Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.87
      1 /*	$NetBSD: kern_synch.c,v 1.87 2000/08/25 01:04:12 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_ktrace.h"
     82 #include "opt_lockdebug.h"
     83 #include "opt_multiprocessor.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/callout.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/buf.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/sched.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #ifdef KTRACE
     98 #include <sys/ktrace.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 
    103 int	lbolt;			/* once a second sleep address */
    104 
    105 /*
    106  * The global scheduler state.
    107  */
    108 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    109 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    110 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    111 
    112 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    113 #if defined(MULTIPROCESSOR)
    114 struct lock kernel_lock;
    115 #endif
    116 
    117 void roundrobin(void *);
    118 void schedcpu(void *);
    119 void updatepri(struct proc *);
    120 void endtsleep(void *);
    121 
    122 __inline void awaken(struct proc *);
    123 
    124 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
    125 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    126 
    127 /*
    128  * Force switch among equal priority processes every 100ms.
    129  */
    130 /* ARGSUSED */
    131 void
    132 roundrobin(void *arg)
    133 {
    134 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
    135 	int s;
    136 
    137 	if (curproc != NULL) {
    138 		s = splstatclock();
    139 		if (spc->spc_flags & SPCF_SEENRR) {
    140 			/*
    141 			 * The process has already been through a roundrobin
    142 			 * without switching and may be hogging the CPU.
    143 			 * Indicate that the process should yield.
    144 			 */
    145 			spc->spc_flags |= SPCF_SHOULDYIELD;
    146 		} else
    147 			spc->spc_flags |= SPCF_SEENRR;
    148 		splx(s);
    149 	}
    150 	/* XXXSMP: should need_resched() on all CPUs */
    151 	need_resched(curcpu());
    152 	callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
    153 }
    154 
    155 /*
    156  * Constants for digital decay and forget:
    157  *	90% of (p_estcpu) usage in 5 * loadav time
    158  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    159  *          Note that, as ps(1) mentions, this can let percentages
    160  *          total over 100% (I've seen 137.9% for 3 processes).
    161  *
    162  * Note that hardclock updates p_estcpu and p_cpticks independently.
    163  *
    164  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    165  * That is, the system wants to compute a value of decay such
    166  * that the following for loop:
    167  * 	for (i = 0; i < (5 * loadavg); i++)
    168  * 		p_estcpu *= decay;
    169  * will compute
    170  * 	p_estcpu *= 0.1;
    171  * for all values of loadavg:
    172  *
    173  * Mathematically this loop can be expressed by saying:
    174  * 	decay ** (5 * loadavg) ~= .1
    175  *
    176  * The system computes decay as:
    177  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    178  *
    179  * We wish to prove that the system's computation of decay
    180  * will always fulfill the equation:
    181  * 	decay ** (5 * loadavg) ~= .1
    182  *
    183  * If we compute b as:
    184  * 	b = 2 * loadavg
    185  * then
    186  * 	decay = b / (b + 1)
    187  *
    188  * We now need to prove two things:
    189  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    190  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    191  *
    192  * Facts:
    193  *         For x close to zero, exp(x) =~ 1 + x, since
    194  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    195  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    196  *         For x close to zero, ln(1+x) =~ x, since
    197  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    198  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    199  *         ln(.1) =~ -2.30
    200  *
    201  * Proof of (1):
    202  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    203  *	solving for factor,
    204  *      ln(factor) =~ (-2.30/5*loadav), or
    205  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    206  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    207  *
    208  * Proof of (2):
    209  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    210  *	solving for power,
    211  *      power*ln(b/(b+1)) =~ -2.30, or
    212  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    213  *
    214  * Actual power values for the implemented algorithm are as follows:
    215  *      loadav: 1       2       3       4
    216  *      power:  5.68    10.32   14.94   19.55
    217  */
    218 
    219 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    220 #define	loadfactor(loadav)	(2 * (loadav))
    221 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    222 
    223 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    224 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    225 
    226 /*
    227  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    228  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    229  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    230  *
    231  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    232  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    233  *
    234  * If you dont want to bother with the faster/more-accurate formula, you
    235  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    236  * (more general) method of calculating the %age of CPU used by a process.
    237  */
    238 #define	CCPU_SHIFT	11
    239 
    240 /*
    241  * Recompute process priorities, every hz ticks.
    242  */
    243 /* ARGSUSED */
    244 void
    245 schedcpu(void *arg)
    246 {
    247 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    248 	struct proc *p;
    249 	int s, s1;
    250 	unsigned int newcpu;
    251 	int clkhz;
    252 
    253 	proclist_lock_read();
    254 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    255 		/*
    256 		 * Increment time in/out of memory and sleep time
    257 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    258 		 * (remember them?) overflow takes 45 days.
    259 		 */
    260 		p->p_swtime++;
    261 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    262 			p->p_slptime++;
    263 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    264 		/*
    265 		 * If the process has slept the entire second,
    266 		 * stop recalculating its priority until it wakes up.
    267 		 */
    268 		if (p->p_slptime > 1)
    269 			continue;
    270 		s = splstatclock();	/* prevent state changes */
    271 		/*
    272 		 * p_pctcpu is only for ps.
    273 		 */
    274 		clkhz = stathz != 0 ? stathz : hz;
    275 #if	(FSHIFT >= CCPU_SHIFT)
    276 		p->p_pctcpu += (clkhz == 100)?
    277 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    278                 	100 * (((fixpt_t) p->p_cpticks)
    279 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    280 #else
    281 		p->p_pctcpu += ((FSCALE - ccpu) *
    282 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    283 #endif
    284 		p->p_cpticks = 0;
    285 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    286 		p->p_estcpu = newcpu;
    287 		SCHED_LOCK(s1);
    288 		resetpriority(p);
    289 		if (p->p_priority >= PUSER) {
    290 			if (p->p_stat == SRUN &&
    291 			    (p->p_flag & P_INMEM) &&
    292 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    293 				remrunqueue(p);
    294 				p->p_priority = p->p_usrpri;
    295 				setrunqueue(p);
    296 			} else
    297 				p->p_priority = p->p_usrpri;
    298 		}
    299 		SCHED_UNLOCK(s1);
    300 		splx(s);
    301 	}
    302 	proclist_unlock_read();
    303 	uvm_meter();
    304 	wakeup((caddr_t)&lbolt);
    305 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    306 }
    307 
    308 /*
    309  * Recalculate the priority of a process after it has slept for a while.
    310  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    311  * least six times the loadfactor will decay p_estcpu to zero.
    312  */
    313 void
    314 updatepri(struct proc *p)
    315 {
    316 	unsigned int newcpu;
    317 	fixpt_t loadfac;
    318 
    319 	SCHED_ASSERT_LOCKED();
    320 
    321 	newcpu = p->p_estcpu;
    322 	loadfac = loadfactor(averunnable.ldavg[0]);
    323 
    324 	if (p->p_slptime > 5 * loadfac)
    325 		p->p_estcpu = 0;
    326 	else {
    327 		p->p_slptime--;	/* the first time was done in schedcpu */
    328 		while (newcpu && --p->p_slptime)
    329 			newcpu = (int) decay_cpu(loadfac, newcpu);
    330 		p->p_estcpu = newcpu;
    331 	}
    332 	resetpriority(p);
    333 }
    334 
    335 #if defined(MULTIPROCESSOR)
    336 /*
    337  * XXX Need to tweak lockmgr() for this!
    338  */
    339 static int
    340 kernel_lock_release_all(void)
    341 {
    342 	int count, s;
    343 
    344 	s = splsched();
    345 	count = kernel_lock.lk_exclusivecount;
    346 	KDASSERT(count > 0);
    347 	kernel_lock.lk_exclusivecount = 1;
    348 	kernel_lock.lk_recurselevel = 1;
    349 	spinlockmgr(&kernel_lock, LK_RELEASE, 0);
    350 	splx(s);
    351 
    352 	return (count);
    353 }
    354 
    355 static void
    356 kernel_lock_acquire_count(int flags, int count)
    357 {
    358 	int s;
    359 
    360 	s = splsched();
    361 	KDASSERT(count > 0);
    362 	spinlockmgr(&kernel_lock, flags, 0);
    363 	KDASSERT(kernel_lock.lk_exclusivecount == 1);
    364 	kernel_lock.lk_exclusivecount = count;
    365 	splx(s);
    366 }
    367 #endif /* MULTIPROCESSOR */
    368 
    369 /*
    370  * During autoconfiguration or after a panic, a sleep will simply
    371  * lower the priority briefly to allow interrupts, then return.
    372  * The priority to be used (safepri) is machine-dependent, thus this
    373  * value is initialized and maintained in the machine-dependent layers.
    374  * This priority will typically be 0, or the lowest priority
    375  * that is safe for use on the interrupt stack; it can be made
    376  * higher to block network software interrupts after panics.
    377  */
    378 int safepri;
    379 
    380 /*
    381  * General sleep call.  Suspends the current process until a wakeup is
    382  * performed on the specified identifier.  The process will then be made
    383  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    384  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    385  * before and after sleeping, else signals are not checked.  Returns 0 if
    386  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    387  * signal needs to be delivered, ERESTART is returned if the current system
    388  * call should be restarted if possible, and EINTR is returned if the system
    389  * call should be interrupted by the signal (return EINTR).
    390  *
    391  * The interlock is held until the scheduler_slock is held.  The
    392  * interlock will be locked before returning back to the caller
    393  * unless the PNORELOCK flag is specified, in which case the
    394  * interlock will always be unlocked upon return.
    395  */
    396 int
    397 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    398     __volatile struct simplelock *interlock)
    399 {
    400 	struct proc *p = curproc;
    401 	struct slpque *qp;
    402 	int sig, s;
    403 	int catch = priority & PCATCH;
    404 	int relock = (priority & PNORELOCK) == 0;
    405 
    406 	/*
    407 	 * XXXSMP
    408 	 * This is probably bogus.  Figure out what the right
    409 	 * thing to do here really is.
    410 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    411 	 * in the shutdown case is disgusting but partly necessary given
    412 	 * how shutdown (barely) works.
    413 	 */
    414 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    415 		/*
    416 		 * After a panic, or during autoconfiguration,
    417 		 * just give interrupts a chance, then just return;
    418 		 * don't run any other procs or panic below,
    419 		 * in case this is the idle process and already asleep.
    420 		 */
    421 		s = splhigh();
    422 		splx(safepri);
    423 		splx(s);
    424 		if (interlock != NULL && relock == 0)
    425 			simple_unlock(interlock);
    426 		return (0);
    427 	}
    428 
    429 
    430 #ifdef KTRACE
    431 	if (KTRPOINT(p, KTR_CSW))
    432 		ktrcsw(p, 1, 0);
    433 #endif
    434 
    435 	SCHED_LOCK(s);
    436 
    437 #ifdef DIAGNOSTIC
    438 	if (ident == NULL)
    439 		panic("ltsleep: ident == NULL");
    440 	if (p->p_stat != SONPROC)
    441 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    442 	if (p->p_back != NULL)
    443 		panic("ltsleep: p_back != NULL");
    444 #endif
    445 
    446 	p->p_wchan = ident;
    447 	p->p_wmesg = wmesg;
    448 	p->p_slptime = 0;
    449 	p->p_priority = priority & PRIMASK;
    450 
    451 	qp = SLPQUE(ident);
    452 	if (qp->sq_head == 0)
    453 		qp->sq_head = p;
    454 	else
    455 		*qp->sq_tailp = p;
    456 	*(qp->sq_tailp = &p->p_forw) = 0;
    457 
    458 	if (timo)
    459 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    460 
    461 	/*
    462 	 * We can now release the interlock; the scheduler_slock
    463 	 * is held, so a thread can't get in to do wakeup() before
    464 	 * we do the switch.
    465 	 *
    466 	 * XXX We leave the code block here, after inserting ourselves
    467 	 * on the sleep queue, because we might want a more clever
    468 	 * data structure for the sleep queues at some point.
    469 	 */
    470 	if (interlock != NULL)
    471 		simple_unlock(interlock);
    472 
    473 	/*
    474 	 * We put ourselves on the sleep queue and start our timeout
    475 	 * before calling CURSIG, as we could stop there, and a wakeup
    476 	 * or a SIGCONT (or both) could occur while we were stopped.
    477 	 * A SIGCONT would cause us to be marked as SSLEEP
    478 	 * without resuming us, thus we must be ready for sleep
    479 	 * when CURSIG is called.  If the wakeup happens while we're
    480 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    481 	 */
    482 	if (catch) {
    483 		p->p_flag |= P_SINTR;
    484 		if ((sig = CURSIG(p)) != 0) {
    485 			if (p->p_wchan != NULL)
    486 				unsleep(p);
    487 			p->p_stat = SONPROC;
    488 			SCHED_UNLOCK(s);
    489 			goto resume;
    490 		}
    491 		if (p->p_wchan == NULL) {
    492 			catch = 0;
    493 			SCHED_UNLOCK(s);
    494 			goto resume;
    495 		}
    496 	} else
    497 		sig = 0;
    498 	p->p_stat = SSLEEP;
    499 	p->p_stats->p_ru.ru_nvcsw++;
    500 
    501 	SCHED_ASSERT_LOCKED();
    502 	mi_switch(p);
    503 
    504 #ifdef	DDB
    505 	/* handy breakpoint location after process "wakes" */
    506 	asm(".globl bpendtsleep ; bpendtsleep:");
    507 #endif
    508 
    509 	SCHED_ASSERT_UNLOCKED();
    510 	splx(s);
    511 
    512  resume:
    513 	KDASSERT(p->p_cpu != NULL);
    514 	KDASSERT(p->p_cpu == curcpu());
    515 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    516 
    517 	p->p_flag &= ~P_SINTR;
    518 	if (p->p_flag & P_TIMEOUT) {
    519 		p->p_flag &= ~P_TIMEOUT;
    520 		if (sig == 0) {
    521 #ifdef KTRACE
    522 			if (KTRPOINT(p, KTR_CSW))
    523 				ktrcsw(p, 0, 0);
    524 #endif
    525 			if (relock && interlock != NULL)
    526 				simple_lock(interlock);
    527 			return (EWOULDBLOCK);
    528 		}
    529 	} else if (timo)
    530 		callout_stop(&p->p_tsleep_ch);
    531 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    532 #ifdef KTRACE
    533 		if (KTRPOINT(p, KTR_CSW))
    534 			ktrcsw(p, 0, 0);
    535 #endif
    536 		if (relock && interlock != NULL)
    537 			simple_lock(interlock);
    538 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    539 			return (EINTR);
    540 		return (ERESTART);
    541 	}
    542 #ifdef KTRACE
    543 	if (KTRPOINT(p, KTR_CSW))
    544 		ktrcsw(p, 0, 0);
    545 #endif
    546 	if (relock && interlock != NULL)
    547 		simple_lock(interlock);
    548 	return (0);
    549 }
    550 
    551 /*
    552  * Implement timeout for tsleep.
    553  * If process hasn't been awakened (wchan non-zero),
    554  * set timeout flag and undo the sleep.  If proc
    555  * is stopped, just unsleep so it will remain stopped.
    556  */
    557 void
    558 endtsleep(void *arg)
    559 {
    560 	struct proc *p;
    561 	int s;
    562 
    563 	p = (struct proc *)arg;
    564 
    565 	SCHED_LOCK(s);
    566 	if (p->p_wchan) {
    567 		if (p->p_stat == SSLEEP)
    568 			setrunnable(p);
    569 		else
    570 			unsleep(p);
    571 		p->p_flag |= P_TIMEOUT;
    572 	}
    573 	SCHED_UNLOCK(s);
    574 }
    575 
    576 /*
    577  * Remove a process from its wait queue
    578  */
    579 void
    580 unsleep(struct proc *p)
    581 {
    582 	struct slpque *qp;
    583 	struct proc **hp;
    584 
    585 	SCHED_ASSERT_LOCKED();
    586 
    587 	if (p->p_wchan) {
    588 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    589 		while (*hp != p)
    590 			hp = &(*hp)->p_forw;
    591 		*hp = p->p_forw;
    592 		if (qp->sq_tailp == &p->p_forw)
    593 			qp->sq_tailp = hp;
    594 		p->p_wchan = 0;
    595 	}
    596 }
    597 
    598 /*
    599  * Optimized-for-wakeup() version of setrunnable().
    600  */
    601 __inline void
    602 awaken(struct proc *p)
    603 {
    604 
    605 	SCHED_ASSERT_LOCKED();
    606 
    607 	if (p->p_slptime > 1)
    608 		updatepri(p);
    609 	p->p_slptime = 0;
    610 	p->p_stat = SRUN;
    611 
    612 	/*
    613 	 * Since curpriority is a user priority, p->p_priority
    614 	 * is always better than curpriority.
    615 	 */
    616 	if (p->p_flag & P_INMEM) {
    617 		setrunqueue(p);
    618 		KASSERT(p->p_cpu != NULL);
    619 		need_resched(p->p_cpu);
    620 	} else
    621 		sched_wakeup(&proc0);
    622 }
    623 
    624 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    625 void
    626 sched_unlock_idle(void)
    627 {
    628 
    629 	simple_unlock(&sched_lock);
    630 }
    631 
    632 void
    633 sched_lock_idle(void)
    634 {
    635 
    636 	simple_lock(&sched_lock);
    637 }
    638 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    639 
    640 /*
    641  * Make all processes sleeping on the specified identifier runnable.
    642  */
    643 
    644 void
    645 wakeup(void *ident)
    646 {
    647 	int s;
    648 
    649 	SCHED_ASSERT_UNLOCKED();
    650 
    651 	SCHED_LOCK(s);
    652 	sched_wakeup(ident);
    653 	SCHED_UNLOCK(s);
    654 }
    655 
    656 void
    657 sched_wakeup(void *ident)
    658 {
    659 	struct slpque *qp;
    660 	struct proc *p, **q;
    661 
    662 	SCHED_ASSERT_LOCKED();
    663 
    664 	qp = SLPQUE(ident);
    665  restart:
    666 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    667 #ifdef DIAGNOSTIC
    668 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    669 			panic("wakeup");
    670 #endif
    671 		if (p->p_wchan == ident) {
    672 			p->p_wchan = 0;
    673 			*q = p->p_forw;
    674 			if (qp->sq_tailp == &p->p_forw)
    675 				qp->sq_tailp = q;
    676 			if (p->p_stat == SSLEEP) {
    677 				awaken(p);
    678 				goto restart;
    679 			}
    680 		} else
    681 			q = &p->p_forw;
    682 	}
    683 }
    684 
    685 /*
    686  * Make the highest priority process first in line on the specified
    687  * identifier runnable.
    688  */
    689 void
    690 wakeup_one(void *ident)
    691 {
    692 	struct slpque *qp;
    693 	struct proc *p, **q;
    694 	struct proc *best_sleepp, **best_sleepq;
    695 	struct proc *best_stopp, **best_stopq;
    696 	int s;
    697 
    698 	best_sleepp = best_stopp = NULL;
    699 	best_sleepq = best_stopq = NULL;
    700 
    701 	SCHED_LOCK(s);
    702 
    703 	qp = SLPQUE(ident);
    704 
    705 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    706 #ifdef DIAGNOSTIC
    707 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    708 			panic("wakeup_one");
    709 #endif
    710 		if (p->p_wchan == ident) {
    711 			if (p->p_stat == SSLEEP) {
    712 				if (best_sleepp == NULL ||
    713 				    p->p_priority < best_sleepp->p_priority) {
    714 					best_sleepp = p;
    715 					best_sleepq = q;
    716 				}
    717 			} else {
    718 				if (best_stopp == NULL ||
    719 				    p->p_priority < best_stopp->p_priority) {
    720 					best_stopp = p;
    721 					best_stopq = q;
    722 				}
    723 			}
    724 		}
    725 	}
    726 
    727 	/*
    728 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    729 	 * process.
    730 	 */
    731 	if (best_sleepp != NULL) {
    732 		p = best_sleepp;
    733 		q = best_sleepq;
    734 	} else {
    735 		p = best_stopp;
    736 		q = best_stopq;
    737 	}
    738 
    739 	if (p != NULL) {
    740 		p->p_wchan = NULL;
    741 		*q = p->p_forw;
    742 		if (qp->sq_tailp == &p->p_forw)
    743 			qp->sq_tailp = q;
    744 		if (p->p_stat == SSLEEP)
    745 			awaken(p);
    746 	}
    747 	SCHED_UNLOCK(s);
    748 }
    749 
    750 /*
    751  * General yield call.  Puts the current process back on its run queue and
    752  * performs a voluntary context switch.
    753  */
    754 void
    755 yield(void)
    756 {
    757 	struct proc *p = curproc;
    758 	int s;
    759 
    760 	SCHED_LOCK(s);
    761 	p->p_priority = p->p_usrpri;
    762 	p->p_stat = SRUN;
    763 	setrunqueue(p);
    764 	p->p_stats->p_ru.ru_nvcsw++;
    765 	mi_switch(p);
    766 	SCHED_ASSERT_UNLOCKED();
    767 	splx(s);
    768 }
    769 
    770 /*
    771  * General preemption call.  Puts the current process back on its run queue
    772  * and performs an involuntary context switch.  If a process is supplied,
    773  * we switch to that process.  Otherwise, we use the normal process selection
    774  * criteria.
    775  */
    776 void
    777 preempt(struct proc *newp)
    778 {
    779 	struct proc *p = curproc;
    780 	int s;
    781 
    782 	/*
    783 	 * XXX Switching to a specific process is not supported yet.
    784 	 */
    785 	if (newp != NULL)
    786 		panic("preempt: cpu_preempt not yet implemented");
    787 
    788 	SCHED_LOCK(s);
    789 	p->p_priority = p->p_usrpri;
    790 	p->p_stat = SRUN;
    791 	setrunqueue(p);
    792 	p->p_stats->p_ru.ru_nivcsw++;
    793 	mi_switch(p);
    794 	SCHED_ASSERT_UNLOCKED();
    795 	splx(s);
    796 }
    797 
    798 /*
    799  * The machine independent parts of context switch.
    800  * Must be called at splsched() (no higher!) and with
    801  * the sched_lock held.
    802  */
    803 void
    804 mi_switch(struct proc *p)
    805 {
    806 	struct schedstate_percpu *spc;
    807 	struct rlimit *rlim;
    808 	long s, u;
    809 	struct timeval tv;
    810 #if defined(MULTIPROCESSOR)
    811 	int hold_count;
    812 #endif
    813 
    814 	SCHED_ASSERT_LOCKED();
    815 
    816 #if defined(MULTIPROCESSOR)
    817 	if (p->p_flag & P_BIGLOCK) {
    818 		/*
    819 		 * Release the kernel_lock, as we are about to
    820 		 * yield the CPU.  The scheduler_slock is still
    821 		 * held until cpu_switch() selects a new process
    822 		 * and removes it from the run queue.
    823 		 */
    824 		hold_count = kernel_lock_release_all();
    825 	}
    826 #endif
    827 
    828 	KDASSERT(p->p_cpu != NULL);
    829 	KDASSERT(p->p_cpu == curcpu());
    830 
    831 	spc = &p->p_cpu->ci_schedstate;
    832 
    833 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    834 	spinlock_switchcheck();
    835 #endif
    836 #ifdef LOCKDEBUG
    837 	simple_lock_switchcheck();
    838 #endif
    839 
    840 	/*
    841 	 * Compute the amount of time during which the current
    842 	 * process was running, and add that to its total so far.
    843 	 */
    844 	microtime(&tv);
    845 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    846 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    847 	if (u < 0) {
    848 		u += 1000000;
    849 		s--;
    850 	} else if (u >= 1000000) {
    851 		u -= 1000000;
    852 		s++;
    853 	}
    854 	p->p_rtime.tv_usec = u;
    855 	p->p_rtime.tv_sec = s;
    856 
    857 	/*
    858 	 * Check if the process exceeds its cpu resource allocation.
    859 	 * If over max, kill it.  In any case, if it has run for more
    860 	 * than 10 minutes, reduce priority to give others a chance.
    861 	 */
    862 	rlim = &p->p_rlimit[RLIMIT_CPU];
    863 	if (s >= rlim->rlim_cur) {
    864 		if (s >= rlim->rlim_max)
    865 			psignal(p, SIGKILL);
    866 		else {
    867 			psignal(p, SIGXCPU);
    868 			if (rlim->rlim_cur < rlim->rlim_max)
    869 				rlim->rlim_cur += 5;
    870 		}
    871 	}
    872 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    873 	    p->p_nice == NZERO) {
    874 		p->p_nice = autoniceval + NZERO;
    875 		resetpriority(p);
    876 	}
    877 
    878 	/*
    879 	 * Process is about to yield the CPU; clear the appropriate
    880 	 * scheduling flags.
    881 	 */
    882 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    883 
    884 	/*
    885 	 * Pick a new current process and switch to it.  When we
    886 	 * run again, we'll return back here.
    887 	 */
    888 	uvmexp.swtch++;
    889 	cpu_switch(p);
    890 
    891 	/*
    892 	 * Make sure that MD code released the scheduler lock before
    893 	 * resuming us.
    894 	 */
    895 	SCHED_ASSERT_UNLOCKED();
    896 
    897 	/*
    898 	 * We're running again; record our new start time.  We might
    899 	 * be running on a new CPU now, so don't use the cache'd
    900 	 * schedstate_percpu pointer.
    901 	 */
    902 	KDASSERT(p->p_cpu != NULL);
    903 	KDASSERT(p->p_cpu == curcpu());
    904 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    905 
    906 #if defined(MULTIPROCESSOR)
    907 	if (p->p_flag & P_BIGLOCK) {
    908 		/*
    909 		 * Reacquire the kernel_lock now.  We do this after
    910 		 * we've released sched_lock to avoid deadlock,
    911 		 * and before we reacquire the interlock.
    912 		 */
    913 		kernel_lock_acquire_count(LK_EXCLUSIVE|LK_CANRECURSE,
    914 		    hold_count);
    915 	}
    916 #endif
    917 }
    918 
    919 /*
    920  * Initialize the (doubly-linked) run queues
    921  * to be empty.
    922  */
    923 void
    924 rqinit()
    925 {
    926 	int i;
    927 
    928 	for (i = 0; i < RUNQUE_NQS; i++)
    929 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    930 		    (struct proc *)&sched_qs[i];
    931 }
    932 
    933 /*
    934  * Change process state to be runnable,
    935  * placing it on the run queue if it is in memory,
    936  * and awakening the swapper if it isn't in memory.
    937  */
    938 void
    939 setrunnable(struct proc *p)
    940 {
    941 
    942 	SCHED_ASSERT_LOCKED();
    943 
    944 	switch (p->p_stat) {
    945 	case 0:
    946 	case SRUN:
    947 	case SONPROC:
    948 	case SZOMB:
    949 	case SDEAD:
    950 	default:
    951 		panic("setrunnable");
    952 	case SSTOP:
    953 		/*
    954 		 * If we're being traced (possibly because someone attached us
    955 		 * while we were stopped), check for a signal from the debugger.
    956 		 */
    957 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    958 			sigaddset(&p->p_siglist, p->p_xstat);
    959 			p->p_sigcheck = 1;
    960 		}
    961 	case SSLEEP:
    962 		unsleep(p);		/* e.g. when sending signals */
    963 		break;
    964 
    965 	case SIDL:
    966 		break;
    967 	}
    968 	p->p_stat = SRUN;
    969 	if (p->p_flag & P_INMEM)
    970 		setrunqueue(p);
    971 
    972 	if (p->p_slptime > 1)
    973 		updatepri(p);
    974 	p->p_slptime = 0;
    975 	if ((p->p_flag & P_INMEM) == 0)
    976 		sched_wakeup((caddr_t)&proc0);
    977 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    978 		/*
    979 		 * XXXSMP
    980 		 * This is not exactly right.  Since p->p_cpu persists
    981 		 * across a context switch, this gives us some sort
    982 		 * of processor affinity.  But we need to figure out
    983 		 * at what point it's better to reschedule on a different
    984 		 * CPU than the last one.
    985 		 */
    986 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    987 	}
    988 }
    989 
    990 /*
    991  * Compute the priority of a process when running in user mode.
    992  * Arrange to reschedule if the resulting priority is better
    993  * than that of the current process.
    994  */
    995 void
    996 resetpriority(struct proc *p)
    997 {
    998 	unsigned int newpriority;
    999 
   1000 	SCHED_ASSERT_LOCKED();
   1001 
   1002 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
   1003 	newpriority = min(newpriority, MAXPRI);
   1004 	p->p_usrpri = newpriority;
   1005 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
   1006 		/*
   1007 		 * XXXSMP
   1008 		 * Same applies as in setrunnable() above.
   1009 		 */
   1010 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
   1011 	}
   1012 }
   1013 
   1014 /*
   1015  * We adjust the priority of the current process.  The priority of a process
   1016  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1017  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1018  * will compute a different value each time p_estcpu increases. This can
   1019  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1020  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1021  * when the process is running (linearly), and decays away exponentially, at
   1022  * a rate which is proportionally slower when the system is busy.  The basic
   1023  * principle is that the system will 90% forget that the process used a lot
   1024  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1025  * processes which haven't run much recently, and to round-robin among other
   1026  * processes.
   1027  */
   1028 
   1029 void
   1030 schedclock(struct proc *p)
   1031 {
   1032 	int s;
   1033 
   1034 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1035 
   1036 	SCHED_LOCK(s);
   1037 	resetpriority(p);
   1038 	SCHED_UNLOCK(s);
   1039 
   1040 	if (p->p_priority >= PUSER)
   1041 		p->p_priority = p->p_usrpri;
   1042 }
   1043