kern_synch.c revision 1.81 1 /* $NetBSD: kern_synch.c,v 1.81 2000/08/07 21:55:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/proc.h>
87 #include <sys/kernel.h>
88 #include <sys/buf.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98
99 #include <machine/cpu.h>
100
101 int lbolt; /* once a second sleep address */
102
103 /*
104 * The global scheduler state.
105 */
106 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
107 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
108 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
109
110 void roundrobin(void *);
111 void schedcpu(void *);
112 void updatepri(struct proc *);
113 void endtsleep(void *);
114
115 __inline void awaken(struct proc *);
116
117 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
118 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
119
120 /*
121 * Force switch among equal priority processes every 100ms.
122 */
123 /* ARGSUSED */
124 void
125 roundrobin(void *arg)
126 {
127 struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
128 int s;
129
130 if (curproc != NULL) {
131 s = splstatclock();
132 if (spc->spc_flags & SPCF_SEENRR) {
133 /*
134 * The process has already been through a roundrobin
135 * without switching and may be hogging the CPU.
136 * Indicate that the process should yield.
137 */
138 spc->spc_flags |= SPCF_SHOULDYIELD;
139 } else
140 spc->spc_flags |= SPCF_SEENRR;
141 splx(s);
142 }
143 need_resched();
144 callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
145 }
146
147 /*
148 * Constants for digital decay and forget:
149 * 90% of (p_estcpu) usage in 5 * loadav time
150 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
151 * Note that, as ps(1) mentions, this can let percentages
152 * total over 100% (I've seen 137.9% for 3 processes).
153 *
154 * Note that hardclock updates p_estcpu and p_cpticks independently.
155 *
156 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
157 * That is, the system wants to compute a value of decay such
158 * that the following for loop:
159 * for (i = 0; i < (5 * loadavg); i++)
160 * p_estcpu *= decay;
161 * will compute
162 * p_estcpu *= 0.1;
163 * for all values of loadavg:
164 *
165 * Mathematically this loop can be expressed by saying:
166 * decay ** (5 * loadavg) ~= .1
167 *
168 * The system computes decay as:
169 * decay = (2 * loadavg) / (2 * loadavg + 1)
170 *
171 * We wish to prove that the system's computation of decay
172 * will always fulfill the equation:
173 * decay ** (5 * loadavg) ~= .1
174 *
175 * If we compute b as:
176 * b = 2 * loadavg
177 * then
178 * decay = b / (b + 1)
179 *
180 * We now need to prove two things:
181 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
182 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
183 *
184 * Facts:
185 * For x close to zero, exp(x) =~ 1 + x, since
186 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
187 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
188 * For x close to zero, ln(1+x) =~ x, since
189 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
190 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
191 * ln(.1) =~ -2.30
192 *
193 * Proof of (1):
194 * Solve (factor)**(power) =~ .1 given power (5*loadav):
195 * solving for factor,
196 * ln(factor) =~ (-2.30/5*loadav), or
197 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
198 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
199 *
200 * Proof of (2):
201 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
202 * solving for power,
203 * power*ln(b/(b+1)) =~ -2.30, or
204 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
205 *
206 * Actual power values for the implemented algorithm are as follows:
207 * loadav: 1 2 3 4
208 * power: 5.68 10.32 14.94 19.55
209 */
210
211 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
212 #define loadfactor(loadav) (2 * (loadav))
213 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
214
215 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
216 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
217
218 /*
219 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
220 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
221 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
222 *
223 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
224 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
225 *
226 * If you dont want to bother with the faster/more-accurate formula, you
227 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
228 * (more general) method of calculating the %age of CPU used by a process.
229 */
230 #define CCPU_SHIFT 11
231
232 /*
233 * Recompute process priorities, every hz ticks.
234 */
235 /* ARGSUSED */
236 void
237 schedcpu(void *arg)
238 {
239 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240 struct proc *p;
241 int s;
242 unsigned int newcpu;
243 int clkhz;
244
245 proclist_lock_read();
246 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
247 /*
248 * Increment time in/out of memory and sleep time
249 * (if sleeping). We ignore overflow; with 16-bit int's
250 * (remember them?) overflow takes 45 days.
251 */
252 p->p_swtime++;
253 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
254 p->p_slptime++;
255 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
256 /*
257 * If the process has slept the entire second,
258 * stop recalculating its priority until it wakes up.
259 */
260 if (p->p_slptime > 1)
261 continue;
262 s = splstatclock(); /* prevent state changes */
263 /*
264 * p_pctcpu is only for ps.
265 */
266 clkhz = stathz != 0 ? stathz : hz;
267 #if (FSHIFT >= CCPU_SHIFT)
268 p->p_pctcpu += (clkhz == 100)?
269 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
270 100 * (((fixpt_t) p->p_cpticks)
271 << (FSHIFT - CCPU_SHIFT)) / clkhz;
272 #else
273 p->p_pctcpu += ((FSCALE - ccpu) *
274 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
275 #endif
276 p->p_cpticks = 0;
277 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
278 p->p_estcpu = newcpu;
279 resetpriority(p);
280 if (p->p_priority >= PUSER) {
281 if (p->p_stat == SRUN &&
282 (p->p_flag & P_INMEM) &&
283 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
284 remrunqueue(p);
285 p->p_priority = p->p_usrpri;
286 setrunqueue(p);
287 } else
288 p->p_priority = p->p_usrpri;
289 }
290 splx(s);
291 }
292 proclist_unlock_read();
293 uvm_meter();
294 wakeup((caddr_t)&lbolt);
295 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
296 }
297
298 /*
299 * Recalculate the priority of a process after it has slept for a while.
300 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
301 * least six times the loadfactor will decay p_estcpu to zero.
302 */
303 void
304 updatepri(struct proc *p)
305 {
306 unsigned int newcpu = p->p_estcpu;
307 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
308
309 if (p->p_slptime > 5 * loadfac)
310 p->p_estcpu = 0;
311 else {
312 p->p_slptime--; /* the first time was done in schedcpu */
313 while (newcpu && --p->p_slptime)
314 newcpu = (int) decay_cpu(loadfac, newcpu);
315 p->p_estcpu = newcpu;
316 }
317 resetpriority(p);
318 }
319
320 /*
321 * During autoconfiguration or after a panic, a sleep will simply
322 * lower the priority briefly to allow interrupts, then return.
323 * The priority to be used (safepri) is machine-dependent, thus this
324 * value is initialized and maintained in the machine-dependent layers.
325 * This priority will typically be 0, or the lowest priority
326 * that is safe for use on the interrupt stack; it can be made
327 * higher to block network software interrupts after panics.
328 */
329 int safepri;
330
331 /*
332 * General sleep call. Suspends the current process until a wakeup is
333 * performed on the specified identifier. The process will then be made
334 * runnable with the specified priority. Sleeps at most timo/hz seconds
335 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
336 * before and after sleeping, else signals are not checked. Returns 0 if
337 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
338 * signal needs to be delivered, ERESTART is returned if the current system
339 * call should be restarted if possible, and EINTR is returned if the system
340 * call should be interrupted by the signal (return EINTR).
341 *
342 * The interlock is held until the scheduler_slock is held. The
343 * interlock will be locked before returning back to the caller
344 * unless the PNORELOCK flag is specified, in which case the
345 * interlock will always be unlocked upon return.
346 */
347 int
348 ltsleep(void *ident, int priority, const char *wmesg, int timo,
349 __volatile struct simplelock *interlock)
350 {
351 struct proc *p = curproc;
352 struct slpque *qp;
353 int sig, s;
354 int catch = priority & PCATCH;
355 int relock = (priority & PNORELOCK) == 0;
356 #if 0 /* XXXSMP */
357 int dobiglock;
358 #endif
359
360 /*
361 * XXXSMP
362 * This is probably bogus. Figure out what the right
363 * thing to do here really is.
364 * Note that not sleeping if ltsleep is called with curproc == NULL
365 * in the shutdown case is disgusting but partly necessary given
366 * how shutdown (barely) works.
367 */
368 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
369 /*
370 * After a panic, or during autoconfiguration,
371 * just give interrupts a chance, then just return;
372 * don't run any other procs or panic below,
373 * in case this is the idle process and already asleep.
374 */
375 s = splhigh();
376 splx(safepri);
377 splx(s);
378 if (interlock != NULL && relock == 0)
379 simple_unlock(interlock);
380 return (0);
381 }
382
383 #if 0 /* XXXSMP */
384 dobiglock = (p->p_flags & P_BIGLOCK) != 0;
385 #endif
386
387 #ifdef KTRACE
388 if (KTRPOINT(p, KTR_CSW))
389 ktrcsw(p, 1, 0);
390 #endif
391
392 s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
393
394 #ifdef DIAGNOSTIC
395 if (ident == NULL)
396 panic("ltsleep: ident == NULL");
397 if (p->p_stat != SONPROC)
398 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
399 if (p->p_back != NULL)
400 panic("ltsleep: p_back != NULL");
401 #endif
402
403 p->p_wchan = ident;
404 p->p_wmesg = wmesg;
405 p->p_slptime = 0;
406 p->p_priority = priority & PRIMASK;
407
408 qp = SLPQUE(ident);
409 if (qp->sq_head == 0)
410 qp->sq_head = p;
411 else
412 *qp->sq_tailp = p;
413 *(qp->sq_tailp = &p->p_forw) = 0;
414
415 if (timo)
416 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
417
418 /*
419 * We can now release the interlock; the scheduler_slock
420 * is held, so a thread can't get in to do wakeup() before
421 * we do the switch.
422 *
423 * XXX We leave the code block here, after inserting ourselves
424 * on the sleep queue, because we might want a more clever
425 * data structure for the sleep queues at some point.
426 */
427 if (interlock != NULL)
428 simple_unlock(interlock);
429
430 /*
431 * We put ourselves on the sleep queue and start our timeout
432 * before calling CURSIG, as we could stop there, and a wakeup
433 * or a SIGCONT (or both) could occur while we were stopped.
434 * A SIGCONT would cause us to be marked as SSLEEP
435 * without resuming us, thus we must be ready for sleep
436 * when CURSIG is called. If the wakeup happens while we're
437 * stopped, p->p_wchan will be 0 upon return from CURSIG.
438 */
439 if (catch) {
440 p->p_flag |= P_SINTR;
441 if ((sig = CURSIG(p)) != 0) {
442 if (p->p_wchan != NULL)
443 unsleep(p);
444 p->p_stat = SONPROC;
445 #if 0 /* XXXSMP */
446 /*
447 * We're going to skip the unlock, so
448 * we don't need to relock after resume.
449 */
450 dobiglock = 0;
451 #endif
452 goto resume;
453 }
454 if (p->p_wchan == NULL) {
455 catch = 0;
456 #if 0 /* XXXSMP */
457 /* See above. */
458 dobiglock = 0;
459 #endif
460 goto resume;
461 }
462 } else
463 sig = 0;
464 p->p_stat = SSLEEP;
465 p->p_stats->p_ru.ru_nvcsw++;
466
467 #if 0 /* XXXSMP */
468 if (dobiglock) {
469 /*
470 * Release the kernel_lock, as we are about to
471 * yield the CPU. The scheduler_slock is still
472 * held until cpu_switch() selects a new process
473 * and removes it from the run queue.
474 */
475 kernel_lock_release();
476 }
477 #endif
478
479 /* scheduler_slock held */
480 mi_switch(p);
481 /* scheduler_slock held */
482 #ifdef DDB
483 /* handy breakpoint location after process "wakes" */
484 asm(".globl bpendtsleep ; bpendtsleep:");
485 #endif
486
487 resume:
488 KDASSERT(p->p_cpu != NULL);
489 KDASSERT(p->p_cpu == curcpu());
490 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
491 splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
492 #if 0 /* XXXSMP */
493 if (dobiglock) {
494 /*
495 * Reacquire the kernel_lock now. We do this after
496 * we've released scheduler_slock to avoid deadlock.
497 */
498 kernel_lock_acquire(LK_EXCLUSIVE);
499 }
500 #endif
501 p->p_flag &= ~P_SINTR;
502 if (p->p_flag & P_TIMEOUT) {
503 p->p_flag &= ~P_TIMEOUT;
504 if (sig == 0) {
505 #ifdef KTRACE
506 if (KTRPOINT(p, KTR_CSW))
507 ktrcsw(p, 0, 0);
508 #endif
509 if (relock && interlock != NULL)
510 simple_lock(interlock);
511 return (EWOULDBLOCK);
512 }
513 } else if (timo)
514 callout_stop(&p->p_tsleep_ch);
515 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
516 #ifdef KTRACE
517 if (KTRPOINT(p, KTR_CSW))
518 ktrcsw(p, 0, 0);
519 #endif
520 if (relock && interlock != NULL)
521 simple_lock(interlock);
522 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
523 return (EINTR);
524 return (ERESTART);
525 }
526 #ifdef KTRACE
527 if (KTRPOINT(p, KTR_CSW))
528 ktrcsw(p, 0, 0);
529 #endif
530 if (relock && interlock != NULL)
531 simple_lock(interlock);
532 return (0);
533 }
534
535 /*
536 * Implement timeout for tsleep.
537 * If process hasn't been awakened (wchan non-zero),
538 * set timeout flag and undo the sleep. If proc
539 * is stopped, just unsleep so it will remain stopped.
540 */
541 void
542 endtsleep(void *arg)
543 {
544 struct proc *p;
545 int s;
546
547 p = (struct proc *)arg;
548 s = splhigh();
549 if (p->p_wchan) {
550 if (p->p_stat == SSLEEP)
551 setrunnable(p);
552 else
553 unsleep(p);
554 p->p_flag |= P_TIMEOUT;
555 }
556 splx(s);
557 }
558
559 /*
560 * Remove a process from its wait queue
561 */
562 void
563 unsleep(struct proc *p)
564 {
565 struct slpque *qp;
566 struct proc **hp;
567 int s;
568
569 s = splhigh();
570 if (p->p_wchan) {
571 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
572 while (*hp != p)
573 hp = &(*hp)->p_forw;
574 *hp = p->p_forw;
575 if (qp->sq_tailp == &p->p_forw)
576 qp->sq_tailp = hp;
577 p->p_wchan = 0;
578 }
579 splx(s);
580 }
581
582 /*
583 * Optimized-for-wakeup() version of setrunnable().
584 */
585 __inline void
586 awaken(struct proc *p)
587 {
588
589 if (p->p_slptime > 1)
590 updatepri(p);
591 p->p_slptime = 0;
592 p->p_stat = SRUN;
593
594 /*
595 * Since curpriority is a user priority, p->p_priority
596 * is always better than curpriority.
597 */
598 if (p->p_flag & P_INMEM) {
599 setrunqueue(p);
600 need_resched();
601 } else
602 wakeup(&proc0);
603 }
604
605 /*
606 * Make all processes sleeping on the specified identifier runnable.
607 */
608 void
609 wakeup(void *ident)
610 {
611 struct slpque *qp;
612 struct proc *p, **q;
613 int s;
614
615 s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
616
617 qp = SLPQUE(ident);
618 restart:
619 for (q = &qp->sq_head; (p = *q) != NULL; ) {
620 #ifdef DIAGNOSTIC
621 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
622 panic("wakeup");
623 #endif
624 if (p->p_wchan == ident) {
625 p->p_wchan = 0;
626 *q = p->p_forw;
627 if (qp->sq_tailp == &p->p_forw)
628 qp->sq_tailp = q;
629 if (p->p_stat == SSLEEP) {
630 awaken(p);
631 goto restart;
632 }
633 } else
634 q = &p->p_forw;
635 }
636 splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
637 }
638
639 /*
640 * Make the highest priority process first in line on the specified
641 * identifier runnable.
642 */
643 void
644 wakeup_one(void *ident)
645 {
646 struct slpque *qp;
647 struct proc *p, **q;
648 struct proc *best_sleepp, **best_sleepq;
649 struct proc *best_stopp, **best_stopq;
650 int s;
651
652 best_sleepp = best_stopp = NULL;
653 best_sleepq = best_stopq = NULL;
654
655 s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
656
657 qp = SLPQUE(ident);
658
659 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
660 #ifdef DIAGNOSTIC
661 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
662 panic("wakeup_one");
663 #endif
664 if (p->p_wchan == ident) {
665 if (p->p_stat == SSLEEP) {
666 if (best_sleepp == NULL ||
667 p->p_priority < best_sleepp->p_priority) {
668 best_sleepp = p;
669 best_sleepq = q;
670 }
671 } else {
672 if (best_stopp == NULL ||
673 p->p_priority < best_stopp->p_priority) {
674 best_stopp = p;
675 best_stopq = q;
676 }
677 }
678 }
679 }
680
681 /*
682 * Consider any SSLEEP process higher than the highest priority SSTOP
683 * process.
684 */
685 if (best_sleepp != NULL) {
686 p = best_sleepp;
687 q = best_sleepq;
688 } else {
689 p = best_stopp;
690 q = best_stopq;
691 }
692
693 if (p != NULL) {
694 p->p_wchan = NULL;
695 *q = p->p_forw;
696 if (qp->sq_tailp == &p->p_forw)
697 qp->sq_tailp = q;
698 if (p->p_stat == SSLEEP)
699 awaken(p);
700 }
701 splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
702 }
703
704 /*
705 * General yield call. Puts the current process back on its run queue and
706 * performs a voluntary context switch.
707 */
708 void
709 yield(void)
710 {
711 struct proc *p = curproc;
712 int s;
713
714 s = splstatclock();
715 p->p_priority = p->p_usrpri;
716 p->p_stat = SRUN;
717 setrunqueue(p);
718 p->p_stats->p_ru.ru_nvcsw++;
719 mi_switch(p);
720 splx(s);
721 }
722
723 /*
724 * General preemption call. Puts the current process back on its run queue
725 * and performs an involuntary context switch. If a process is supplied,
726 * we switch to that process. Otherwise, we use the normal process selection
727 * criteria.
728 */
729 void
730 preempt(struct proc *newp)
731 {
732 struct proc *p = curproc;
733 int s;
734
735 /*
736 * XXX Switching to a specific process is not supported yet.
737 */
738 if (newp != NULL)
739 panic("preempt: cpu_preempt not yet implemented");
740
741 s = splstatclock();
742 p->p_priority = p->p_usrpri;
743 p->p_stat = SRUN;
744 setrunqueue(p);
745 p->p_stats->p_ru.ru_nivcsw++;
746 mi_switch(p);
747 splx(s);
748 }
749
750 /*
751 * The machine independent parts of context switch.
752 * Must be called at splstatclock() or higher.
753 */
754 void
755 mi_switch(struct proc *p)
756 {
757 struct schedstate_percpu *spc;
758 struct rlimit *rlim;
759 long s, u;
760 struct timeval tv;
761
762 KDASSERT(p->p_cpu != NULL);
763 KDASSERT(p->p_cpu == curcpu());
764
765 spc = &p->p_cpu->ci_schedstate;
766
767 #ifdef LOCKDEBUG
768 simple_lock_switchcheck();
769 #endif
770
771 /*
772 * Compute the amount of time during which the current
773 * process was running, and add that to its total so far.
774 */
775 microtime(&tv);
776 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
777 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
778 if (u < 0) {
779 u += 1000000;
780 s--;
781 } else if (u >= 1000000) {
782 u -= 1000000;
783 s++;
784 }
785 p->p_rtime.tv_usec = u;
786 p->p_rtime.tv_sec = s;
787
788 /*
789 * Check if the process exceeds its cpu resource allocation.
790 * If over max, kill it. In any case, if it has run for more
791 * than 10 minutes, reduce priority to give others a chance.
792 */
793 rlim = &p->p_rlimit[RLIMIT_CPU];
794 if (s >= rlim->rlim_cur) {
795 if (s >= rlim->rlim_max)
796 psignal(p, SIGKILL);
797 else {
798 psignal(p, SIGXCPU);
799 if (rlim->rlim_cur < rlim->rlim_max)
800 rlim->rlim_cur += 5;
801 }
802 }
803 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
804 p->p_nice == NZERO) {
805 p->p_nice = autoniceval + NZERO;
806 resetpriority(p);
807 }
808
809 /*
810 * Process is about to yield the CPU; clear the appropriate
811 * scheduling flags.
812 */
813 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
814
815 /*
816 * Pick a new current process and switch to it. When we
817 * run again, we'll return back here.
818 */
819 uvmexp.swtch++;
820 cpu_switch(p);
821
822 /*
823 * We're running again; record our new start time. We might
824 * be running on a new CPU now, so don't use the cache'd
825 * schedstate_percpu pointer.
826 */
827 KDASSERT(p->p_cpu != NULL);
828 KDASSERT(p->p_cpu == curcpu());
829 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
830 }
831
832 /*
833 * Initialize the (doubly-linked) run queues
834 * to be empty.
835 */
836 void
837 rqinit()
838 {
839 int i;
840
841 for (i = 0; i < RUNQUE_NQS; i++)
842 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
843 (struct proc *)&sched_qs[i];
844 }
845
846 /*
847 * Change process state to be runnable,
848 * placing it on the run queue if it is in memory,
849 * and awakening the swapper if it isn't in memory.
850 */
851 void
852 setrunnable(struct proc *p)
853 {
854 int s;
855
856 s = splhigh();
857 switch (p->p_stat) {
858 case 0:
859 case SRUN:
860 case SONPROC:
861 case SZOMB:
862 case SDEAD:
863 default:
864 panic("setrunnable");
865 case SSTOP:
866 /*
867 * If we're being traced (possibly because someone attached us
868 * while we were stopped), check for a signal from the debugger.
869 */
870 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
871 sigaddset(&p->p_siglist, p->p_xstat);
872 p->p_sigcheck = 1;
873 }
874 case SSLEEP:
875 unsleep(p); /* e.g. when sending signals */
876 break;
877
878 case SIDL:
879 break;
880 }
881 p->p_stat = SRUN;
882 if (p->p_flag & P_INMEM)
883 setrunqueue(p);
884 splx(s);
885 if (p->p_slptime > 1)
886 updatepri(p);
887 p->p_slptime = 0;
888 if ((p->p_flag & P_INMEM) == 0)
889 wakeup((caddr_t)&proc0);
890 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
891 /*
892 * XXXSMP
893 * This is wrong. It will work, but what really
894 * needs to happen is:
895 *
896 * - Need to check if p is higher priority
897 * than the process currently running on
898 * the CPU p last ran on (let p_cpu persist
899 * after a context switch?), and preempt
900 * that one (or, if there is no process
901 * there, simply need_resched() that CPU.
902 *
903 * - Failing that, traverse a list of
904 * available CPUs and need_resched() the
905 * CPU with the lowest priority that's
906 * lower than p's.
907 */
908 need_resched();
909 }
910 }
911
912 /*
913 * Compute the priority of a process when running in user mode.
914 * Arrange to reschedule if the resulting priority is better
915 * than that of the current process.
916 */
917 void
918 resetpriority(struct proc *p)
919 {
920 unsigned int newpriority;
921
922 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
923 newpriority = min(newpriority, MAXPRI);
924 p->p_usrpri = newpriority;
925 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
926 /*
927 * XXXSMP
928 * Same applies as in setrunnable() above.
929 */
930 need_resched();
931 }
932 }
933
934 /*
935 * We adjust the priority of the current process. The priority of a process
936 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
937 * is increased here. The formula for computing priorities (in kern_synch.c)
938 * will compute a different value each time p_estcpu increases. This can
939 * cause a switch, but unless the priority crosses a PPQ boundary the actual
940 * queue will not change. The cpu usage estimator ramps up quite quickly
941 * when the process is running (linearly), and decays away exponentially, at
942 * a rate which is proportionally slower when the system is busy. The basic
943 * principle is that the system will 90% forget that the process used a lot
944 * of CPU time in 5 * loadav seconds. This causes the system to favor
945 * processes which haven't run much recently, and to round-robin among other
946 * processes.
947 */
948
949 void
950 schedclock(struct proc *p)
951 {
952
953 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
954 resetpriority(p);
955 if (p->p_priority >= PUSER)
956 p->p_priority = p->p_usrpri;
957 }
958