513 	struct proc *p;
    514 {
    515 
    516 	if (p->p_slptime > 1)
    517 		updatepri(p);
    518 	p->p_slptime = 0;
    519 	p->p_stat = SRUN;
    520 	/*
    521 	 * Since curpriority is a user priority, p->p_priority
    522 	 * is always better than curpriority.
    523 	 */
    524 	if (p->p_flag & P_INMEM) {
    525 		setrunqueue(p);
    526 		need_resched();
    527 	} else
    528 		wakeup((caddr_t)&proc0);
    529 }
    530 
    531 /*
    532  * Make all processes sleeping on the specified identifier runnable.
    533  */
    534 void
    535 wakeup(ident)
    536 	void *ident;
    537 {
    538 	struct slpque *qp;
    539 	struct proc *p, **q;
    540 	int s;
    541 
    542 	s = splhigh();
    543 	qp = SLPQUE(ident);
    544 restart:
    545 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    546 #ifdef DIAGNOSTIC
    547 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    548 			panic("wakeup");
    549 #endif
    550 		if (p->p_wchan == ident) {
    551 			p->p_wchan = 0;
    552 			*q = p->p_forw;
    553 			if (qp->sq_tailp == &p->p_forw)
    554 				qp->sq_tailp = q;
    555 			if (p->p_stat == SSLEEP) {
    556 				awaken(p);
    557 				goto restart;
    558 			}
    559 		} else
    560 			q = &p->p_forw;
    561 	}
    562 	splx(s);
    563 }
    564 
    565 /*
    566  * Make the highest priority process first in line on the specified
    567  * identifier runnable.
    568  */
    569 void
    570 wakeup_one(ident)
    571 	void *ident;
    572 {
    573 	struct slpque *qp;
    574 	struct proc *p, **q;
    575 	struct proc *best_sleepp, **best_sleepq;
    576 	struct proc *best_stopp, **best_stopq;
    577 	int s;
    578 
    579 	best_sleepp = best_stopp = NULL;
    580 	best_sleepq = best_stopq = NULL;
    581 
    582 	s = splhigh();
    583 	qp = SLPQUE(ident);
    584 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    585 #ifdef DIAGNOSTIC
    586 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    587 			panic("wakeup_one");
    588 #endif
    589 		if (p->p_wchan == ident) {
    590 			if (p->p_stat == SSLEEP) {
    591 				if (best_sleepp == NULL ||
    592 				    p->p_priority < best_sleepp->p_priority) {
    593 					best_sleepp = p;
    594 					best_sleepq = q;
    595 				}
    596 			} else {
    597 				if (best_stopp == NULL ||
    598 				    p->p_priority < best_stopp->p_priority) {
    599 					best_stopp = p;
    600 					best_stopq = q;
    601 				}
    602 			}
    603 		}
    604 	}
    605 
    606 	/*
    607 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    608 	 * process.
    609 	 */
    610 	if (best_sleepp != NULL) {
    611 		p = best_sleepp;
    612 		q = best_sleepq;
    613 	} else {
    614 		p = best_stopp;
    615 		q = best_stopq;
    616 	}
    617 
    618 	if (p != NULL) {
    619 		p->p_wchan = 0;
    620 		*q = p->p_forw;
    621 		if (qp->sq_tailp == &p->p_forw)
    622 			qp->sq_tailp = q;
    623 		if (p->p_stat == SSLEEP)
    624 			awaken(p);
    625 	}
    626 	splx(s);
    627 }
    628 
    629 /*
    630  * General yield call.  Puts the current process back on its run queue and
    631  * performs a voluntary context switch.
    632  */
    633 void
    634 yield()
    635 {
    636 	struct proc *p = curproc;
    637 	int s;
    638 
    639 	s = splstatclock();
    640 	p->p_priority = p->p_usrpri;
    641 	p->p_stat = SRUN;
    642 	setrunqueue(p);
    643 	p->p_stats->p_ru.ru_nvcsw++;
    644 	mi_switch(p);
    645 	splx(s);
    646 }
    647 
    648 /*
    649  * General preemption call.  Puts the current process back on its run queue
    650  * and performs an involuntary context switch.  If a process is supplied,
    651  * we switch to that process.  Otherwise, we use the normal process selection
    652  * criteria.
    653  */
    654 void
    655 preempt(newp)
    656 	struct proc *newp;
    657 {
    658 	struct proc *p = curproc;
    659 	int s;
    660 
    661 	/*
    662 	 * XXX Switching to a specific process is not supported yet.
    663 	 */
    664 	if (newp != NULL)
    665 		panic("preempt: cpu_preempt not yet implemented");
    666 
    667 	s = splstatclock();
    668 	p->p_priority = p->p_usrpri;
    669 	p->p_stat = SRUN;
    670 	setrunqueue(p);
    671 	p->p_stats->p_ru.ru_nivcsw++;
    672 	mi_switch(p);
    673 	splx(s);
    674 }
    675 
    676 /*
    677  * The machine independent parts of context switch.
    678  * Must be called at splstatclock() or higher.
    679  */
    680 void
    681 mi_switch(p)
    682 	struct proc *p;
    683 {
    684 	struct schedstate_percpu *spc;
    685 	struct rlimit *rlim;
    686 	long s, u;
    687 	struct timeval tv;
    688 
    689 	KDASSERT(p->p_cpu != NULL);
    690 	KDASSERT(p->p_cpu == curcpu());
    691 
    692 	spc = &p->p_cpu->ci_schedstate;
    693 
    694 #ifdef DEBUG
    695 	if (p->p_simple_locks) {
    696 		printf("p->p_simple_locks %d\n", p->p_simple_locks);
    697 #ifdef LOCKDEBUG
    698 		simple_lock_dump();
    699 #endif
    700 		panic("sleep: holding simple lock");
    701 	}
    702 #endif
    703 	/*
    704 	 * Compute the amount of time during which the current
    705 	 * process was running, and add that to its total so far.
    706 	 */
    707 	microtime(&tv);
    708 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    709 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    710 	if (u < 0) {
    711 		u += 1000000;
    712 		s--;
    713 	} else if (u >= 1000000) {
    714 		u -= 1000000;
    715 		s++;
    716 	}
    717 	p->p_rtime.tv_usec = u;
    718 	p->p_rtime.tv_sec = s;
    719 
    720 	/*
    721 	 * Check if the process exceeds its cpu resource allocation.
    722 	 * If over max, kill it.  In any case, if it has run for more
    723 	 * than 10 minutes, reduce priority to give others a chance.
    724 	 */
    725 	rlim = &p->p_rlimit[RLIMIT_CPU];
    726 	if (s >= rlim->rlim_cur) {
    727 		if (s >= rlim->rlim_max)
    728 			psignal(p, SIGKILL);
    729 		else {
    730 			psignal(p, SIGXCPU);
    731 			if (rlim->rlim_cur < rlim->rlim_max)
    732 				rlim->rlim_cur += 5;
    733 		}
    734 	}
    735 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    736 		p->p_nice = autoniceval + NZERO;
    737 		resetpriority(p);
    738 	}
    739 
    740 	/*
    741 	 * Process is about to yield the CPU; clear the appropriate
    742 	 * scheduling flags.
    743 	 */
    744 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    745 
    746 	/*
    747 	 * Pick a new current process and switch to it.  When we
    748 	 * run again, we'll return back here.
    749 	 */
    750 	uvmexp.swtch++;
    751 	cpu_switch(p);
    752 
    753 	/*
    754 	 * We're running again; record our new start time.  We might
    755 	 * be running on a new CPU now, so don't use the cache'd
    756 	 * schedstate_percpu pointer.
    757 	 */
    758 	KDASSERT(p->p_cpu != NULL);
    759 	KDASSERT(p->p_cpu == curcpu());
    760 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    761 }
    762 
    763 /*
    764  * Initialize the (doubly-linked) run queues
    765  * to be empty.
    766  */
    767 void
    768 rqinit()
    769 {
    770 	int i;
    771 
    772 	for (i = 0; i < RUNQUE_NQS; i++)
    773 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    774 		    (struct proc *)&sched_qs[i];
    775 }
    776 
    777 /*
    778  * Change process state to be runnable,
    779  * placing it on the run queue if it is in memory,
    780  * and awakening the swapper if it isn't in memory.
    781  */
    782 void
    783 setrunnable(p)
    784 	struct proc *p;
    785 {
    786 	int s;
    787 
    788 	s = splhigh();
    789 	switch (p->p_stat) {
    790 	case 0:
    791 	case SRUN:
    792 	case SONPROC:
    793 	case SZOMB:
    794 	case SDEAD:
    795 	default:
    796 		panic("setrunnable");
    797 	case SSTOP:
    798 		/*
    799 		 * If we're being traced (possibly because someone attached us
    800 		 * while we were stopped), check for a signal from the debugger.
    801 		 */
    802 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    803 			sigaddset(&p->p_siglist, p->p_xstat);
    804 			p->p_sigcheck = 1;
    805 		}
    806 	case SSLEEP:
    807 		unsleep(p);		/* e.g. when sending signals */
    808 		break;
    809 
    810 	case SIDL:
    811 		break;
    812 	}
    813 	p->p_stat = SRUN;
    814 	if (p->p_flag & P_INMEM)
    815 		setrunqueue(p);
    816 	splx(s);
    817 	if (p->p_slptime > 1)
    818 		updatepri(p);
    819 	p->p_slptime = 0;
    820 	if ((p->p_flag & P_INMEM) == 0)
    821 		wakeup((caddr_t)&proc0);
    822 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    823 		/*
    824 		 * XXXSMP
    825 		 * This is wrong.  It will work, but what really
    826 		 * needs to happen is:
    827 		 *
    828 		 *	- Need to check if p is higher priority
    829 		 *	  than the process currently running on
    830 		 *	  the CPU p last ran on (let p_cpu persist
    831 		 *	  after a context switch?), and preempt
    832 		 *	  that one (or, if there is no process
    833 		 *	  there, simply need_resched() that CPU.
    834 		 *
    835 		 *	- Failing that, traverse a list of
    836 		 *	  available CPUs and need_resched() the
    837 		 *	  CPU with the lowest priority that's
    838 		 *	  lower than p's.
    839 		 */
    840 		need_resched();
    841 	}
    842 }
    843 
    844 /*
    845  * Compute the priority of a process when running in user mode.
    846  * Arrange to reschedule if the resulting priority is better
    847  * than that of the current process.
    848  */
    849 void
    850 resetpriority(p)
    851 	struct proc *p;
    852 {
    853 	unsigned int newpriority;
    854 
    855 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    856 	newpriority = min(newpriority, MAXPRI);
    857 	p->p_usrpri = newpriority;
    858 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    859 		/*
    860 		 * XXXSMP
    861 		 * Same applies as in setrunnable() above.
    862 		 */
    863 		need_resched();
    864 	}
    865 }
    866 
    867 /*
    868  * We adjust the priority of the current process.  The priority of a process
    869  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    870  * is increased here.  The formula for computing priorities (in kern_synch.c)
    871  * will compute a different value each time p_estcpu increases. This can
    872  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    873  * queue will not change.  The cpu usage estimator ramps up quite quickly
    874  * when the process is running (linearly), and decays away exponentially, at
    875  * a rate which is proportionally slower when the system is busy.  The basic
    876  * principal is that the system will 90% forget that the process used a lot
    877  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    878  * processes which haven't run much recently, and to round-robin among other
    879  * processes.
    880  */
    881 
    882 void
    883 schedclock(p)
    884 	struct proc *p;
    885 {
    886 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    887 	resetpriority(p);
    888 	if (p->p_priority >= PUSER)
    889 		p->p_priority = p->p_usrpri;
    890 }
    891