Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.78.2.4
      1 /*	$NetBSD: kern_synch.c,v 1.78.2.4 2000/09/19 18:02:04 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_ktrace.h"
     82 #include "opt_lockdebug.h"
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/proc.h>
     88 #include <sys/kernel.h>
     89 #include <sys/buf.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/resourcevar.h>
     92 #include <vm/vm.h>
     93 #include <sys/sched.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #ifdef KTRACE
     98 #include <sys/ktrace.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 
    103 int	lbolt;			/* once a second sleep address */
    104 
    105 /*
    106  * The global scheduler state.
    107  */
    108 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    109 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    110 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    111 
    112 void roundrobin(void *);
    113 void schedcpu(void *);
    114 void updatepri(struct proc *);
    115 void endtsleep(void *);
    116 
    117 __inline void awaken(struct proc *);
    118 
    119 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
    120 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    121 
    122 /*
    123  * Force switch among equal priority processes every 100ms.
    124  */
    125 /* ARGSUSED */
    126 void
    127 roundrobin(void *arg)
    128 {
    129 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
    130 	int s;
    131 
    132 	if (curproc != NULL) {
    133 		s = splstatclock();
    134 		if (spc->spc_flags & SPCF_SEENRR) {
    135 			/*
    136 			 * The process has already been through a roundrobin
    137 			 * without switching and may be hogging the CPU.
    138 			 * Indicate that the process should yield.
    139 			 */
    140 			spc->spc_flags |= SPCF_SHOULDYIELD;
    141 		} else
    142 			spc->spc_flags |= SPCF_SEENRR;
    143 		splx(s);
    144 	}
    145 	need_resched();
    146 	callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
    147 }
    148 
    149 /*
    150  * Constants for digital decay and forget:
    151  *	90% of (p_estcpu) usage in 5 * loadav time
    152  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    153  *          Note that, as ps(1) mentions, this can let percentages
    154  *          total over 100% (I've seen 137.9% for 3 processes).
    155  *
    156  * Note that hardclock updates p_estcpu and p_cpticks independently.
    157  *
    158  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    159  * That is, the system wants to compute a value of decay such
    160  * that the following for loop:
    161  * 	for (i = 0; i < (5 * loadavg); i++)
    162  * 		p_estcpu *= decay;
    163  * will compute
    164  * 	p_estcpu *= 0.1;
    165  * for all values of loadavg:
    166  *
    167  * Mathematically this loop can be expressed by saying:
    168  * 	decay ** (5 * loadavg) ~= .1
    169  *
    170  * The system computes decay as:
    171  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    172  *
    173  * We wish to prove that the system's computation of decay
    174  * will always fulfill the equation:
    175  * 	decay ** (5 * loadavg) ~= .1
    176  *
    177  * If we compute b as:
    178  * 	b = 2 * loadavg
    179  * then
    180  * 	decay = b / (b + 1)
    181  *
    182  * We now need to prove two things:
    183  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    184  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    185  *
    186  * Facts:
    187  *         For x close to zero, exp(x) =~ 1 + x, since
    188  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    189  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    190  *         For x close to zero, ln(1+x) =~ x, since
    191  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    192  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    193  *         ln(.1) =~ -2.30
    194  *
    195  * Proof of (1):
    196  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    197  *	solving for factor,
    198  *      ln(factor) =~ (-2.30/5*loadav), or
    199  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    200  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    201  *
    202  * Proof of (2):
    203  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    204  *	solving for power,
    205  *      power*ln(b/(b+1)) =~ -2.30, or
    206  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    207  *
    208  * Actual power values for the implemented algorithm are as follows:
    209  *      loadav: 1       2       3       4
    210  *      power:  5.68    10.32   14.94   19.55
    211  */
    212 
    213 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    214 #define	loadfactor(loadav)	(2 * (loadav))
    215 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    216 
    217 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    218 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    219 
    220 /*
    221  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    222  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    223  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    224  *
    225  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    226  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    227  *
    228  * If you dont want to bother with the faster/more-accurate formula, you
    229  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    230  * (more general) method of calculating the %age of CPU used by a process.
    231  */
    232 #define	CCPU_SHIFT	11
    233 
    234 /*
    235  * Recompute process priorities, every hz ticks.
    236  */
    237 /* ARGSUSED */
    238 void
    239 schedcpu(void *arg)
    240 {
    241 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    242 	struct proc *p;
    243 	int s;
    244 	unsigned int newcpu;
    245 	int clkhz;
    246 
    247 	proclist_lock_read();
    248 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    249 		/*
    250 		 * Increment time in/out of memory and sleep time
    251 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    252 		 * (remember them?) overflow takes 45 days.
    253 		 */
    254 		p->p_swtime++;
    255 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    256 			p->p_slptime++;
    257 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    258 		/*
    259 		 * If the process has slept the entire second,
    260 		 * stop recalculating its priority until it wakes up.
    261 		 */
    262 		if (p->p_slptime > 1)
    263 			continue;
    264 		s = splstatclock();	/* prevent state changes */
    265 		/*
    266 		 * p_pctcpu is only for ps.
    267 		 */
    268 		clkhz = stathz != 0 ? stathz : hz;
    269 #if	(FSHIFT >= CCPU_SHIFT)
    270 		p->p_pctcpu += (clkhz == 100)?
    271 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    272                 	100 * (((fixpt_t) p->p_cpticks)
    273 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    274 #else
    275 		p->p_pctcpu += ((FSCALE - ccpu) *
    276 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    277 #endif
    278 		p->p_cpticks = 0;
    279 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    280 		p->p_estcpu = newcpu;
    281 		resetpriority(p);
    282 		if (p->p_priority >= PUSER) {
    283 			if (p->p_stat == SRUN &&
    284 			    (p->p_flag & P_INMEM) &&
    285 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    286 				remrunqueue(p);
    287 				p->p_priority = p->p_usrpri;
    288 				setrunqueue(p);
    289 			} else
    290 				p->p_priority = p->p_usrpri;
    291 		}
    292 		splx(s);
    293 	}
    294 	proclist_unlock_read();
    295 	uvm_meter();
    296 	wakeup((caddr_t)&lbolt);
    297 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    298 }
    299 
    300 /*
    301  * Recalculate the priority of a process after it has slept for a while.
    302  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    303  * least six times the loadfactor will decay p_estcpu to zero.
    304  */
    305 void
    306 updatepri(struct proc *p)
    307 {
    308 	unsigned int newcpu = p->p_estcpu;
    309 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    310 
    311 	if (p->p_slptime > 5 * loadfac)
    312 		p->p_estcpu = 0;
    313 	else {
    314 		p->p_slptime--;	/* the first time was done in schedcpu */
    315 		while (newcpu && --p->p_slptime)
    316 			newcpu = (int) decay_cpu(loadfac, newcpu);
    317 		p->p_estcpu = newcpu;
    318 	}
    319 	resetpriority(p);
    320 }
    321 
    322 /*
    323  * During autoconfiguration or after a panic, a sleep will simply
    324  * lower the priority briefly to allow interrupts, then return.
    325  * The priority to be used (safepri) is machine-dependent, thus this
    326  * value is initialized and maintained in the machine-dependent layers.
    327  * This priority will typically be 0, or the lowest priority
    328  * that is safe for use on the interrupt stack; it can be made
    329  * higher to block network software interrupts after panics.
    330  */
    331 int safepri;
    332 
    333 /*
    334  * General sleep call.  Suspends the current process until a wakeup is
    335  * performed on the specified identifier.  The process will then be made
    336  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    337  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    338  * before and after sleeping, else signals are not checked.  Returns 0 if
    339  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    340  * signal needs to be delivered, ERESTART is returned if the current system
    341  * call should be restarted if possible, and EINTR is returned if the system
    342  * call should be interrupted by the signal (return EINTR).
    343  *
    344  * The interlock is held until the scheduler_slock is held.  The
    345  * interlock will be locked before returning back to the caller
    346  * unless the PNORELOCK flag is specified, in which case the
    347  * interlock will always be unlocked upon return.
    348  */
    349 int
    350 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    351     __volatile struct simplelock *interlock)
    352 {
    353 	struct proc *p = curproc;
    354 	struct slpque *qp;
    355 	int sig, s;
    356 	int catch = priority & PCATCH;
    357 	int relock = (priority & PNORELOCK) == 0;
    358 #if 0 /* XXXSMP */
    359 	int dobiglock;
    360 #endif
    361 
    362 	/*
    363 	 * XXXSMP
    364 	 * This is probably bogus.  Figure out what the right
    365 	 * thing to do here really is.
    366 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    367 	 * in the shutdown case is disgusting but partly necessary given
    368 	 * how shutdown (barely) works.
    369 	 */
    370 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    371 		/*
    372 		 * After a panic, or during autoconfiguration,
    373 		 * just give interrupts a chance, then just return;
    374 		 * don't run any other procs or panic below,
    375 		 * in case this is the idle process and already asleep.
    376 		 */
    377 		s = splhigh();
    378 		splx(safepri);
    379 		splx(s);
    380 		if (interlock != NULL && relock == 0)
    381 			simple_unlock(interlock);
    382 		return (0);
    383 	}
    384 
    385 #if 0 /* XXXSMP */
    386 	dobiglock = (p->p_flags & P_BIGLOCK) != 0;
    387 #endif
    388 
    389 #ifdef KTRACE
    390 	if (KTRPOINT(p, KTR_CSW))
    391 		ktrcsw(p, 1, 0);
    392 #endif
    393 
    394 	s = splhigh();			/* XXXSMP: SCHED_LOCK(s) */
    395 
    396 #ifdef DIAGNOSTIC
    397 	if (ident == NULL)
    398 		panic("ltsleep: ident == NULL");
    399 	if (p->p_stat != SONPROC)
    400 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    401 	if (p->p_back != NULL)
    402 		panic("ltsleep: p_back != NULL");
    403 #endif
    404 
    405 	p->p_wchan = ident;
    406 	p->p_wmesg = wmesg;
    407 	p->p_slptime = 0;
    408 	p->p_priority = priority & PRIMASK;
    409 
    410 	qp = SLPQUE(ident);
    411 	if (qp->sq_head == 0)
    412 		qp->sq_head = p;
    413 	else
    414 		*qp->sq_tailp = p;
    415 	*(qp->sq_tailp = &p->p_forw) = 0;
    416 
    417 	if (timo)
    418 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    419 
    420 	/*
    421 	 * We can now release the interlock; the scheduler_slock
    422 	 * is held, so a thread can't get in to do wakeup() before
    423 	 * we do the switch.
    424 	 *
    425 	 * XXX We leave the code block here, after inserting ourselves
    426 	 * on the sleep queue, because we might want a more clever
    427 	 * data structure for the sleep queues at some point.
    428 	 */
    429 	if (interlock != NULL)
    430 		simple_unlock(interlock);
    431 
    432 	/*
    433 	 * We put ourselves on the sleep queue and start our timeout
    434 	 * before calling CURSIG, as we could stop there, and a wakeup
    435 	 * or a SIGCONT (or both) could occur while we were stopped.
    436 	 * A SIGCONT would cause us to be marked as SSLEEP
    437 	 * without resuming us, thus we must be ready for sleep
    438 	 * when CURSIG is called.  If the wakeup happens while we're
    439 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    440 	 */
    441 	if (catch) {
    442 		p->p_flag |= P_SINTR;
    443 		if ((sig = CURSIG(p)) != 0) {
    444 			if (p->p_wchan != NULL)
    445 				unsleep(p);
    446 			p->p_stat = SONPROC;
    447 #if 0 /* XXXSMP */
    448 			/*
    449 			 * We're going to skip the unlock, so
    450 			 * we don't need to relock after resume.
    451 			 */
    452 			dobiglock = 0;
    453 #endif
    454 			goto resume;
    455 		}
    456 		if (p->p_wchan == NULL) {
    457 			catch = 0;
    458 #if 0 /* XXXSMP */
    459 			/* See above. */
    460 			dobiglock = 0;
    461 #endif
    462 			goto resume;
    463 		}
    464 	} else
    465 		sig = 0;
    466 	p->p_stat = SSLEEP;
    467 	p->p_stats->p_ru.ru_nvcsw++;
    468 
    469 #if 0 /* XXXSMP */
    470 	if (dobiglock) {
    471 		/*
    472 		 * Release the kernel_lock, as we are about to
    473 		 * yield the CPU.  The scheduler_slock is still
    474 		 * held until cpu_switch() selects a new process
    475 		 * and removes it from the run queue.
    476 		 */
    477 		kernel_lock_release();
    478 	}
    479 #endif
    480 
    481 	/* scheduler_slock held */
    482 	mi_switch(p);
    483 	/* scheduler_slock held */
    484 #ifdef	DDB
    485 	/* handy breakpoint location after process "wakes" */
    486 	asm(".globl bpendtsleep ; bpendtsleep:");
    487 #endif
    488 
    489  resume:
    490 	KDASSERT(p->p_cpu != NULL);
    491 	KDASSERT(p->p_cpu == curcpu());
    492 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    493 	splx(s);			/* XXXSMP: SCHED_UNLOCK(s) */
    494 #if 0 /* XXXSMP */
    495 	if (dobiglock) {
    496 		/*
    497 		 * Reacquire the kernel_lock now.  We do this after
    498 		 * we've released scheduler_slock to avoid deadlock.
    499 		 */
    500 		kernel_lock_acquire(LK_EXCLUSIVE);
    501 	}
    502 #endif
    503 	p->p_flag &= ~P_SINTR;
    504 	if (p->p_flag & P_TIMEOUT) {
    505 		p->p_flag &= ~P_TIMEOUT;
    506 		if (sig == 0) {
    507 #ifdef KTRACE
    508 			if (KTRPOINT(p, KTR_CSW))
    509 				ktrcsw(p, 0, 0);
    510 #endif
    511 			if (relock && interlock != NULL)
    512 				simple_lock(interlock);
    513 			return (EWOULDBLOCK);
    514 		}
    515 	} else if (timo)
    516 		callout_stop(&p->p_tsleep_ch);
    517 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    518 #ifdef KTRACE
    519 		if (KTRPOINT(p, KTR_CSW))
    520 			ktrcsw(p, 0, 0);
    521 #endif
    522 		if (relock && interlock != NULL)
    523 			simple_lock(interlock);
    524 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    525 			return (EINTR);
    526 		return (ERESTART);
    527 	}
    528 #ifdef KTRACE
    529 	if (KTRPOINT(p, KTR_CSW))
    530 		ktrcsw(p, 0, 0);
    531 #endif
    532 	if (relock && interlock != NULL)
    533 		simple_lock(interlock);
    534 	return (0);
    535 }
    536 
    537 /*
    538  * Implement timeout for tsleep.
    539  * If process hasn't been awakened (wchan non-zero),
    540  * set timeout flag and undo the sleep.  If proc
    541  * is stopped, just unsleep so it will remain stopped.
    542  */
    543 void
    544 endtsleep(void *arg)
    545 {
    546 	struct proc *p;
    547 	int s;
    548 
    549 	p = (struct proc *)arg;
    550 	s = splhigh();
    551 	if (p->p_wchan) {
    552 		if (p->p_stat == SSLEEP)
    553 			setrunnable(p);
    554 		else
    555 			unsleep(p);
    556 		p->p_flag |= P_TIMEOUT;
    557 	}
    558 	splx(s);
    559 }
    560 
    561 /*
    562  * Remove a process from its wait queue
    563  */
    564 void
    565 unsleep(struct proc *p)
    566 {
    567 	struct slpque *qp;
    568 	struct proc **hp;
    569 	int s;
    570 
    571 	s = splhigh();
    572 	if (p->p_wchan) {
    573 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    574 		while (*hp != p)
    575 			hp = &(*hp)->p_forw;
    576 		*hp = p->p_forw;
    577 		if (qp->sq_tailp == &p->p_forw)
    578 			qp->sq_tailp = hp;
    579 		p->p_wchan = 0;
    580 	}
    581 	splx(s);
    582 }
    583 
    584 /*
    585  * Optimized-for-wakeup() version of setrunnable().
    586  */
    587 __inline void
    588 awaken(struct proc *p)
    589 {
    590 
    591 	if (p->p_slptime > 1)
    592 		updatepri(p);
    593 	p->p_slptime = 0;
    594 	p->p_stat = SRUN;
    595 
    596 	/*
    597 	 * Since curpriority is a user priority, p->p_priority
    598 	 * is always better than curpriority.
    599 	 */
    600 	if (p->p_flag & P_INMEM) {
    601 		setrunqueue(p);
    602 		need_resched();
    603 	} else
    604 		wakeup(&proc0);
    605 }
    606 
    607 /*
    608  * Make all processes sleeping on the specified identifier runnable.
    609  */
    610 void
    611 wakeup(void *ident)
    612 {
    613 	struct slpque *qp;
    614 	struct proc *p, **q;
    615 	int s;
    616 
    617 	s = splhigh();			/* XXXSMP: SCHED_LOCK(s) */
    618 
    619 	qp = SLPQUE(ident);
    620  restart:
    621 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    622 #ifdef DIAGNOSTIC
    623 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    624 			panic("wakeup");
    625 #endif
    626 		if (p->p_wchan == ident) {
    627 			p->p_wchan = 0;
    628 			*q = p->p_forw;
    629 			if (qp->sq_tailp == &p->p_forw)
    630 				qp->sq_tailp = q;
    631 			if (p->p_stat == SSLEEP) {
    632 				awaken(p);
    633 				goto restart;
    634 			}
    635 		} else
    636 			q = &p->p_forw;
    637 	}
    638 	splx(s);			/* XXXSMP: SCHED_UNLOCK(s) */
    639 }
    640 
    641 /*
    642  * Make the highest priority process first in line on the specified
    643  * identifier runnable.
    644  */
    645 void
    646 wakeup_one(void *ident)
    647 {
    648 	struct slpque *qp;
    649 	struct proc *p, **q;
    650 	struct proc *best_sleepp, **best_sleepq;
    651 	struct proc *best_stopp, **best_stopq;
    652 	int s;
    653 
    654 	best_sleepp = best_stopp = NULL;
    655 	best_sleepq = best_stopq = NULL;
    656 
    657 	s = splhigh();		/* XXXSMP: SCHED_LOCK(s) */
    658 
    659 	qp = SLPQUE(ident);
    660 
    661 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    662 #ifdef DIAGNOSTIC
    663 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    664 			panic("wakeup_one");
    665 #endif
    666 		if (p->p_wchan == ident) {
    667 			if (p->p_stat == SSLEEP) {
    668 				if (best_sleepp == NULL ||
    669 				    p->p_priority < best_sleepp->p_priority) {
    670 					best_sleepp = p;
    671 					best_sleepq = q;
    672 				}
    673 			} else {
    674 				if (best_stopp == NULL ||
    675 				    p->p_priority < best_stopp->p_priority) {
    676 					best_stopp = p;
    677 					best_stopq = q;
    678 				}
    679 			}
    680 		}
    681 	}
    682 
    683 	/*
    684 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    685 	 * process.
    686 	 */
    687 	if (best_sleepp != NULL) {
    688 		p = best_sleepp;
    689 		q = best_sleepq;
    690 	} else {
    691 		p = best_stopp;
    692 		q = best_stopq;
    693 	}
    694 
    695 	if (p != NULL) {
    696 		p->p_wchan = NULL;
    697 		*q = p->p_forw;
    698 		if (qp->sq_tailp == &p->p_forw)
    699 			qp->sq_tailp = q;
    700 		if (p->p_stat == SSLEEP)
    701 			awaken(p);
    702 	}
    703 	splx(s);		/* XXXSMP: SCHED_UNLOCK(s) */
    704 }
    705 
    706 /*
    707  * General yield call.  Puts the current process back on its run queue and
    708  * performs a voluntary context switch.
    709  */
    710 void
    711 yield(void)
    712 {
    713 	struct proc *p = curproc;
    714 	int s;
    715 
    716 	s = splstatclock();
    717 	p->p_priority = p->p_usrpri;
    718 	p->p_stat = SRUN;
    719 	setrunqueue(p);
    720 	p->p_stats->p_ru.ru_nvcsw++;
    721 	mi_switch(p);
    722 	splx(s);
    723 }
    724 
    725 /*
    726  * General preemption call.  Puts the current process back on its run queue
    727  * and performs an involuntary context switch.  If a process is supplied,
    728  * we switch to that process.  Otherwise, we use the normal process selection
    729  * criteria.
    730  */
    731 void
    732 preempt(struct proc *newp)
    733 {
    734 	struct proc *p = curproc;
    735 	int s;
    736 
    737 	/*
    738 	 * XXX Switching to a specific process is not supported yet.
    739 	 */
    740 	if (newp != NULL)
    741 		panic("preempt: cpu_preempt not yet implemented");
    742 
    743 	s = splstatclock();
    744 	p->p_priority = p->p_usrpri;
    745 	p->p_stat = SRUN;
    746 	setrunqueue(p);
    747 	p->p_stats->p_ru.ru_nivcsw++;
    748 	mi_switch(p);
    749 	splx(s);
    750 }
    751 
    752 /*
    753  * The machine independent parts of context switch.
    754  * Must be called at splstatclock() or higher.
    755  */
    756 void
    757 mi_switch(struct proc *p)
    758 {
    759 	struct schedstate_percpu *spc;
    760 	struct rlimit *rlim;
    761 	long s, u;
    762 	struct timeval tv;
    763 
    764 	KDASSERT(p->p_cpu != NULL);
    765 	KDASSERT(p->p_cpu == curcpu());
    766 
    767 	spc = &p->p_cpu->ci_schedstate;
    768 
    769 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    770 	spinlock_switchcheck();
    771 #endif
    772 #ifdef LOCKDEBUG
    773 	simple_lock_switchcheck();
    774 #endif
    775 
    776 	/*
    777 	 * Compute the amount of time during which the current
    778 	 * process was running, and add that to its total so far.
    779 	 */
    780 	microtime(&tv);
    781 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    782 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    783 	if (u < 0) {
    784 		u += 1000000;
    785 		s--;
    786 	} else if (u >= 1000000) {
    787 		u -= 1000000;
    788 		s++;
    789 	}
    790 	p->p_rtime.tv_usec = u;
    791 	p->p_rtime.tv_sec = s;
    792 
    793 	/*
    794 	 * Check if the process exceeds its cpu resource allocation.
    795 	 * If over max, kill it.  In any case, if it has run for more
    796 	 * than 10 minutes, reduce priority to give others a chance.
    797 	 */
    798 	rlim = &p->p_rlimit[RLIMIT_CPU];
    799 	if (s >= rlim->rlim_cur) {
    800 		if (s >= rlim->rlim_max)
    801 			psignal(p, SIGKILL);
    802 		else {
    803 			psignal(p, SIGXCPU);
    804 			if (rlim->rlim_cur < rlim->rlim_max)
    805 				rlim->rlim_cur += 5;
    806 		}
    807 	}
    808 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    809 	    p->p_nice == NZERO) {
    810 		p->p_nice = autoniceval + NZERO;
    811 		resetpriority(p);
    812 	}
    813 
    814 	/*
    815 	 * Process is about to yield the CPU; clear the appropriate
    816 	 * scheduling flags.
    817 	 */
    818 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    819 
    820 	/*
    821 	 * Pick a new current process and switch to it.  When we
    822 	 * run again, we'll return back here.
    823 	 */
    824 	uvmexp.swtch++;
    825 	cpu_switch(p);
    826 
    827 	/*
    828 	 * We're running again; record our new start time.  We might
    829 	 * be running on a new CPU now, so don't use the cache'd
    830 	 * schedstate_percpu pointer.
    831 	 */
    832 	KDASSERT(p->p_cpu != NULL);
    833 	KDASSERT(p->p_cpu == curcpu());
    834 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    835 }
    836 
    837 /*
    838  * Initialize the (doubly-linked) run queues
    839  * to be empty.
    840  */
    841 void
    842 rqinit()
    843 {
    844 	int i;
    845 
    846 	for (i = 0; i < RUNQUE_NQS; i++)
    847 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    848 		    (struct proc *)&sched_qs[i];
    849 }
    850 
    851 /*
    852  * Change process state to be runnable,
    853  * placing it on the run queue if it is in memory,
    854  * and awakening the swapper if it isn't in memory.
    855  */
    856 void
    857 setrunnable(struct proc *p)
    858 {
    859 	int s;
    860 
    861 	s = splhigh();
    862 	switch (p->p_stat) {
    863 	case 0:
    864 	case SRUN:
    865 	case SONPROC:
    866 	case SZOMB:
    867 	case SDEAD:
    868 	default:
    869 		panic("setrunnable");
    870 	case SSTOP:
    871 		/*
    872 		 * If we're being traced (possibly because someone attached us
    873 		 * while we were stopped), check for a signal from the debugger.
    874 		 */
    875 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    876 			sigaddset(&p->p_siglist, p->p_xstat);
    877 			p->p_sigcheck = 1;
    878 		}
    879 	case SSLEEP:
    880 		unsleep(p);		/* e.g. when sending signals */
    881 		break;
    882 
    883 	case SIDL:
    884 		break;
    885 	}
    886 	p->p_stat = SRUN;
    887 	if (p->p_flag & P_INMEM)
    888 		setrunqueue(p);
    889 	splx(s);
    890 	if (p->p_slptime > 1)
    891 		updatepri(p);
    892 	p->p_slptime = 0;
    893 	if ((p->p_flag & P_INMEM) == 0)
    894 		wakeup((caddr_t)&proc0);
    895 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    896 		/*
    897 		 * XXXSMP
    898 		 * This is wrong.  It will work, but what really
    899 		 * needs to happen is:
    900 		 *
    901 		 *	- Need to check if p is higher priority
    902 		 *	  than the process currently running on
    903 		 *	  the CPU p last ran on (let p_cpu persist
    904 		 *	  after a context switch?), and preempt
    905 		 *	  that one (or, if there is no process
    906 		 *	  there, simply need_resched() that CPU.
    907 		 *
    908 		 *	- Failing that, traverse a list of
    909 		 *	  available CPUs and need_resched() the
    910 		 *	  CPU with the lowest priority that's
    911 		 *	  lower than p's.
    912 		 */
    913 		need_resched();
    914 	}
    915 }
    916 
    917 /*
    918  * Compute the priority of a process when running in user mode.
    919  * Arrange to reschedule if the resulting priority is better
    920  * than that of the current process.
    921  */
    922 void
    923 resetpriority(struct proc *p)
    924 {
    925 	unsigned int newpriority;
    926 
    927 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    928 	newpriority = min(newpriority, MAXPRI);
    929 	p->p_usrpri = newpriority;
    930 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    931 		/*
    932 		 * XXXSMP
    933 		 * Same applies as in setrunnable() above.
    934 		 */
    935 		need_resched();
    936 	}
    937 }
    938 
    939 /*
    940  * We adjust the priority of the current process.  The priority of a process
    941  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    942  * is increased here.  The formula for computing priorities (in kern_synch.c)
    943  * will compute a different value each time p_estcpu increases. This can
    944  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    945  * queue will not change.  The cpu usage estimator ramps up quite quickly
    946  * when the process is running (linearly), and decays away exponentially, at
    947  * a rate which is proportionally slower when the system is busy.  The basic
    948  * principal is that the system will 90% forget that the process used a lot
    949  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    950  * processes which haven't run much recently, and to round-robin among other
    951  * processes.
    952  */
    953 
    954 void
    955 schedclock(struct proc *p)
    956 {
    957 
    958 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    959 	resetpriority(p);
    960 	if (p->p_priority >= PUSER)
    961 		p->p_priority = p->p_usrpri;
    962 }
    963 
    964 void
    965 suspendsched()
    966 {
    967 	struct proc *p, *next;
    968 	int s, i;
    969 
    970 	/*
    971 	 * Convert all non-P_SYSTEM SSLEEP processes to SSTOP. Curproc is
    972 	 * necesserelly SONPROC.
    973 	 */
    974 	proclist_lock_read();
    975 	s = splclock();
    976 	for (p = LIST_FIRST(&allproc); p != NULL; p = next) {
    977 		next = LIST_NEXT(p, p_list);
    978 		if (p->p_stat != SSLEEP || p == curproc ||
    979 		    (p->p_flag & P_SYSTEM) != 0)
    980 			continue;
    981 		p->p_stat = SSTOP;
    982 	}
    983 	proclist_unlock_read();
    984 
    985 	/* go through the run queues, remove non-P_SYSTEM processes */
    986 	for (i = 0; i < RUNQUE_NQS; i++) {
    987 		for (p = sched_qs[i].ph_link;
    988 		    p != (struct proc *)&sched_qs[i]; p = next) {
    989 			next = p->p_forw;
    990 			if ((p->p_flag & P_SYSTEM) == 0) {
    991 				if (p->p_flag & P_INMEM)
    992 					remrunqueue(p);
    993 				p->p_stat = SSTOP;
    994 			}
    995 		}
    996 	}
    997 	/* XXX SMP: we need to deal with processes on others CPU ! */
    998 
    999 	splx(s);
   1000 }
   1001