kern_synch.c revision 1.87 1 /* $NetBSD: kern_synch.c,v 1.87 2000/08/25 01:04:12 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/buf.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/sched.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 int lbolt; /* once a second sleep address */
104
105 /*
106 * The global scheduler state.
107 */
108 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
109 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
110 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
111
112 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
113 #if defined(MULTIPROCESSOR)
114 struct lock kernel_lock;
115 #endif
116
117 void roundrobin(void *);
118 void schedcpu(void *);
119 void updatepri(struct proc *);
120 void endtsleep(void *);
121
122 __inline void awaken(struct proc *);
123
124 struct callout roundrobin_ch = CALLOUT_INITIALIZER;
125 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
126
127 /*
128 * Force switch among equal priority processes every 100ms.
129 */
130 /* ARGSUSED */
131 void
132 roundrobin(void *arg)
133 {
134 struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
135 int s;
136
137 if (curproc != NULL) {
138 s = splstatclock();
139 if (spc->spc_flags & SPCF_SEENRR) {
140 /*
141 * The process has already been through a roundrobin
142 * without switching and may be hogging the CPU.
143 * Indicate that the process should yield.
144 */
145 spc->spc_flags |= SPCF_SHOULDYIELD;
146 } else
147 spc->spc_flags |= SPCF_SEENRR;
148 splx(s);
149 }
150 /* XXXSMP: should need_resched() on all CPUs */
151 need_resched(curcpu());
152 callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
153 }
154
155 /*
156 * Constants for digital decay and forget:
157 * 90% of (p_estcpu) usage in 5 * loadav time
158 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
159 * Note that, as ps(1) mentions, this can let percentages
160 * total over 100% (I've seen 137.9% for 3 processes).
161 *
162 * Note that hardclock updates p_estcpu and p_cpticks independently.
163 *
164 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
165 * That is, the system wants to compute a value of decay such
166 * that the following for loop:
167 * for (i = 0; i < (5 * loadavg); i++)
168 * p_estcpu *= decay;
169 * will compute
170 * p_estcpu *= 0.1;
171 * for all values of loadavg:
172 *
173 * Mathematically this loop can be expressed by saying:
174 * decay ** (5 * loadavg) ~= .1
175 *
176 * The system computes decay as:
177 * decay = (2 * loadavg) / (2 * loadavg + 1)
178 *
179 * We wish to prove that the system's computation of decay
180 * will always fulfill the equation:
181 * decay ** (5 * loadavg) ~= .1
182 *
183 * If we compute b as:
184 * b = 2 * loadavg
185 * then
186 * decay = b / (b + 1)
187 *
188 * We now need to prove two things:
189 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
190 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
191 *
192 * Facts:
193 * For x close to zero, exp(x) =~ 1 + x, since
194 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
195 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
196 * For x close to zero, ln(1+x) =~ x, since
197 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
198 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
199 * ln(.1) =~ -2.30
200 *
201 * Proof of (1):
202 * Solve (factor)**(power) =~ .1 given power (5*loadav):
203 * solving for factor,
204 * ln(factor) =~ (-2.30/5*loadav), or
205 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
206 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
207 *
208 * Proof of (2):
209 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
210 * solving for power,
211 * power*ln(b/(b+1)) =~ -2.30, or
212 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
213 *
214 * Actual power values for the implemented algorithm are as follows:
215 * loadav: 1 2 3 4
216 * power: 5.68 10.32 14.94 19.55
217 */
218
219 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
220 #define loadfactor(loadav) (2 * (loadav))
221 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
222
223 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
224 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
225
226 /*
227 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
228 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
229 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
230 *
231 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
232 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
233 *
234 * If you dont want to bother with the faster/more-accurate formula, you
235 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
236 * (more general) method of calculating the %age of CPU used by a process.
237 */
238 #define CCPU_SHIFT 11
239
240 /*
241 * Recompute process priorities, every hz ticks.
242 */
243 /* ARGSUSED */
244 void
245 schedcpu(void *arg)
246 {
247 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
248 struct proc *p;
249 int s, s1;
250 unsigned int newcpu;
251 int clkhz;
252
253 proclist_lock_read();
254 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
255 /*
256 * Increment time in/out of memory and sleep time
257 * (if sleeping). We ignore overflow; with 16-bit int's
258 * (remember them?) overflow takes 45 days.
259 */
260 p->p_swtime++;
261 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
262 p->p_slptime++;
263 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
264 /*
265 * If the process has slept the entire second,
266 * stop recalculating its priority until it wakes up.
267 */
268 if (p->p_slptime > 1)
269 continue;
270 s = splstatclock(); /* prevent state changes */
271 /*
272 * p_pctcpu is only for ps.
273 */
274 clkhz = stathz != 0 ? stathz : hz;
275 #if (FSHIFT >= CCPU_SHIFT)
276 p->p_pctcpu += (clkhz == 100)?
277 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278 100 * (((fixpt_t) p->p_cpticks)
279 << (FSHIFT - CCPU_SHIFT)) / clkhz;
280 #else
281 p->p_pctcpu += ((FSCALE - ccpu) *
282 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
283 #endif
284 p->p_cpticks = 0;
285 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
286 p->p_estcpu = newcpu;
287 SCHED_LOCK(s1);
288 resetpriority(p);
289 if (p->p_priority >= PUSER) {
290 if (p->p_stat == SRUN &&
291 (p->p_flag & P_INMEM) &&
292 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
293 remrunqueue(p);
294 p->p_priority = p->p_usrpri;
295 setrunqueue(p);
296 } else
297 p->p_priority = p->p_usrpri;
298 }
299 SCHED_UNLOCK(s1);
300 splx(s);
301 }
302 proclist_unlock_read();
303 uvm_meter();
304 wakeup((caddr_t)&lbolt);
305 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
306 }
307
308 /*
309 * Recalculate the priority of a process after it has slept for a while.
310 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
311 * least six times the loadfactor will decay p_estcpu to zero.
312 */
313 void
314 updatepri(struct proc *p)
315 {
316 unsigned int newcpu;
317 fixpt_t loadfac;
318
319 SCHED_ASSERT_LOCKED();
320
321 newcpu = p->p_estcpu;
322 loadfac = loadfactor(averunnable.ldavg[0]);
323
324 if (p->p_slptime > 5 * loadfac)
325 p->p_estcpu = 0;
326 else {
327 p->p_slptime--; /* the first time was done in schedcpu */
328 while (newcpu && --p->p_slptime)
329 newcpu = (int) decay_cpu(loadfac, newcpu);
330 p->p_estcpu = newcpu;
331 }
332 resetpriority(p);
333 }
334
335 #if defined(MULTIPROCESSOR)
336 /*
337 * XXX Need to tweak lockmgr() for this!
338 */
339 static int
340 kernel_lock_release_all(void)
341 {
342 int count, s;
343
344 s = splsched();
345 count = kernel_lock.lk_exclusivecount;
346 KDASSERT(count > 0);
347 kernel_lock.lk_exclusivecount = 1;
348 kernel_lock.lk_recurselevel = 1;
349 spinlockmgr(&kernel_lock, LK_RELEASE, 0);
350 splx(s);
351
352 return (count);
353 }
354
355 static void
356 kernel_lock_acquire_count(int flags, int count)
357 {
358 int s;
359
360 s = splsched();
361 KDASSERT(count > 0);
362 spinlockmgr(&kernel_lock, flags, 0);
363 KDASSERT(kernel_lock.lk_exclusivecount == 1);
364 kernel_lock.lk_exclusivecount = count;
365 splx(s);
366 }
367 #endif /* MULTIPROCESSOR */
368
369 /*
370 * During autoconfiguration or after a panic, a sleep will simply
371 * lower the priority briefly to allow interrupts, then return.
372 * The priority to be used (safepri) is machine-dependent, thus this
373 * value is initialized and maintained in the machine-dependent layers.
374 * This priority will typically be 0, or the lowest priority
375 * that is safe for use on the interrupt stack; it can be made
376 * higher to block network software interrupts after panics.
377 */
378 int safepri;
379
380 /*
381 * General sleep call. Suspends the current process until a wakeup is
382 * performed on the specified identifier. The process will then be made
383 * runnable with the specified priority. Sleeps at most timo/hz seconds
384 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
385 * before and after sleeping, else signals are not checked. Returns 0 if
386 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
387 * signal needs to be delivered, ERESTART is returned if the current system
388 * call should be restarted if possible, and EINTR is returned if the system
389 * call should be interrupted by the signal (return EINTR).
390 *
391 * The interlock is held until the scheduler_slock is held. The
392 * interlock will be locked before returning back to the caller
393 * unless the PNORELOCK flag is specified, in which case the
394 * interlock will always be unlocked upon return.
395 */
396 int
397 ltsleep(void *ident, int priority, const char *wmesg, int timo,
398 __volatile struct simplelock *interlock)
399 {
400 struct proc *p = curproc;
401 struct slpque *qp;
402 int sig, s;
403 int catch = priority & PCATCH;
404 int relock = (priority & PNORELOCK) == 0;
405
406 /*
407 * XXXSMP
408 * This is probably bogus. Figure out what the right
409 * thing to do here really is.
410 * Note that not sleeping if ltsleep is called with curproc == NULL
411 * in the shutdown case is disgusting but partly necessary given
412 * how shutdown (barely) works.
413 */
414 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
415 /*
416 * After a panic, or during autoconfiguration,
417 * just give interrupts a chance, then just return;
418 * don't run any other procs or panic below,
419 * in case this is the idle process and already asleep.
420 */
421 s = splhigh();
422 splx(safepri);
423 splx(s);
424 if (interlock != NULL && relock == 0)
425 simple_unlock(interlock);
426 return (0);
427 }
428
429
430 #ifdef KTRACE
431 if (KTRPOINT(p, KTR_CSW))
432 ktrcsw(p, 1, 0);
433 #endif
434
435 SCHED_LOCK(s);
436
437 #ifdef DIAGNOSTIC
438 if (ident == NULL)
439 panic("ltsleep: ident == NULL");
440 if (p->p_stat != SONPROC)
441 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
442 if (p->p_back != NULL)
443 panic("ltsleep: p_back != NULL");
444 #endif
445
446 p->p_wchan = ident;
447 p->p_wmesg = wmesg;
448 p->p_slptime = 0;
449 p->p_priority = priority & PRIMASK;
450
451 qp = SLPQUE(ident);
452 if (qp->sq_head == 0)
453 qp->sq_head = p;
454 else
455 *qp->sq_tailp = p;
456 *(qp->sq_tailp = &p->p_forw) = 0;
457
458 if (timo)
459 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
460
461 /*
462 * We can now release the interlock; the scheduler_slock
463 * is held, so a thread can't get in to do wakeup() before
464 * we do the switch.
465 *
466 * XXX We leave the code block here, after inserting ourselves
467 * on the sleep queue, because we might want a more clever
468 * data structure for the sleep queues at some point.
469 */
470 if (interlock != NULL)
471 simple_unlock(interlock);
472
473 /*
474 * We put ourselves on the sleep queue and start our timeout
475 * before calling CURSIG, as we could stop there, and a wakeup
476 * or a SIGCONT (or both) could occur while we were stopped.
477 * A SIGCONT would cause us to be marked as SSLEEP
478 * without resuming us, thus we must be ready for sleep
479 * when CURSIG is called. If the wakeup happens while we're
480 * stopped, p->p_wchan will be 0 upon return from CURSIG.
481 */
482 if (catch) {
483 p->p_flag |= P_SINTR;
484 if ((sig = CURSIG(p)) != 0) {
485 if (p->p_wchan != NULL)
486 unsleep(p);
487 p->p_stat = SONPROC;
488 SCHED_UNLOCK(s);
489 goto resume;
490 }
491 if (p->p_wchan == NULL) {
492 catch = 0;
493 SCHED_UNLOCK(s);
494 goto resume;
495 }
496 } else
497 sig = 0;
498 p->p_stat = SSLEEP;
499 p->p_stats->p_ru.ru_nvcsw++;
500
501 SCHED_ASSERT_LOCKED();
502 mi_switch(p);
503
504 #ifdef DDB
505 /* handy breakpoint location after process "wakes" */
506 asm(".globl bpendtsleep ; bpendtsleep:");
507 #endif
508
509 SCHED_ASSERT_UNLOCKED();
510 splx(s);
511
512 resume:
513 KDASSERT(p->p_cpu != NULL);
514 KDASSERT(p->p_cpu == curcpu());
515 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
516
517 p->p_flag &= ~P_SINTR;
518 if (p->p_flag & P_TIMEOUT) {
519 p->p_flag &= ~P_TIMEOUT;
520 if (sig == 0) {
521 #ifdef KTRACE
522 if (KTRPOINT(p, KTR_CSW))
523 ktrcsw(p, 0, 0);
524 #endif
525 if (relock && interlock != NULL)
526 simple_lock(interlock);
527 return (EWOULDBLOCK);
528 }
529 } else if (timo)
530 callout_stop(&p->p_tsleep_ch);
531 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
532 #ifdef KTRACE
533 if (KTRPOINT(p, KTR_CSW))
534 ktrcsw(p, 0, 0);
535 #endif
536 if (relock && interlock != NULL)
537 simple_lock(interlock);
538 if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
539 return (EINTR);
540 return (ERESTART);
541 }
542 #ifdef KTRACE
543 if (KTRPOINT(p, KTR_CSW))
544 ktrcsw(p, 0, 0);
545 #endif
546 if (relock && interlock != NULL)
547 simple_lock(interlock);
548 return (0);
549 }
550
551 /*
552 * Implement timeout for tsleep.
553 * If process hasn't been awakened (wchan non-zero),
554 * set timeout flag and undo the sleep. If proc
555 * is stopped, just unsleep so it will remain stopped.
556 */
557 void
558 endtsleep(void *arg)
559 {
560 struct proc *p;
561 int s;
562
563 p = (struct proc *)arg;
564
565 SCHED_LOCK(s);
566 if (p->p_wchan) {
567 if (p->p_stat == SSLEEP)
568 setrunnable(p);
569 else
570 unsleep(p);
571 p->p_flag |= P_TIMEOUT;
572 }
573 SCHED_UNLOCK(s);
574 }
575
576 /*
577 * Remove a process from its wait queue
578 */
579 void
580 unsleep(struct proc *p)
581 {
582 struct slpque *qp;
583 struct proc **hp;
584
585 SCHED_ASSERT_LOCKED();
586
587 if (p->p_wchan) {
588 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
589 while (*hp != p)
590 hp = &(*hp)->p_forw;
591 *hp = p->p_forw;
592 if (qp->sq_tailp == &p->p_forw)
593 qp->sq_tailp = hp;
594 p->p_wchan = 0;
595 }
596 }
597
598 /*
599 * Optimized-for-wakeup() version of setrunnable().
600 */
601 __inline void
602 awaken(struct proc *p)
603 {
604
605 SCHED_ASSERT_LOCKED();
606
607 if (p->p_slptime > 1)
608 updatepri(p);
609 p->p_slptime = 0;
610 p->p_stat = SRUN;
611
612 /*
613 * Since curpriority is a user priority, p->p_priority
614 * is always better than curpriority.
615 */
616 if (p->p_flag & P_INMEM) {
617 setrunqueue(p);
618 KASSERT(p->p_cpu != NULL);
619 need_resched(p->p_cpu);
620 } else
621 sched_wakeup(&proc0);
622 }
623
624 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
625 void
626 sched_unlock_idle(void)
627 {
628
629 simple_unlock(&sched_lock);
630 }
631
632 void
633 sched_lock_idle(void)
634 {
635
636 simple_lock(&sched_lock);
637 }
638 #endif /* MULTIPROCESSOR || LOCKDEBUG */
639
640 /*
641 * Make all processes sleeping on the specified identifier runnable.
642 */
643
644 void
645 wakeup(void *ident)
646 {
647 int s;
648
649 SCHED_ASSERT_UNLOCKED();
650
651 SCHED_LOCK(s);
652 sched_wakeup(ident);
653 SCHED_UNLOCK(s);
654 }
655
656 void
657 sched_wakeup(void *ident)
658 {
659 struct slpque *qp;
660 struct proc *p, **q;
661
662 SCHED_ASSERT_LOCKED();
663
664 qp = SLPQUE(ident);
665 restart:
666 for (q = &qp->sq_head; (p = *q) != NULL; ) {
667 #ifdef DIAGNOSTIC
668 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
669 panic("wakeup");
670 #endif
671 if (p->p_wchan == ident) {
672 p->p_wchan = 0;
673 *q = p->p_forw;
674 if (qp->sq_tailp == &p->p_forw)
675 qp->sq_tailp = q;
676 if (p->p_stat == SSLEEP) {
677 awaken(p);
678 goto restart;
679 }
680 } else
681 q = &p->p_forw;
682 }
683 }
684
685 /*
686 * Make the highest priority process first in line on the specified
687 * identifier runnable.
688 */
689 void
690 wakeup_one(void *ident)
691 {
692 struct slpque *qp;
693 struct proc *p, **q;
694 struct proc *best_sleepp, **best_sleepq;
695 struct proc *best_stopp, **best_stopq;
696 int s;
697
698 best_sleepp = best_stopp = NULL;
699 best_sleepq = best_stopq = NULL;
700
701 SCHED_LOCK(s);
702
703 qp = SLPQUE(ident);
704
705 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
706 #ifdef DIAGNOSTIC
707 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
708 panic("wakeup_one");
709 #endif
710 if (p->p_wchan == ident) {
711 if (p->p_stat == SSLEEP) {
712 if (best_sleepp == NULL ||
713 p->p_priority < best_sleepp->p_priority) {
714 best_sleepp = p;
715 best_sleepq = q;
716 }
717 } else {
718 if (best_stopp == NULL ||
719 p->p_priority < best_stopp->p_priority) {
720 best_stopp = p;
721 best_stopq = q;
722 }
723 }
724 }
725 }
726
727 /*
728 * Consider any SSLEEP process higher than the highest priority SSTOP
729 * process.
730 */
731 if (best_sleepp != NULL) {
732 p = best_sleepp;
733 q = best_sleepq;
734 } else {
735 p = best_stopp;
736 q = best_stopq;
737 }
738
739 if (p != NULL) {
740 p->p_wchan = NULL;
741 *q = p->p_forw;
742 if (qp->sq_tailp == &p->p_forw)
743 qp->sq_tailp = q;
744 if (p->p_stat == SSLEEP)
745 awaken(p);
746 }
747 SCHED_UNLOCK(s);
748 }
749
750 /*
751 * General yield call. Puts the current process back on its run queue and
752 * performs a voluntary context switch.
753 */
754 void
755 yield(void)
756 {
757 struct proc *p = curproc;
758 int s;
759
760 SCHED_LOCK(s);
761 p->p_priority = p->p_usrpri;
762 p->p_stat = SRUN;
763 setrunqueue(p);
764 p->p_stats->p_ru.ru_nvcsw++;
765 mi_switch(p);
766 SCHED_ASSERT_UNLOCKED();
767 splx(s);
768 }
769
770 /*
771 * General preemption call. Puts the current process back on its run queue
772 * and performs an involuntary context switch. If a process is supplied,
773 * we switch to that process. Otherwise, we use the normal process selection
774 * criteria.
775 */
776 void
777 preempt(struct proc *newp)
778 {
779 struct proc *p = curproc;
780 int s;
781
782 /*
783 * XXX Switching to a specific process is not supported yet.
784 */
785 if (newp != NULL)
786 panic("preempt: cpu_preempt not yet implemented");
787
788 SCHED_LOCK(s);
789 p->p_priority = p->p_usrpri;
790 p->p_stat = SRUN;
791 setrunqueue(p);
792 p->p_stats->p_ru.ru_nivcsw++;
793 mi_switch(p);
794 SCHED_ASSERT_UNLOCKED();
795 splx(s);
796 }
797
798 /*
799 * The machine independent parts of context switch.
800 * Must be called at splsched() (no higher!) and with
801 * the sched_lock held.
802 */
803 void
804 mi_switch(struct proc *p)
805 {
806 struct schedstate_percpu *spc;
807 struct rlimit *rlim;
808 long s, u;
809 struct timeval tv;
810 #if defined(MULTIPROCESSOR)
811 int hold_count;
812 #endif
813
814 SCHED_ASSERT_LOCKED();
815
816 #if defined(MULTIPROCESSOR)
817 if (p->p_flag & P_BIGLOCK) {
818 /*
819 * Release the kernel_lock, as we are about to
820 * yield the CPU. The scheduler_slock is still
821 * held until cpu_switch() selects a new process
822 * and removes it from the run queue.
823 */
824 hold_count = kernel_lock_release_all();
825 }
826 #endif
827
828 KDASSERT(p->p_cpu != NULL);
829 KDASSERT(p->p_cpu == curcpu());
830
831 spc = &p->p_cpu->ci_schedstate;
832
833 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
834 spinlock_switchcheck();
835 #endif
836 #ifdef LOCKDEBUG
837 simple_lock_switchcheck();
838 #endif
839
840 /*
841 * Compute the amount of time during which the current
842 * process was running, and add that to its total so far.
843 */
844 microtime(&tv);
845 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
846 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
847 if (u < 0) {
848 u += 1000000;
849 s--;
850 } else if (u >= 1000000) {
851 u -= 1000000;
852 s++;
853 }
854 p->p_rtime.tv_usec = u;
855 p->p_rtime.tv_sec = s;
856
857 /*
858 * Check if the process exceeds its cpu resource allocation.
859 * If over max, kill it. In any case, if it has run for more
860 * than 10 minutes, reduce priority to give others a chance.
861 */
862 rlim = &p->p_rlimit[RLIMIT_CPU];
863 if (s >= rlim->rlim_cur) {
864 if (s >= rlim->rlim_max)
865 psignal(p, SIGKILL);
866 else {
867 psignal(p, SIGXCPU);
868 if (rlim->rlim_cur < rlim->rlim_max)
869 rlim->rlim_cur += 5;
870 }
871 }
872 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
873 p->p_nice == NZERO) {
874 p->p_nice = autoniceval + NZERO;
875 resetpriority(p);
876 }
877
878 /*
879 * Process is about to yield the CPU; clear the appropriate
880 * scheduling flags.
881 */
882 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
883
884 /*
885 * Pick a new current process and switch to it. When we
886 * run again, we'll return back here.
887 */
888 uvmexp.swtch++;
889 cpu_switch(p);
890
891 /*
892 * Make sure that MD code released the scheduler lock before
893 * resuming us.
894 */
895 SCHED_ASSERT_UNLOCKED();
896
897 /*
898 * We're running again; record our new start time. We might
899 * be running on a new CPU now, so don't use the cache'd
900 * schedstate_percpu pointer.
901 */
902 KDASSERT(p->p_cpu != NULL);
903 KDASSERT(p->p_cpu == curcpu());
904 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
905
906 #if defined(MULTIPROCESSOR)
907 if (p->p_flag & P_BIGLOCK) {
908 /*
909 * Reacquire the kernel_lock now. We do this after
910 * we've released sched_lock to avoid deadlock,
911 * and before we reacquire the interlock.
912 */
913 kernel_lock_acquire_count(LK_EXCLUSIVE|LK_CANRECURSE,
914 hold_count);
915 }
916 #endif
917 }
918
919 /*
920 * Initialize the (doubly-linked) run queues
921 * to be empty.
922 */
923 void
924 rqinit()
925 {
926 int i;
927
928 for (i = 0; i < RUNQUE_NQS; i++)
929 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
930 (struct proc *)&sched_qs[i];
931 }
932
933 /*
934 * Change process state to be runnable,
935 * placing it on the run queue if it is in memory,
936 * and awakening the swapper if it isn't in memory.
937 */
938 void
939 setrunnable(struct proc *p)
940 {
941
942 SCHED_ASSERT_LOCKED();
943
944 switch (p->p_stat) {
945 case 0:
946 case SRUN:
947 case SONPROC:
948 case SZOMB:
949 case SDEAD:
950 default:
951 panic("setrunnable");
952 case SSTOP:
953 /*
954 * If we're being traced (possibly because someone attached us
955 * while we were stopped), check for a signal from the debugger.
956 */
957 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
958 sigaddset(&p->p_siglist, p->p_xstat);
959 p->p_sigcheck = 1;
960 }
961 case SSLEEP:
962 unsleep(p); /* e.g. when sending signals */
963 break;
964
965 case SIDL:
966 break;
967 }
968 p->p_stat = SRUN;
969 if (p->p_flag & P_INMEM)
970 setrunqueue(p);
971
972 if (p->p_slptime > 1)
973 updatepri(p);
974 p->p_slptime = 0;
975 if ((p->p_flag & P_INMEM) == 0)
976 sched_wakeup((caddr_t)&proc0);
977 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
978 /*
979 * XXXSMP
980 * This is not exactly right. Since p->p_cpu persists
981 * across a context switch, this gives us some sort
982 * of processor affinity. But we need to figure out
983 * at what point it's better to reschedule on a different
984 * CPU than the last one.
985 */
986 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
987 }
988 }
989
990 /*
991 * Compute the priority of a process when running in user mode.
992 * Arrange to reschedule if the resulting priority is better
993 * than that of the current process.
994 */
995 void
996 resetpriority(struct proc *p)
997 {
998 unsigned int newpriority;
999
1000 SCHED_ASSERT_LOCKED();
1001
1002 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
1003 newpriority = min(newpriority, MAXPRI);
1004 p->p_usrpri = newpriority;
1005 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1006 /*
1007 * XXXSMP
1008 * Same applies as in setrunnable() above.
1009 */
1010 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
1011 }
1012 }
1013
1014 /*
1015 * We adjust the priority of the current process. The priority of a process
1016 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1017 * is increased here. The formula for computing priorities (in kern_synch.c)
1018 * will compute a different value each time p_estcpu increases. This can
1019 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1020 * queue will not change. The cpu usage estimator ramps up quite quickly
1021 * when the process is running (linearly), and decays away exponentially, at
1022 * a rate which is proportionally slower when the system is busy. The basic
1023 * principle is that the system will 90% forget that the process used a lot
1024 * of CPU time in 5 * loadav seconds. This causes the system to favor
1025 * processes which haven't run much recently, and to round-robin among other
1026 * processes.
1027 */
1028
1029 void
1030 schedclock(struct proc *p)
1031 {
1032 int s;
1033
1034 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1035
1036 SCHED_LOCK(s);
1037 resetpriority(p);
1038 SCHED_UNLOCK(s);
1039
1040 if (p->p_priority >= PUSER)
1041 p->p_priority = p->p_usrpri;
1042 }
1043