kern_synch.c revision 1.76 1 /* $NetBSD: kern_synch.c,v 1.76 2000/05/31 05:02:33 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/proc.h>
87 #include <sys/kernel.h>
88 #include <sys/buf.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <vm/vm.h>
92 #include <sys/sched.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #ifdef KTRACE
97 #include <sys/ktrace.h>
98 #endif
99
100 #include <machine/cpu.h>
101
102 int lbolt; /* once a second sleep address */
103
104 /*
105 * The global scheduler state.
106 */
107 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
108 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
109 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
110
111 void roundrobin __P((void *));
112 void schedcpu __P((void *));
113 void updatepri __P((struct proc *));
114 void endtsleep __P((void *));
115
116 __inline void awaken __P((struct proc *));
117
118 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
119 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
120
121 /*
122 * Force switch among equal priority processes every 100ms.
123 */
124 /* ARGSUSED */
125 void
126 roundrobin(arg)
127 void *arg;
128 {
129 struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
130 int s;
131
132 if (curproc != NULL) {
133 s = splstatclock();
134 if (spc->spc_flags & SPCF_SEENRR) {
135 /*
136 * The process has already been through a roundrobin
137 * without switching and may be hogging the CPU.
138 * Indicate that the process should yield.
139 */
140 spc->spc_flags |= SPCF_SHOULDYIELD;
141 } else
142 spc->spc_flags |= SPCF_SEENRR;
143 splx(s);
144 }
145 need_resched();
146 callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
147 }
148
149 /*
150 * Constants for digital decay and forget:
151 * 90% of (p_estcpu) usage in 5 * loadav time
152 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
153 * Note that, as ps(1) mentions, this can let percentages
154 * total over 100% (I've seen 137.9% for 3 processes).
155 *
156 * Note that hardclock updates p_estcpu and p_cpticks independently.
157 *
158 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
159 * That is, the system wants to compute a value of decay such
160 * that the following for loop:
161 * for (i = 0; i < (5 * loadavg); i++)
162 * p_estcpu *= decay;
163 * will compute
164 * p_estcpu *= 0.1;
165 * for all values of loadavg:
166 *
167 * Mathematically this loop can be expressed by saying:
168 * decay ** (5 * loadavg) ~= .1
169 *
170 * The system computes decay as:
171 * decay = (2 * loadavg) / (2 * loadavg + 1)
172 *
173 * We wish to prove that the system's computation of decay
174 * will always fulfill the equation:
175 * decay ** (5 * loadavg) ~= .1
176 *
177 * If we compute b as:
178 * b = 2 * loadavg
179 * then
180 * decay = b / (b + 1)
181 *
182 * We now need to prove two things:
183 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
184 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
185 *
186 * Facts:
187 * For x close to zero, exp(x) =~ 1 + x, since
188 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
189 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
190 * For x close to zero, ln(1+x) =~ x, since
191 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
192 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
193 * ln(.1) =~ -2.30
194 *
195 * Proof of (1):
196 * Solve (factor)**(power) =~ .1 given power (5*loadav):
197 * solving for factor,
198 * ln(factor) =~ (-2.30/5*loadav), or
199 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
200 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
201 *
202 * Proof of (2):
203 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
204 * solving for power,
205 * power*ln(b/(b+1)) =~ -2.30, or
206 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
207 *
208 * Actual power values for the implemented algorithm are as follows:
209 * loadav: 1 2 3 4
210 * power: 5.68 10.32 14.94 19.55
211 */
212
213 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
214 #define loadfactor(loadav) (2 * (loadav))
215 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
216
217 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
218 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
219
220 /*
221 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
222 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
223 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
224 *
225 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
226 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
227 *
228 * If you dont want to bother with the faster/more-accurate formula, you
229 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
230 * (more general) method of calculating the %age of CPU used by a process.
231 */
232 #define CCPU_SHIFT 11
233
234 /*
235 * Recompute process priorities, every hz ticks.
236 */
237 /* ARGSUSED */
238 void
239 schedcpu(arg)
240 void *arg;
241 {
242 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
243 struct proc *p;
244 int s;
245 unsigned int newcpu;
246 int clkhz;
247
248 proclist_lock_read();
249 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
250 /*
251 * Increment time in/out of memory and sleep time
252 * (if sleeping). We ignore overflow; with 16-bit int's
253 * (remember them?) overflow takes 45 days.
254 */
255 p->p_swtime++;
256 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
257 p->p_slptime++;
258 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
259 /*
260 * If the process has slept the entire second,
261 * stop recalculating its priority until it wakes up.
262 */
263 if (p->p_slptime > 1)
264 continue;
265 s = splstatclock(); /* prevent state changes */
266 /*
267 * p_pctcpu is only for ps.
268 */
269 clkhz = stathz != 0 ? stathz : hz;
270 #if (FSHIFT >= CCPU_SHIFT)
271 p->p_pctcpu += (clkhz == 100)?
272 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
273 100 * (((fixpt_t) p->p_cpticks)
274 << (FSHIFT - CCPU_SHIFT)) / clkhz;
275 #else
276 p->p_pctcpu += ((FSCALE - ccpu) *
277 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
278 #endif
279 p->p_cpticks = 0;
280 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
281 p->p_estcpu = newcpu;
282 resetpriority(p);
283 if (p->p_priority >= PUSER) {
284 if (p->p_stat == SRUN &&
285 (p->p_flag & P_INMEM) &&
286 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
287 remrunqueue(p);
288 p->p_priority = p->p_usrpri;
289 setrunqueue(p);
290 } else
291 p->p_priority = p->p_usrpri;
292 }
293 splx(s);
294 }
295 proclist_unlock_read();
296 uvm_meter();
297 wakeup((caddr_t)&lbolt);
298 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
299 }
300
301 /*
302 * Recalculate the priority of a process after it has slept for a while.
303 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
304 * least six times the loadfactor will decay p_estcpu to zero.
305 */
306 void
307 updatepri(p)
308 struct proc *p;
309 {
310 unsigned int newcpu = p->p_estcpu;
311 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
312
313 if (p->p_slptime > 5 * loadfac)
314 p->p_estcpu = 0;
315 else {
316 p->p_slptime--; /* the first time was done in schedcpu */
317 while (newcpu && --p->p_slptime)
318 newcpu = (int) decay_cpu(loadfac, newcpu);
319 p->p_estcpu = newcpu;
320 }
321 resetpriority(p);
322 }
323
324 /*
325 * During autoconfiguration or after a panic, a sleep will simply
326 * lower the priority briefly to allow interrupts, then return.
327 * The priority to be used (safepri) is machine-dependent, thus this
328 * value is initialized and maintained in the machine-dependent layers.
329 * This priority will typically be 0, or the lowest priority
330 * that is safe for use on the interrupt stack; it can be made
331 * higher to block network software interrupts after panics.
332 */
333 int safepri;
334
335 /*
336 * General sleep call. Suspends the current process until a wakeup is
337 * performed on the specified identifier. The process will then be made
338 * runnable with the specified priority. Sleeps at most timo/hz seconds
339 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
340 * before and after sleeping, else signals are not checked. Returns 0 if
341 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
342 * signal needs to be delivered, ERESTART is returned if the current system
343 * call should be restarted if possible, and EINTR is returned if the system
344 * call should be interrupted by the signal (return EINTR).
345 */
346 int
347 tsleep(ident, priority, wmesg, timo)
348 void *ident;
349 int priority, timo;
350 const char *wmesg;
351 {
352 struct proc *p = curproc;
353 struct slpque *qp;
354 int s;
355 int sig, catch = priority & PCATCH;
356
357 if (cold || panicstr) {
358 /*
359 * After a panic, or during autoconfiguration,
360 * just give interrupts a chance, then just return;
361 * don't run any other procs or panic below,
362 * in case this is the idle process and already asleep.
363 */
364 s = splhigh();
365 splx(safepri);
366 splx(s);
367 return (0);
368 }
369
370 #ifdef KTRACE
371 if (KTRPOINT(p, KTR_CSW))
372 ktrcsw(p, 1, 0);
373 #endif
374 s = splhigh();
375
376 #ifdef DIAGNOSTIC
377 if (ident == NULL)
378 panic("tsleep: ident == NULL");
379 if (p->p_stat != SONPROC)
380 panic("tsleep: p_stat %d != SONPROC", p->p_stat);
381 if (p->p_back != NULL)
382 panic("tsleep: p_back != NULL");
383 #endif
384 p->p_wchan = ident;
385 p->p_wmesg = wmesg;
386 p->p_slptime = 0;
387 p->p_priority = priority & PRIMASK;
388 qp = SLPQUE(ident);
389 if (qp->sq_head == 0)
390 qp->sq_head = p;
391 else
392 *qp->sq_tailp = p;
393 *(qp->sq_tailp = &p->p_forw) = 0;
394 if (timo)
395 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
396 /*
397 * We put ourselves on the sleep queue and start our timeout
398 * before calling CURSIG, as we could stop there, and a wakeup
399 * or a SIGCONT (or both) could occur while we were stopped.
400 * A SIGCONT would cause us to be marked as SSLEEP
401 * without resuming us, thus we must be ready for sleep
402 * when CURSIG is called. If the wakeup happens while we're
403 * stopped, p->p_wchan will be 0 upon return from CURSIG.
404 */
405 if (catch) {
406 p->p_flag |= P_SINTR;
407 if ((sig = CURSIG(p)) != 0) {
408 if (p->p_wchan)
409 unsleep(p);
410 p->p_stat = SONPROC;
411 goto resume;
412 }
413 if (p->p_wchan == 0) {
414 catch = 0;
415 goto resume;
416 }
417 } else
418 sig = 0;
419 p->p_stat = SSLEEP;
420 p->p_stats->p_ru.ru_nvcsw++;
421 mi_switch(p);
422 #ifdef DDB
423 /* handy breakpoint location after process "wakes" */
424 asm(".globl bpendtsleep ; bpendtsleep:");
425 #endif
426 resume:
427 KDASSERT(p->p_cpu != NULL);
428 KDASSERT(p->p_cpu == curcpu());
429 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
430 splx(s);
431 p->p_flag &= ~P_SINTR;
432 if (p->p_flag & P_TIMEOUT) {
433 p->p_flag &= ~P_TIMEOUT;
434 if (sig == 0) {
435 #ifdef KTRACE
436 if (KTRPOINT(p, KTR_CSW))
437 ktrcsw(p, 0, 0);
438 #endif
439 return (EWOULDBLOCK);
440 }
441 } else if (timo)
442 callout_stop(&p->p_tsleep_ch);
443 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
444 #ifdef KTRACE
445 if (KTRPOINT(p, KTR_CSW))
446 ktrcsw(p, 0, 0);
447 #endif
448 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
449 return (EINTR);
450 return (ERESTART);
451 }
452 #ifdef KTRACE
453 if (KTRPOINT(p, KTR_CSW))
454 ktrcsw(p, 0, 0);
455 #endif
456 return (0);
457 }
458
459 /*
460 * Implement timeout for tsleep.
461 * If process hasn't been awakened (wchan non-zero),
462 * set timeout flag and undo the sleep. If proc
463 * is stopped, just unsleep so it will remain stopped.
464 */
465 void
466 endtsleep(arg)
467 void *arg;
468 {
469 struct proc *p;
470 int s;
471
472 p = (struct proc *)arg;
473 s = splhigh();
474 if (p->p_wchan) {
475 if (p->p_stat == SSLEEP)
476 setrunnable(p);
477 else
478 unsleep(p);
479 p->p_flag |= P_TIMEOUT;
480 }
481 splx(s);
482 }
483
484 /*
485 * Remove a process from its wait queue
486 */
487 void
488 unsleep(p)
489 struct proc *p;
490 {
491 struct slpque *qp;
492 struct proc **hp;
493 int s;
494
495 s = splhigh();
496 if (p->p_wchan) {
497 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
498 while (*hp != p)
499 hp = &(*hp)->p_forw;
500 *hp = p->p_forw;
501 if (qp->sq_tailp == &p->p_forw)
502 qp->sq_tailp = hp;
503 p->p_wchan = 0;
504 }
505 splx(s);
506 }
507
508 /*
509 * Optimized-for-wakeup() version of setrunnable().
510 */
511 __inline void
512 awaken(p)
513 struct proc *p;
514 {
515
516 if (p->p_slptime > 1)
517 updatepri(p);
518 p->p_slptime = 0;
519 p->p_stat = SRUN;
520 /*
521 * Since curpriority is a user priority, p->p_priority
522 * is always better than curpriority.
523 */
524 if (p->p_flag & P_INMEM) {
525 setrunqueue(p);
526 need_resched();
527 } else
528 wakeup((caddr_t)&proc0);
529 }
530
531 /*
532 * Make all processes sleeping on the specified identifier runnable.
533 */
534 void
535 wakeup(ident)
536 void *ident;
537 {
538 struct slpque *qp;
539 struct proc *p, **q;
540 int s;
541
542 s = splhigh();
543 qp = SLPQUE(ident);
544 restart:
545 for (q = &qp->sq_head; (p = *q) != NULL; ) {
546 #ifdef DIAGNOSTIC
547 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
548 panic("wakeup");
549 #endif
550 if (p->p_wchan == ident) {
551 p->p_wchan = 0;
552 *q = p->p_forw;
553 if (qp->sq_tailp == &p->p_forw)
554 qp->sq_tailp = q;
555 if (p->p_stat == SSLEEP) {
556 awaken(p);
557 goto restart;
558 }
559 } else
560 q = &p->p_forw;
561 }
562 splx(s);
563 }
564
565 /*
566 * Make the highest priority process first in line on the specified
567 * identifier runnable.
568 */
569 void
570 wakeup_one(ident)
571 void *ident;
572 {
573 struct slpque *qp;
574 struct proc *p, **q;
575 struct proc *best_sleepp, **best_sleepq;
576 struct proc *best_stopp, **best_stopq;
577 int s;
578
579 best_sleepp = best_stopp = NULL;
580 best_sleepq = best_stopq = NULL;
581
582 s = splhigh();
583 qp = SLPQUE(ident);
584 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
585 #ifdef DIAGNOSTIC
586 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
587 panic("wakeup_one");
588 #endif
589 if (p->p_wchan == ident) {
590 if (p->p_stat == SSLEEP) {
591 if (best_sleepp == NULL ||
592 p->p_priority < best_sleepp->p_priority) {
593 best_sleepp = p;
594 best_sleepq = q;
595 }
596 } else {
597 if (best_stopp == NULL ||
598 p->p_priority < best_stopp->p_priority) {
599 best_stopp = p;
600 best_stopq = q;
601 }
602 }
603 }
604 }
605
606 /*
607 * Consider any SSLEEP process higher than the highest priority SSTOP
608 * process.
609 */
610 if (best_sleepp != NULL) {
611 p = best_sleepp;
612 q = best_sleepq;
613 } else {
614 p = best_stopp;
615 q = best_stopq;
616 }
617
618 if (p != NULL) {
619 p->p_wchan = 0;
620 *q = p->p_forw;
621 if (qp->sq_tailp == &p->p_forw)
622 qp->sq_tailp = q;
623 if (p->p_stat == SSLEEP)
624 awaken(p);
625 }
626 splx(s);
627 }
628
629 /*
630 * General yield call. Puts the current process back on its run queue and
631 * performs a voluntary context switch.
632 */
633 void
634 yield()
635 {
636 struct proc *p = curproc;
637 int s;
638
639 s = splstatclock();
640 p->p_priority = p->p_usrpri;
641 p->p_stat = SRUN;
642 setrunqueue(p);
643 p->p_stats->p_ru.ru_nvcsw++;
644 mi_switch(p);
645 splx(s);
646 }
647
648 /*
649 * General preemption call. Puts the current process back on its run queue
650 * and performs an involuntary context switch. If a process is supplied,
651 * we switch to that process. Otherwise, we use the normal process selection
652 * criteria.
653 */
654 void
655 preempt(newp)
656 struct proc *newp;
657 {
658 struct proc *p = curproc;
659 int s;
660
661 /*
662 * XXX Switching to a specific process is not supported yet.
663 */
664 if (newp != NULL)
665 panic("preempt: cpu_preempt not yet implemented");
666
667 s = splstatclock();
668 p->p_priority = p->p_usrpri;
669 p->p_stat = SRUN;
670 setrunqueue(p);
671 p->p_stats->p_ru.ru_nivcsw++;
672 mi_switch(p);
673 splx(s);
674 }
675
676 /*
677 * The machine independent parts of context switch.
678 * Must be called at splstatclock() or higher.
679 */
680 void
681 mi_switch(p)
682 struct proc *p;
683 {
684 struct schedstate_percpu *spc;
685 struct rlimit *rlim;
686 long s, u;
687 struct timeval tv;
688
689 KDASSERT(p->p_cpu != NULL);
690 KDASSERT(p->p_cpu == curcpu());
691
692 spc = &p->p_cpu->ci_schedstate;
693
694 #ifdef DEBUG
695 if (p->p_simple_locks) {
696 printf("p->p_simple_locks %d\n", p->p_simple_locks);
697 #ifdef LOCKDEBUG
698 simple_lock_dump();
699 #endif
700 panic("sleep: holding simple lock");
701 }
702 #endif
703 /*
704 * Compute the amount of time during which the current
705 * process was running, and add that to its total so far.
706 */
707 microtime(&tv);
708 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
709 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
710 if (u < 0) {
711 u += 1000000;
712 s--;
713 } else if (u >= 1000000) {
714 u -= 1000000;
715 s++;
716 }
717 p->p_rtime.tv_usec = u;
718 p->p_rtime.tv_sec = s;
719
720 /*
721 * Check if the process exceeds its cpu resource allocation.
722 * If over max, kill it. In any case, if it has run for more
723 * than 10 minutes, reduce priority to give others a chance.
724 */
725 rlim = &p->p_rlimit[RLIMIT_CPU];
726 if (s >= rlim->rlim_cur) {
727 if (s >= rlim->rlim_max)
728 psignal(p, SIGKILL);
729 else {
730 psignal(p, SIGXCPU);
731 if (rlim->rlim_cur < rlim->rlim_max)
732 rlim->rlim_cur += 5;
733 }
734 }
735 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
736 p->p_nice = autoniceval + NZERO;
737 resetpriority(p);
738 }
739
740 /*
741 * Process is about to yield the CPU; clear the appropriate
742 * scheduling flags.
743 */
744 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
745
746 /*
747 * Pick a new current process and switch to it. When we
748 * run again, we'll return back here.
749 */
750 uvmexp.swtch++;
751 cpu_switch(p);
752
753 /*
754 * We're running again; record our new start time. We might
755 * be running on a new CPU now, so don't use the cache'd
756 * schedstate_percpu pointer.
757 */
758 KDASSERT(p->p_cpu != NULL);
759 KDASSERT(p->p_cpu == curcpu());
760 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
761 }
762
763 /*
764 * Initialize the (doubly-linked) run queues
765 * to be empty.
766 */
767 void
768 rqinit()
769 {
770 int i;
771
772 for (i = 0; i < RUNQUE_NQS; i++)
773 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
774 (struct proc *)&sched_qs[i];
775 }
776
777 /*
778 * Change process state to be runnable,
779 * placing it on the run queue if it is in memory,
780 * and awakening the swapper if it isn't in memory.
781 */
782 void
783 setrunnable(p)
784 struct proc *p;
785 {
786 int s;
787
788 s = splhigh();
789 switch (p->p_stat) {
790 case 0:
791 case SRUN:
792 case SONPROC:
793 case SZOMB:
794 case SDEAD:
795 default:
796 panic("setrunnable");
797 case SSTOP:
798 /*
799 * If we're being traced (possibly because someone attached us
800 * while we were stopped), check for a signal from the debugger.
801 */
802 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
803 sigaddset(&p->p_siglist, p->p_xstat);
804 p->p_sigcheck = 1;
805 }
806 case SSLEEP:
807 unsleep(p); /* e.g. when sending signals */
808 break;
809
810 case SIDL:
811 break;
812 }
813 p->p_stat = SRUN;
814 if (p->p_flag & P_INMEM)
815 setrunqueue(p);
816 splx(s);
817 if (p->p_slptime > 1)
818 updatepri(p);
819 p->p_slptime = 0;
820 if ((p->p_flag & P_INMEM) == 0)
821 wakeup((caddr_t)&proc0);
822 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
823 /*
824 * XXXSMP
825 * This is wrong. It will work, but what really
826 * needs to happen is:
827 *
828 * - Need to check if p is higher priority
829 * than the process currently running on
830 * the CPU p last ran on (let p_cpu persist
831 * after a context switch?), and preempt
832 * that one (or, if there is no process
833 * there, simply need_resched() that CPU.
834 *
835 * - Failing that, traverse a list of
836 * available CPUs and need_resched() the
837 * CPU with the lowest priority that's
838 * lower than p's.
839 */
840 need_resched();
841 }
842 }
843
844 /*
845 * Compute the priority of a process when running in user mode.
846 * Arrange to reschedule if the resulting priority is better
847 * than that of the current process.
848 */
849 void
850 resetpriority(p)
851 struct proc *p;
852 {
853 unsigned int newpriority;
854
855 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
856 newpriority = min(newpriority, MAXPRI);
857 p->p_usrpri = newpriority;
858 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
859 /*
860 * XXXSMP
861 * Same applies as in setrunnable() above.
862 */
863 need_resched();
864 }
865 }
866
867 /*
868 * We adjust the priority of the current process. The priority of a process
869 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
870 * is increased here. The formula for computing priorities (in kern_synch.c)
871 * will compute a different value each time p_estcpu increases. This can
872 * cause a switch, but unless the priority crosses a PPQ boundary the actual
873 * queue will not change. The cpu usage estimator ramps up quite quickly
874 * when the process is running (linearly), and decays away exponentially, at
875 * a rate which is proportionally slower when the system is busy. The basic
876 * principal is that the system will 90% forget that the process used a lot
877 * of CPU time in 5 * loadav seconds. This causes the system to favor
878 * processes which haven't run much recently, and to round-robin among other
879 * processes.
880 */
881
882 void
883 schedclock(p)
884 struct proc *p;
885 {
886 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
887 resetpriority(p);
888 if (p->p_priority >= PUSER)
889 p->p_priority = p->p_usrpri;
890 }
891