kern_synch.c revision 1.84 1 /* $NetBSD: kern_synch.c,v 1.84 2000/08/22 17:28:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/buf.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/sched.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 int lbolt; /* once a second sleep address */
104
105 /*
106 * The global scheduler state.
107 */
108 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
109 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
110 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
111
112 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
113 #if defined(MULTIPROCESSOR)
114 struct lock kernel_lock;
115 #endif
116
117 void roundrobin(void *);
118 void schedcpu(void *);
119 void updatepri(struct proc *);
120 void endtsleep(void *);
121
122 __inline void awaken(struct proc *);
123
124 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
125 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
126
127 /*
128 * Force switch among equal priority processes every 100ms.
129 */
130 /* ARGSUSED */
131 void
132 roundrobin(void *arg)
133 {
134 struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
135 int s;
136
137 if (curproc != NULL) {
138 s = splstatclock();
139 if (spc->spc_flags & SPCF_SEENRR) {
140 /*
141 * The process has already been through a roundrobin
142 * without switching and may be hogging the CPU.
143 * Indicate that the process should yield.
144 */
145 spc->spc_flags |= SPCF_SHOULDYIELD;
146 } else
147 spc->spc_flags |= SPCF_SEENRR;
148 splx(s);
149 }
150 /* XXXSMP: should need_resched() on all CPUs */
151 need_resched();
152 callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
153 }
154
155 /*
156 * Constants for digital decay and forget:
157 * 90% of (p_estcpu) usage in 5 * loadav time
158 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
159 * Note that, as ps(1) mentions, this can let percentages
160 * total over 100% (I've seen 137.9% for 3 processes).
161 *
162 * Note that hardclock updates p_estcpu and p_cpticks independently.
163 *
164 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
165 * That is, the system wants to compute a value of decay such
166 * that the following for loop:
167 * for (i = 0; i < (5 * loadavg); i++)
168 * p_estcpu *= decay;
169 * will compute
170 * p_estcpu *= 0.1;
171 * for all values of loadavg:
172 *
173 * Mathematically this loop can be expressed by saying:
174 * decay ** (5 * loadavg) ~= .1
175 *
176 * The system computes decay as:
177 * decay = (2 * loadavg) / (2 * loadavg + 1)
178 *
179 * We wish to prove that the system's computation of decay
180 * will always fulfill the equation:
181 * decay ** (5 * loadavg) ~= .1
182 *
183 * If we compute b as:
184 * b = 2 * loadavg
185 * then
186 * decay = b / (b + 1)
187 *
188 * We now need to prove two things:
189 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
190 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
191 *
192 * Facts:
193 * For x close to zero, exp(x) =~ 1 + x, since
194 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
195 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
196 * For x close to zero, ln(1+x) =~ x, since
197 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
198 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
199 * ln(.1) =~ -2.30
200 *
201 * Proof of (1):
202 * Solve (factor)**(power) =~ .1 given power (5*loadav):
203 * solving for factor,
204 * ln(factor) =~ (-2.30/5*loadav), or
205 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
206 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
207 *
208 * Proof of (2):
209 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
210 * solving for power,
211 * power*ln(b/(b+1)) =~ -2.30, or
212 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
213 *
214 * Actual power values for the implemented algorithm are as follows:
215 * loadav: 1 2 3 4
216 * power: 5.68 10.32 14.94 19.55
217 */
218
219 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
220 #define loadfactor(loadav) (2 * (loadav))
221 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
222
223 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
224 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
225
226 /*
227 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
228 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
229 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
230 *
231 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
232 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
233 *
234 * If you dont want to bother with the faster/more-accurate formula, you
235 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
236 * (more general) method of calculating the %age of CPU used by a process.
237 */
238 #define CCPU_SHIFT 11
239
240 /*
241 * Recompute process priorities, every hz ticks.
242 */
243 /* ARGSUSED */
244 void
245 schedcpu(void *arg)
246 {
247 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
248 struct proc *p;
249 int s, s1;
250 unsigned int newcpu;
251 int clkhz;
252
253 proclist_lock_read();
254 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
255 /*
256 * Increment time in/out of memory and sleep time
257 * (if sleeping). We ignore overflow; with 16-bit int's
258 * (remember them?) overflow takes 45 days.
259 */
260 p->p_swtime++;
261 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
262 p->p_slptime++;
263 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
264 /*
265 * If the process has slept the entire second,
266 * stop recalculating its priority until it wakes up.
267 */
268 if (p->p_slptime > 1)
269 continue;
270 s = splstatclock(); /* prevent state changes */
271 /*
272 * p_pctcpu is only for ps.
273 */
274 clkhz = stathz != 0 ? stathz : hz;
275 #if (FSHIFT >= CCPU_SHIFT)
276 p->p_pctcpu += (clkhz == 100)?
277 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278 100 * (((fixpt_t) p->p_cpticks)
279 << (FSHIFT - CCPU_SHIFT)) / clkhz;
280 #else
281 p->p_pctcpu += ((FSCALE - ccpu) *
282 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
283 #endif
284 p->p_cpticks = 0;
285 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
286 p->p_estcpu = newcpu;
287 SCHED_LOCK(s1);
288 resetpriority(p);
289 if (p->p_priority >= PUSER) {
290 if (p->p_stat == SRUN &&
291 (p->p_flag & P_INMEM) &&
292 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
293 remrunqueue(p);
294 p->p_priority = p->p_usrpri;
295 setrunqueue(p);
296 } else
297 p->p_priority = p->p_usrpri;
298 }
299 SCHED_UNLOCK(s1);
300 splx(s);
301 }
302 proclist_unlock_read();
303 uvm_meter();
304 wakeup((caddr_t)&lbolt);
305 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
306 }
307
308 /*
309 * Recalculate the priority of a process after it has slept for a while.
310 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
311 * least six times the loadfactor will decay p_estcpu to zero.
312 */
313 void
314 updatepri(struct proc *p)
315 {
316 unsigned int newcpu;
317 fixpt_t loadfac;
318
319 SCHED_ASSERT_LOCKED();
320
321 newcpu = p->p_estcpu;
322 loadfac = loadfactor(averunnable.ldavg[0]);
323
324 if (p->p_slptime > 5 * loadfac)
325 p->p_estcpu = 0;
326 else {
327 p->p_slptime--; /* the first time was done in schedcpu */
328 while (newcpu && --p->p_slptime)
329 newcpu = (int) decay_cpu(loadfac, newcpu);
330 p->p_estcpu = newcpu;
331 }
332 resetpriority(p);
333 }
334
335 #if defined(MULTIPROCESSOR)
336 /*
337 * XXX Need to tweak lockmgr() for this!
338 */
339 static int
340 kernel_lock_release_all(void)
341 {
342 int count, s;
343
344 s = splsched();
345 count = kernel_lock.lk_exclusivecount;
346 KDASSERT(count > 0);
347 kernel_lock.lk_exclusivecount = 1;
348 kernel_lock.lk_recurselevel = 1;
349 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
350 splx(s);
351
352 return (count);
353 }
354
355 static void
356 kernel_lock_acquire_count(int flags, int count)
357 {
358 int s;
359
360 s = splsched();
361 KDASSERT(count > 0);
362 spinlockmgr(&kernel_lock, flags, 0);
363 KDASSERT(kernel_lock.lk_exclusivecount == 1);
364 kernel_lock.lk_exclusivecount = count;
365 splx(s);
366 }
367 #endif /* MULTIPROCESSOR */
368
369 /*
370 * During autoconfiguration or after a panic, a sleep will simply
371 * lower the priority briefly to allow interrupts, then return.
372 * The priority to be used (safepri) is machine-dependent, thus this
373 * value is initialized and maintained in the machine-dependent layers.
374 * This priority will typically be 0, or the lowest priority
375 * that is safe for use on the interrupt stack; it can be made
376 * higher to block network software interrupts after panics.
377 */
378 int safepri;
379
380 /*
381 * General sleep call. Suspends the current process until a wakeup is
382 * performed on the specified identifier. The process will then be made
383 * runnable with the specified priority. Sleeps at most timo/hz seconds
384 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
385 * before and after sleeping, else signals are not checked. Returns 0 if
386 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
387 * signal needs to be delivered, ERESTART is returned if the current system
388 * call should be restarted if possible, and EINTR is returned if the system
389 * call should be interrupted by the signal (return EINTR).
390 *
391 * The interlock is held until the scheduler_slock is held. The
392 * interlock will be locked before returning back to the caller
393 * unless the PNORELOCK flag is specified, in which case the
394 * interlock will always be unlocked upon return.
395 */
396 int
397 ltsleep(void *ident, int priority, const char *wmesg, int timo,
398 __volatile struct simplelock *interlock)
399 {
400 struct proc *p = curproc;
401 struct slpque *qp;
402 int sig, s;
403 int catch = priority & PCATCH;
404 int relock = (priority & PNORELOCK) == 0;
405 #if defined(MULTIPROCESSOR)
406 int dobiglock, held_count;
407 #endif
408
409 /*
410 * XXXSMP
411 * This is probably bogus. Figure out what the right
412 * thing to do here really is.
413 * Note that not sleeping if ltsleep is called with curproc == NULL
414 * in the shutdown case is disgusting but partly necessary given
415 * how shutdown (barely) works.
416 */
417 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
418 /*
419 * After a panic, or during autoconfiguration,
420 * just give interrupts a chance, then just return;
421 * don't run any other procs or panic below,
422 * in case this is the idle process and already asleep.
423 */
424 s = splhigh();
425 splx(safepri);
426 splx(s);
427 if (interlock != NULL && relock == 0)
428 simple_unlock(interlock);
429 return (0);
430 }
431
432 #if defined(MULTIPROCESSOR)
433 dobiglock = (p->p_flag & P_BIGLOCK) != 0;
434 #endif
435
436 #ifdef KTRACE
437 if (KTRPOINT(p, KTR_CSW))
438 ktrcsw(p, 1, 0);
439 #endif
440
441 SCHED_LOCK(s);
442
443 #ifdef DIAGNOSTIC
444 if (ident == NULL)
445 panic("ltsleep: ident == NULL");
446 if (p->p_stat != SONPROC)
447 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
448 if (p->p_back != NULL)
449 panic("ltsleep: p_back != NULL");
450 #endif
451
452 p->p_wchan = ident;
453 p->p_wmesg = wmesg;
454 p->p_slptime = 0;
455 p->p_priority = priority & PRIMASK;
456
457 qp = SLPQUE(ident);
458 if (qp->sq_head == 0)
459 qp->sq_head = p;
460 else
461 *qp->sq_tailp = p;
462 *(qp->sq_tailp = &p->p_forw) = 0;
463
464 if (timo)
465 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
466
467 /*
468 * We can now release the interlock; the scheduler_slock
469 * is held, so a thread can't get in to do wakeup() before
470 * we do the switch.
471 *
472 * XXX We leave the code block here, after inserting ourselves
473 * on the sleep queue, because we might want a more clever
474 * data structure for the sleep queues at some point.
475 */
476 if (interlock != NULL)
477 simple_unlock(interlock);
478
479 /*
480 * We put ourselves on the sleep queue and start our timeout
481 * before calling CURSIG, as we could stop there, and a wakeup
482 * or a SIGCONT (or both) could occur while we were stopped.
483 * A SIGCONT would cause us to be marked as SSLEEP
484 * without resuming us, thus we must be ready for sleep
485 * when CURSIG is called. If the wakeup happens while we're
486 * stopped, p->p_wchan will be 0 upon return from CURSIG.
487 */
488 if (catch) {
489 p->p_flag |= P_SINTR;
490 if ((sig = CURSIG(p)) != 0) {
491 if (p->p_wchan != NULL)
492 unsleep(p);
493 p->p_stat = SONPROC;
494 #if defined(MULTIPROCESSOR)
495 /*
496 * We're going to skip the unlock, so
497 * we don't need to relock after resume.
498 */
499 dobiglock = 0;
500 #endif
501 SCHED_UNLOCK(s);
502 goto resume;
503 }
504 if (p->p_wchan == NULL) {
505 catch = 0;
506 #if defined(MULTIPROCESSOR)
507 /* See above. */
508 dobiglock = 0;
509 #endif
510 SCHED_UNLOCK(s);
511 goto resume;
512 }
513 } else
514 sig = 0;
515 p->p_stat = SSLEEP;
516 p->p_stats->p_ru.ru_nvcsw++;
517
518 #if defined(MULTIPROCESSOR)
519 if (dobiglock) {
520 /*
521 * Release the kernel_lock, as we are about to
522 * yield the CPU. The scheduler_slock is still
523 * held until cpu_switch() selects a new process
524 * and removes it from the run queue.
525 */
526 held_count = kernel_lock_release_all();
527 }
528 #endif
529
530 SCHED_ASSERT_LOCKED();
531 mi_switch(p);
532
533 #ifdef DDB
534 /* handy breakpoint location after process "wakes" */
535 asm(".globl bpendtsleep ; bpendtsleep:");
536 #endif
537
538 SCHED_ASSERT_UNLOCKED();
539 splx(s);
540
541 resume:
542 KDASSERT(p->p_cpu != NULL);
543 KDASSERT(p->p_cpu == curcpu());
544 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
545
546 #if defined(MULTIPROCESSOR)
547 if (dobiglock) {
548 /*
549 * Reacquire the kernel_lock now. We do this after
550 * we've released sched_lock to avoid deadlock,
551 * and before we reacquire the interlock.
552 */
553 kernel_lock_acquire_count(LK_EXCLUSIVE|LK_CANRECURSE,
554 held_count);
555 }
556 #endif
557 p->p_flag &= ~P_SINTR;
558 if (p->p_flag & P_TIMEOUT) {
559 p->p_flag &= ~P_TIMEOUT;
560 if (sig == 0) {
561 #ifdef KTRACE
562 if (KTRPOINT(p, KTR_CSW))
563 ktrcsw(p, 0, 0);
564 #endif
565 if (relock && interlock != NULL)
566 simple_lock(interlock);
567 return (EWOULDBLOCK);
568 }
569 } else if (timo)
570 callout_stop(&p->p_tsleep_ch);
571 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
572 #ifdef KTRACE
573 if (KTRPOINT(p, KTR_CSW))
574 ktrcsw(p, 0, 0);
575 #endif
576 if (relock && interlock != NULL)
577 simple_lock(interlock);
578 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
579 return (EINTR);
580 return (ERESTART);
581 }
582 #ifdef KTRACE
583 if (KTRPOINT(p, KTR_CSW))
584 ktrcsw(p, 0, 0);
585 #endif
586 if (relock && interlock != NULL)
587 simple_lock(interlock);
588 return (0);
589 }
590
591 /*
592 * Implement timeout for tsleep.
593 * If process hasn't been awakened (wchan non-zero),
594 * set timeout flag and undo the sleep. If proc
595 * is stopped, just unsleep so it will remain stopped.
596 */
597 void
598 endtsleep(void *arg)
599 {
600 struct proc *p;
601 int s;
602
603 p = (struct proc *)arg;
604
605 SCHED_LOCK(s);
606 if (p->p_wchan) {
607 if (p->p_stat == SSLEEP)
608 setrunnable(p);
609 else
610 unsleep(p);
611 p->p_flag |= P_TIMEOUT;
612 }
613 SCHED_UNLOCK(s);
614 }
615
616 /*
617 * Remove a process from its wait queue
618 */
619 void
620 unsleep(struct proc *p)
621 {
622 struct slpque *qp;
623 struct proc **hp;
624
625 SCHED_ASSERT_LOCKED();
626
627 if (p->p_wchan) {
628 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
629 while (*hp != p)
630 hp = &(*hp)->p_forw;
631 *hp = p->p_forw;
632 if (qp->sq_tailp == &p->p_forw)
633 qp->sq_tailp = hp;
634 p->p_wchan = 0;
635 }
636 }
637
638 /*
639 * Optimized-for-wakeup() version of setrunnable().
640 */
641 __inline void
642 awaken(struct proc *p)
643 {
644
645 SCHED_ASSERT_LOCKED();
646
647 if (p->p_slptime > 1)
648 updatepri(p);
649 p->p_slptime = 0;
650 p->p_stat = SRUN;
651
652 /*
653 * Since curpriority is a user priority, p->p_priority
654 * is always better than curpriority.
655 */
656 if (p->p_flag & P_INMEM) {
657 setrunqueue(p);
658 need_resched();
659 } else
660 sched_wakeup(&proc0);
661 }
662
663 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
664 void
665 sched_unlock_idle(void)
666 {
667
668 simple_unlock(&sched_lock);
669 }
670
671 void
672 sched_lock_idle(void)
673 {
674
675 simple_lock(&sched_lock);
676 }
677 #endif /* MULTIPROCESSOR || LOCKDEBUG */
678
679 /*
680 * Make all processes sleeping on the specified identifier runnable.
681 */
682
683 void
684 wakeup(void *ident)
685 {
686 int s;
687
688 SCHED_ASSERT_UNLOCKED();
689
690 SCHED_LOCK(s);
691 sched_wakeup(ident);
692 SCHED_UNLOCK(s);
693 }
694
695 void
696 sched_wakeup(void *ident)
697 {
698 struct slpque *qp;
699 struct proc *p, **q;
700
701 SCHED_ASSERT_LOCKED();
702
703 qp = SLPQUE(ident);
704 restart:
705 for (q = &qp->sq_head; (p = *q) != NULL; ) {
706 #ifdef DIAGNOSTIC
707 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
708 panic("wakeup");
709 #endif
710 if (p->p_wchan == ident) {
711 p->p_wchan = 0;
712 *q = p->p_forw;
713 if (qp->sq_tailp == &p->p_forw)
714 qp->sq_tailp = q;
715 if (p->p_stat == SSLEEP) {
716 awaken(p);
717 goto restart;
718 }
719 } else
720 q = &p->p_forw;
721 }
722 }
723
724 /*
725 * Make the highest priority process first in line on the specified
726 * identifier runnable.
727 */
728 void
729 wakeup_one(void *ident)
730 {
731 struct slpque *qp;
732 struct proc *p, **q;
733 struct proc *best_sleepp, **best_sleepq;
734 struct proc *best_stopp, **best_stopq;
735 int s;
736
737 best_sleepp = best_stopp = NULL;
738 best_sleepq = best_stopq = NULL;
739
740 SCHED_LOCK(s);
741
742 qp = SLPQUE(ident);
743
744 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
745 #ifdef DIAGNOSTIC
746 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
747 panic("wakeup_one");
748 #endif
749 if (p->p_wchan == ident) {
750 if (p->p_stat == SSLEEP) {
751 if (best_sleepp == NULL ||
752 p->p_priority < best_sleepp->p_priority) {
753 best_sleepp = p;
754 best_sleepq = q;
755 }
756 } else {
757 if (best_stopp == NULL ||
758 p->p_priority < best_stopp->p_priority) {
759 best_stopp = p;
760 best_stopq = q;
761 }
762 }
763 }
764 }
765
766 /*
767 * Consider any SSLEEP process higher than the highest priority SSTOP
768 * process.
769 */
770 if (best_sleepp != NULL) {
771 p = best_sleepp;
772 q = best_sleepq;
773 } else {
774 p = best_stopp;
775 q = best_stopq;
776 }
777
778 if (p != NULL) {
779 p->p_wchan = NULL;
780 *q = p->p_forw;
781 if (qp->sq_tailp == &p->p_forw)
782 qp->sq_tailp = q;
783 if (p->p_stat == SSLEEP)
784 awaken(p);
785 }
786 SCHED_UNLOCK(s);
787 }
788
789 /*
790 * General yield call. Puts the current process back on its run queue and
791 * performs a voluntary context switch.
792 */
793 void
794 yield(void)
795 {
796 struct proc *p = curproc;
797 int s;
798
799 SCHED_LOCK(s);
800 p->p_priority = p->p_usrpri;
801 p->p_stat = SRUN;
802 setrunqueue(p);
803 p->p_stats->p_ru.ru_nvcsw++;
804 mi_switch(p);
805 SCHED_ASSERT_UNLOCKED();
806 splx(s);
807 }
808
809 /*
810 * General preemption call. Puts the current process back on its run queue
811 * and performs an involuntary context switch. If a process is supplied,
812 * we switch to that process. Otherwise, we use the normal process selection
813 * criteria.
814 */
815 void
816 preempt(struct proc *newp)
817 {
818 struct proc *p = curproc;
819 int s;
820
821 /*
822 * XXX Switching to a specific process is not supported yet.
823 */
824 if (newp != NULL)
825 panic("preempt: cpu_preempt not yet implemented");
826
827 SCHED_LOCK(s);
828 p->p_priority = p->p_usrpri;
829 p->p_stat = SRUN;
830 setrunqueue(p);
831 p->p_stats->p_ru.ru_nivcsw++;
832 mi_switch(p);
833 SCHED_ASSERT_UNLOCKED();
834 splx(s);
835 }
836
837 /*
838 * The machine independent parts of context switch.
839 * Must be called at splstatclock() or higher.
840 */
841 void
842 mi_switch(struct proc *p)
843 {
844 struct schedstate_percpu *spc;
845 struct rlimit *rlim;
846 long s, u;
847 struct timeval tv;
848
849 SCHED_ASSERT_LOCKED();
850
851 KDASSERT(p->p_cpu != NULL);
852 KDASSERT(p->p_cpu == curcpu());
853
854 spc = &p->p_cpu->ci_schedstate;
855
856 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
857 spinlock_switchcheck();
858 #endif
859 #ifdef LOCKDEBUG
860 simple_lock_switchcheck();
861 #endif
862
863 /*
864 * Compute the amount of time during which the current
865 * process was running, and add that to its total so far.
866 */
867 microtime(&tv);
868 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
869 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
870 if (u < 0) {
871 u += 1000000;
872 s--;
873 } else if (u >= 1000000) {
874 u -= 1000000;
875 s++;
876 }
877 p->p_rtime.tv_usec = u;
878 p->p_rtime.tv_sec = s;
879
880 /*
881 * Check if the process exceeds its cpu resource allocation.
882 * If over max, kill it. In any case, if it has run for more
883 * than 10 minutes, reduce priority to give others a chance.
884 */
885 rlim = &p->p_rlimit[RLIMIT_CPU];
886 if (s >= rlim->rlim_cur) {
887 if (s >= rlim->rlim_max)
888 psignal(p, SIGKILL);
889 else {
890 psignal(p, SIGXCPU);
891 if (rlim->rlim_cur < rlim->rlim_max)
892 rlim->rlim_cur += 5;
893 }
894 }
895 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
896 p->p_nice == NZERO) {
897 p->p_nice = autoniceval + NZERO;
898 resetpriority(p);
899 }
900
901 /*
902 * Process is about to yield the CPU; clear the appropriate
903 * scheduling flags.
904 */
905 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
906
907 /*
908 * Pick a new current process and switch to it. When we
909 * run again, we'll return back here.
910 */
911 uvmexp.swtch++;
912 cpu_switch(p);
913
914 /*
915 * Make sure that MD code released the scheduler lock before
916 * resuming us.
917 */
918 SCHED_ASSERT_UNLOCKED();
919
920 /*
921 * We're running again; record our new start time. We might
922 * be running on a new CPU now, so don't use the cache'd
923 * schedstate_percpu pointer.
924 */
925 KDASSERT(p->p_cpu != NULL);
926 KDASSERT(p->p_cpu == curcpu());
927 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
928 }
929
930 /*
931 * Initialize the (doubly-linked) run queues
932 * to be empty.
933 */
934 void
935 rqinit()
936 {
937 int i;
938
939 for (i = 0; i < RUNQUE_NQS; i++)
940 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
941 (struct proc *)&sched_qs[i];
942 }
943
944 /*
945 * Change process state to be runnable,
946 * placing it on the run queue if it is in memory,
947 * and awakening the swapper if it isn't in memory.
948 */
949 void
950 setrunnable(struct proc *p)
951 {
952
953 SCHED_ASSERT_LOCKED();
954
955 switch (p->p_stat) {
956 case 0:
957 case SRUN:
958 case SONPROC:
959 case SZOMB:
960 case SDEAD:
961 default:
962 panic("setrunnable");
963 case SSTOP:
964 /*
965 * If we're being traced (possibly because someone attached us
966 * while we were stopped), check for a signal from the debugger.
967 */
968 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
969 sigaddset(&p->p_siglist, p->p_xstat);
970 p->p_sigcheck = 1;
971 }
972 case SSLEEP:
973 unsleep(p); /* e.g. when sending signals */
974 break;
975
976 case SIDL:
977 break;
978 }
979 p->p_stat = SRUN;
980 if (p->p_flag & P_INMEM)
981 setrunqueue(p);
982
983 if (p->p_slptime > 1)
984 updatepri(p);
985 p->p_slptime = 0;
986 if ((p->p_flag & P_INMEM) == 0)
987 sched_wakeup((caddr_t)&proc0);
988 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
989 /*
990 * XXXSMP
991 * This is wrong. It will work, but what really
992 * needs to happen is:
993 *
994 * - Need to check if p is higher priority
995 * than the process currently running on
996 * the CPU p last ran on (let p_cpu persist
997 * after a context switch?), and preempt
998 * that one (or, if there is no process
999 * there, simply need_resched() that CPU.
1000 *
1001 * - Failing that, traverse a list of
1002 * available CPUs and need_resched() the
1003 * CPU with the lowest priority that's
1004 * lower than p's.
1005 */
1006 need_resched();
1007 }
1008 }
1009
1010 /*
1011 * Compute the priority of a process when running in user mode.
1012 * Arrange to reschedule if the resulting priority is better
1013 * than that of the current process.
1014 */
1015 void
1016 resetpriority(struct proc *p)
1017 {
1018 unsigned int newpriority;
1019
1020 SCHED_ASSERT_LOCKED();
1021
1022 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
1023 newpriority = min(newpriority, MAXPRI);
1024 p->p_usrpri = newpriority;
1025 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1026 /*
1027 * XXXSMP
1028 * Same applies as in setrunnable() above.
1029 */
1030 need_resched();
1031 }
1032 }
1033
1034 /*
1035 * We adjust the priority of the current process. The priority of a process
1036 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1037 * is increased here. The formula for computing priorities (in kern_synch.c)
1038 * will compute a different value each time p_estcpu increases. This can
1039 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1040 * queue will not change. The cpu usage estimator ramps up quite quickly
1041 * when the process is running (linearly), and decays away exponentially, at
1042 * a rate which is proportionally slower when the system is busy. The basic
1043 * principle is that the system will 90% forget that the process used a lot
1044 * of CPU time in 5 * loadav seconds. This causes the system to favor
1045 * processes which haven't run much recently, and to round-robin among other
1046 * processes.
1047 */
1048
1049 void
1050 schedclock(struct proc *p)
1051 {
1052 int s;
1053
1054 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1055
1056 SCHED_LOCK(s);
1057 resetpriority(p);
1058 SCHED_UNLOCK(s);
1059
1060 if (p->p_priority >= PUSER)
1061 p->p_priority = p->p_usrpri;
1062 }
1063