Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.92
      1 /*	$NetBSD: kern_synch.c,v 1.92 2000/09/01 17:14:04 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_ktrace.h"
     82 #include "opt_lockdebug.h"
     83 #include "opt_multiprocessor.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/callout.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/buf.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/sched.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #ifdef KTRACE
     98 #include <sys/ktrace.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 
    103 int	lbolt;			/* once a second sleep address */
    104 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    105 
    106 /*
    107  * The global scheduler state.
    108  */
    109 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    110 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    111 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    112 
    113 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    114 #if defined(MULTIPROCESSOR)
    115 struct lock kernel_lock;
    116 #endif
    117 
    118 void schedcpu(void *);
    119 void updatepri(struct proc *);
    120 void endtsleep(void *);
    121 
    122 __inline void awaken(struct proc *);
    123 
    124 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    125 
    126 int sched_suspended = 0;
    127 
    128 /*
    129  * Force switch among equal priority processes every 100ms.
    130  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    131  */
    132 /* ARGSUSED */
    133 void
    134 roundrobin(struct cpu_info *ci)
    135 {
    136 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    137 
    138 	spc->spc_rrticks = rrticks;
    139 
    140 	if (curproc != NULL) {
    141 		if (spc->spc_flags & SPCF_SEENRR) {
    142 			/*
    143 			 * The process has already been through a roundrobin
    144 			 * without switching and may be hogging the CPU.
    145 			 * Indicate that the process should yield.
    146 			 */
    147 			spc->spc_flags |= SPCF_SHOULDYIELD;
    148 		} else
    149 			spc->spc_flags |= SPCF_SEENRR;
    150 	}
    151 	need_resched(curcpu());
    152 }
    153 
    154 /*
    155  * Constants for digital decay and forget:
    156  *	90% of (p_estcpu) usage in 5 * loadav time
    157  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    158  *          Note that, as ps(1) mentions, this can let percentages
    159  *          total over 100% (I've seen 137.9% for 3 processes).
    160  *
    161  * Note that hardclock updates p_estcpu and p_cpticks independently.
    162  *
    163  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    164  * That is, the system wants to compute a value of decay such
    165  * that the following for loop:
    166  * 	for (i = 0; i < (5 * loadavg); i++)
    167  * 		p_estcpu *= decay;
    168  * will compute
    169  * 	p_estcpu *= 0.1;
    170  * for all values of loadavg:
    171  *
    172  * Mathematically this loop can be expressed by saying:
    173  * 	decay ** (5 * loadavg) ~= .1
    174  *
    175  * The system computes decay as:
    176  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    177  *
    178  * We wish to prove that the system's computation of decay
    179  * will always fulfill the equation:
    180  * 	decay ** (5 * loadavg) ~= .1
    181  *
    182  * If we compute b as:
    183  * 	b = 2 * loadavg
    184  * then
    185  * 	decay = b / (b + 1)
    186  *
    187  * We now need to prove two things:
    188  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    189  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    190  *
    191  * Facts:
    192  *         For x close to zero, exp(x) =~ 1 + x, since
    193  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    194  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    195  *         For x close to zero, ln(1+x) =~ x, since
    196  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    197  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    198  *         ln(.1) =~ -2.30
    199  *
    200  * Proof of (1):
    201  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    202  *	solving for factor,
    203  *      ln(factor) =~ (-2.30/5*loadav), or
    204  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    205  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    206  *
    207  * Proof of (2):
    208  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    209  *	solving for power,
    210  *      power*ln(b/(b+1)) =~ -2.30, or
    211  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    212  *
    213  * Actual power values for the implemented algorithm are as follows:
    214  *      loadav: 1       2       3       4
    215  *      power:  5.68    10.32   14.94   19.55
    216  */
    217 
    218 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    219 #define	loadfactor(loadav)	(2 * (loadav))
    220 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    221 
    222 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    223 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    224 
    225 /*
    226  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    227  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    228  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    229  *
    230  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    231  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    232  *
    233  * If you dont want to bother with the faster/more-accurate formula, you
    234  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    235  * (more general) method of calculating the %age of CPU used by a process.
    236  */
    237 #define	CCPU_SHIFT	11
    238 
    239 /*
    240  * Recompute process priorities, every hz ticks.
    241  */
    242 /* ARGSUSED */
    243 void
    244 schedcpu(void *arg)
    245 {
    246 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    247 	struct proc *p;
    248 	int s, s1;
    249 	unsigned int newcpu;
    250 	int clkhz;
    251 
    252 	proclist_lock_read();
    253 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    254 		/*
    255 		 * Increment time in/out of memory and sleep time
    256 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    257 		 * (remember them?) overflow takes 45 days.
    258 		 */
    259 		p->p_swtime++;
    260 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    261 			p->p_slptime++;
    262 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    263 		/*
    264 		 * If the process has slept the entire second,
    265 		 * stop recalculating its priority until it wakes up.
    266 		 */
    267 		if (p->p_slptime > 1)
    268 			continue;
    269 		s = splstatclock();	/* prevent state changes */
    270 		/*
    271 		 * p_pctcpu is only for ps.
    272 		 */
    273 		clkhz = stathz != 0 ? stathz : hz;
    274 #if	(FSHIFT >= CCPU_SHIFT)
    275 		p->p_pctcpu += (clkhz == 100)?
    276 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    277                 	100 * (((fixpt_t) p->p_cpticks)
    278 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    279 #else
    280 		p->p_pctcpu += ((FSCALE - ccpu) *
    281 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    282 #endif
    283 		p->p_cpticks = 0;
    284 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    285 		p->p_estcpu = newcpu;
    286 		SCHED_LOCK(s1);
    287 		resetpriority(p);
    288 		if (p->p_priority >= PUSER) {
    289 			if (p->p_stat == SRUN &&
    290 			    (p->p_flag & P_INMEM) &&
    291 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    292 				remrunqueue(p);
    293 				p->p_priority = p->p_usrpri;
    294 				setrunqueue(p);
    295 			} else
    296 				p->p_priority = p->p_usrpri;
    297 		}
    298 		SCHED_UNLOCK(s1);
    299 		splx(s);
    300 	}
    301 	proclist_unlock_read();
    302 	uvm_meter();
    303 	wakeup((caddr_t)&lbolt);
    304 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    305 }
    306 
    307 /*
    308  * Recalculate the priority of a process after it has slept for a while.
    309  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    310  * least six times the loadfactor will decay p_estcpu to zero.
    311  */
    312 void
    313 updatepri(struct proc *p)
    314 {
    315 	unsigned int newcpu;
    316 	fixpt_t loadfac;
    317 
    318 	SCHED_ASSERT_LOCKED();
    319 
    320 	newcpu = p->p_estcpu;
    321 	loadfac = loadfactor(averunnable.ldavg[0]);
    322 
    323 	if (p->p_slptime > 5 * loadfac)
    324 		p->p_estcpu = 0;
    325 	else {
    326 		p->p_slptime--;	/* the first time was done in schedcpu */
    327 		while (newcpu && --p->p_slptime)
    328 			newcpu = (int) decay_cpu(loadfac, newcpu);
    329 		p->p_estcpu = newcpu;
    330 	}
    331 	resetpriority(p);
    332 }
    333 
    334 /*
    335  * During autoconfiguration or after a panic, a sleep will simply
    336  * lower the priority briefly to allow interrupts, then return.
    337  * The priority to be used (safepri) is machine-dependent, thus this
    338  * value is initialized and maintained in the machine-dependent layers.
    339  * This priority will typically be 0, or the lowest priority
    340  * that is safe for use on the interrupt stack; it can be made
    341  * higher to block network software interrupts after panics.
    342  */
    343 int safepri;
    344 
    345 /*
    346  * General sleep call.  Suspends the current process until a wakeup is
    347  * performed on the specified identifier.  The process will then be made
    348  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    349  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    350  * before and after sleeping, else signals are not checked.  Returns 0 if
    351  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    352  * signal needs to be delivered, ERESTART is returned if the current system
    353  * call should be restarted if possible, and EINTR is returned if the system
    354  * call should be interrupted by the signal (return EINTR).
    355  *
    356  * The interlock is held until the scheduler_slock is held.  The
    357  * interlock will be locked before returning back to the caller
    358  * unless the PNORELOCK flag is specified, in which case the
    359  * interlock will always be unlocked upon return.
    360  */
    361 int
    362 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    363     __volatile struct simplelock *interlock)
    364 {
    365 	struct proc *p = curproc;
    366 	struct slpque *qp;
    367 	int sig, s;
    368 	int catch = priority & PCATCH;
    369 	int relock = (priority & PNORELOCK) == 0;
    370 
    371 	/*
    372 	 * XXXSMP
    373 	 * This is probably bogus.  Figure out what the right
    374 	 * thing to do here really is.
    375 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    376 	 * in the shutdown case is disgusting but partly necessary given
    377 	 * how shutdown (barely) works.
    378 	 */
    379 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    380 		/*
    381 		 * After a panic, or during autoconfiguration,
    382 		 * just give interrupts a chance, then just return;
    383 		 * don't run any other procs or panic below,
    384 		 * in case this is the idle process and already asleep.
    385 		 */
    386 		s = splhigh();
    387 		splx(safepri);
    388 		splx(s);
    389 		if (interlock != NULL && relock == 0)
    390 			simple_unlock(interlock);
    391 		return (0);
    392 	}
    393 
    394 
    395 #ifdef KTRACE
    396 	if (KTRPOINT(p, KTR_CSW))
    397 		ktrcsw(p, 1, 0);
    398 #endif
    399 
    400 	SCHED_LOCK(s);
    401 
    402 #ifdef DIAGNOSTIC
    403 	if (ident == NULL)
    404 		panic("ltsleep: ident == NULL");
    405 	if (p->p_stat != SONPROC)
    406 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    407 	if (p->p_back != NULL)
    408 		panic("ltsleep: p_back != NULL");
    409 #endif
    410 
    411 	p->p_wchan = ident;
    412 	p->p_wmesg = wmesg;
    413 	p->p_slptime = 0;
    414 	p->p_priority = priority & PRIMASK;
    415 
    416 	qp = SLPQUE(ident);
    417 	if (qp->sq_head == 0)
    418 		qp->sq_head = p;
    419 	else
    420 		*qp->sq_tailp = p;
    421 	*(qp->sq_tailp = &p->p_forw) = 0;
    422 
    423 	if (timo)
    424 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    425 
    426 	/*
    427 	 * We can now release the interlock; the scheduler_slock
    428 	 * is held, so a thread can't get in to do wakeup() before
    429 	 * we do the switch.
    430 	 *
    431 	 * XXX We leave the code block here, after inserting ourselves
    432 	 * on the sleep queue, because we might want a more clever
    433 	 * data structure for the sleep queues at some point.
    434 	 */
    435 	if (interlock != NULL)
    436 		simple_unlock(interlock);
    437 
    438 	/*
    439 	 * We put ourselves on the sleep queue and start our timeout
    440 	 * before calling CURSIG, as we could stop there, and a wakeup
    441 	 * or a SIGCONT (or both) could occur while we were stopped.
    442 	 * A SIGCONT would cause us to be marked as SSLEEP
    443 	 * without resuming us, thus we must be ready for sleep
    444 	 * when CURSIG is called.  If the wakeup happens while we're
    445 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    446 	 */
    447 	if (catch) {
    448 		p->p_flag |= P_SINTR;
    449 		if ((sig = CURSIG(p)) != 0) {
    450 			if (p->p_wchan != NULL)
    451 				unsleep(p);
    452 			p->p_stat = SONPROC;
    453 			SCHED_UNLOCK(s);
    454 			goto resume;
    455 		}
    456 		if (p->p_wchan == NULL) {
    457 			catch = 0;
    458 			SCHED_UNLOCK(s);
    459 			goto resume;
    460 		}
    461 	} else
    462 		sig = 0;
    463 	p->p_stat = SSLEEP;
    464 	p->p_stats->p_ru.ru_nvcsw++;
    465 
    466 	SCHED_ASSERT_LOCKED();
    467 	mi_switch(p);
    468 
    469 #ifdef	DDB
    470 	/* handy breakpoint location after process "wakes" */
    471 	asm(".globl bpendtsleep ; bpendtsleep:");
    472 #endif
    473 
    474 	SCHED_ASSERT_UNLOCKED();
    475 	splx(s);
    476 
    477  resume:
    478 	KDASSERT(p->p_cpu != NULL);
    479 	KDASSERT(p->p_cpu == curcpu());
    480 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    481 
    482 	p->p_flag &= ~P_SINTR;
    483 	if (p->p_flag & P_TIMEOUT) {
    484 		p->p_flag &= ~P_TIMEOUT;
    485 		if (sig == 0) {
    486 #ifdef KTRACE
    487 			if (KTRPOINT(p, KTR_CSW))
    488 				ktrcsw(p, 0, 0);
    489 #endif
    490 			if (relock && interlock != NULL)
    491 				simple_lock(interlock);
    492 			return (EWOULDBLOCK);
    493 		}
    494 	} else if (timo)
    495 		callout_stop(&p->p_tsleep_ch);
    496 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    497 #ifdef KTRACE
    498 		if (KTRPOINT(p, KTR_CSW))
    499 			ktrcsw(p, 0, 0);
    500 #endif
    501 		if (relock && interlock != NULL)
    502 			simple_lock(interlock);
    503 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    504 			return (EINTR);
    505 		return (ERESTART);
    506 	}
    507 #ifdef KTRACE
    508 	if (KTRPOINT(p, KTR_CSW))
    509 		ktrcsw(p, 0, 0);
    510 #endif
    511 	if (relock && interlock != NULL)
    512 		simple_lock(interlock);
    513 	return (0);
    514 }
    515 
    516 /*
    517  * Implement timeout for tsleep.
    518  * If process hasn't been awakened (wchan non-zero),
    519  * set timeout flag and undo the sleep.  If proc
    520  * is stopped, just unsleep so it will remain stopped.
    521  */
    522 void
    523 endtsleep(void *arg)
    524 {
    525 	struct proc *p;
    526 	int s;
    527 
    528 	p = (struct proc *)arg;
    529 
    530 	SCHED_LOCK(s);
    531 	if (p->p_wchan) {
    532 		if (p->p_stat == SSLEEP)
    533 			setrunnable(p);
    534 		else
    535 			unsleep(p);
    536 		p->p_flag |= P_TIMEOUT;
    537 	}
    538 	SCHED_UNLOCK(s);
    539 }
    540 
    541 /*
    542  * Remove a process from its wait queue
    543  */
    544 void
    545 unsleep(struct proc *p)
    546 {
    547 	struct slpque *qp;
    548 	struct proc **hp;
    549 
    550 	SCHED_ASSERT_LOCKED();
    551 
    552 	if (p->p_wchan) {
    553 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    554 		while (*hp != p)
    555 			hp = &(*hp)->p_forw;
    556 		*hp = p->p_forw;
    557 		if (qp->sq_tailp == &p->p_forw)
    558 			qp->sq_tailp = hp;
    559 		p->p_wchan = 0;
    560 	}
    561 }
    562 
    563 /*
    564  * Optimized-for-wakeup() version of setrunnable().
    565  */
    566 __inline void
    567 awaken(struct proc *p)
    568 {
    569 
    570 	SCHED_ASSERT_LOCKED();
    571 
    572 	if (p->p_slptime > 1)
    573 		updatepri(p);
    574 	p->p_slptime = 0;
    575 	if ((p->p_flag & P_SUSPEND) == 0) {
    576 		p->p_stat = SRUN;
    577 		/*
    578 		 * Since curpriority is a user priority, p->p_priority
    579 		 * is always better than curpriority.
    580 		 */
    581 		if (p->p_flag & P_INMEM) {
    582 			setrunqueue(p);
    583 			KASSERT(p->p_cpu != NULL);
    584 			need_resched(p->p_cpu);
    585 		} else
    586 			sched_wakeup(&proc0);
    587 	} else {
    588 		p->p_stat = SSUSPEND;
    589 	}
    590 }
    591 
    592 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    593 void
    594 sched_unlock_idle(void)
    595 {
    596 
    597 	simple_unlock(&sched_lock);
    598 }
    599 
    600 void
    601 sched_lock_idle(void)
    602 {
    603 
    604 	simple_lock(&sched_lock);
    605 }
    606 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    607 
    608 /*
    609  * Make all processes sleeping on the specified identifier runnable.
    610  */
    611 
    612 void
    613 wakeup(void *ident)
    614 {
    615 	int s;
    616 
    617 	SCHED_ASSERT_UNLOCKED();
    618 
    619 	SCHED_LOCK(s);
    620 	sched_wakeup(ident);
    621 	SCHED_UNLOCK(s);
    622 }
    623 
    624 void
    625 sched_wakeup(void *ident)
    626 {
    627 	struct slpque *qp;
    628 	struct proc *p, **q;
    629 
    630 	SCHED_ASSERT_LOCKED();
    631 
    632 	qp = SLPQUE(ident);
    633  restart:
    634 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    635 #ifdef DIAGNOSTIC
    636 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    637 			panic("wakeup");
    638 #endif
    639 		if (p->p_wchan == ident) {
    640 			p->p_wchan = 0;
    641 			*q = p->p_forw;
    642 			if (qp->sq_tailp == &p->p_forw)
    643 				qp->sq_tailp = q;
    644 			if (p->p_stat == SSLEEP) {
    645 				awaken(p);
    646 				goto restart;
    647 			}
    648 		} else
    649 			q = &p->p_forw;
    650 	}
    651 }
    652 
    653 /*
    654  * Make the highest priority process first in line on the specified
    655  * identifier runnable.
    656  */
    657 void
    658 wakeup_one(void *ident)
    659 {
    660 	struct slpque *qp;
    661 	struct proc *p, **q;
    662 	struct proc *best_sleepp, **best_sleepq;
    663 	struct proc *best_stopp, **best_stopq;
    664 	int s;
    665 
    666 	best_sleepp = best_stopp = NULL;
    667 	best_sleepq = best_stopq = NULL;
    668 
    669 	SCHED_LOCK(s);
    670 
    671 	qp = SLPQUE(ident);
    672 
    673 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    674 #ifdef DIAGNOSTIC
    675 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    676 			panic("wakeup_one");
    677 #endif
    678 		if (p->p_wchan == ident) {
    679 			if (p->p_stat == SSLEEP) {
    680 				if (best_sleepp == NULL ||
    681 				    p->p_priority < best_sleepp->p_priority) {
    682 					best_sleepp = p;
    683 					best_sleepq = q;
    684 				}
    685 			} else {
    686 				if (best_stopp == NULL ||
    687 				    p->p_priority < best_stopp->p_priority) {
    688 					best_stopp = p;
    689 					best_stopq = q;
    690 				}
    691 			}
    692 		}
    693 	}
    694 
    695 	/*
    696 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    697 	 * process.
    698 	 */
    699 	if (best_sleepp != NULL) {
    700 		p = best_sleepp;
    701 		q = best_sleepq;
    702 	} else {
    703 		p = best_stopp;
    704 		q = best_stopq;
    705 	}
    706 
    707 	if (p != NULL) {
    708 		p->p_wchan = NULL;
    709 		*q = p->p_forw;
    710 		if (qp->sq_tailp == &p->p_forw)
    711 			qp->sq_tailp = q;
    712 		if (p->p_stat == SSLEEP)
    713 			awaken(p);
    714 	}
    715 	SCHED_UNLOCK(s);
    716 }
    717 
    718 /*
    719  * General yield call.  Puts the current process back on its run queue and
    720  * performs a voluntary context switch.
    721  */
    722 void
    723 yield(void)
    724 {
    725 	struct proc *p = curproc;
    726 	int s;
    727 
    728 	SCHED_LOCK(s);
    729 	p->p_priority = p->p_usrpri;
    730 	if ((p->p_flag & P_SUSPEND) == 0) {
    731 		p->p_stat = SRUN;
    732 		setrunqueue(p);
    733 	} else
    734 		p->p_stat = SSUSPEND;
    735 	p->p_stats->p_ru.ru_nvcsw++;
    736 	mi_switch(p);
    737 	SCHED_ASSERT_UNLOCKED();
    738 	splx(s);
    739 }
    740 
    741 /*
    742  * General preemption call.  Puts the current process back on its run queue
    743  * and performs an involuntary context switch.  If a process is supplied,
    744  * we switch to that process.  Otherwise, we use the normal process selection
    745  * criteria.
    746  */
    747 void
    748 preempt(struct proc *newp)
    749 {
    750 	struct proc *p = curproc;
    751 	int s;
    752 
    753 	/*
    754 	 * XXX Switching to a specific process is not supported yet.
    755 	 */
    756 	if (newp != NULL)
    757 		panic("preempt: cpu_preempt not yet implemented");
    758 
    759 	SCHED_LOCK(s);
    760 	p->p_priority = p->p_usrpri;
    761 	if ((p->p_flag & P_SUSPEND) == 0) {
    762 		p->p_stat = SRUN;
    763 		setrunqueue(p);
    764 	} else
    765 		p->p_stat = SSUSPEND;
    766 	p->p_stats->p_ru.ru_nivcsw++;
    767 	mi_switch(p);
    768 	SCHED_ASSERT_UNLOCKED();
    769 	splx(s);
    770 }
    771 
    772 /*
    773  * The machine independent parts of context switch.
    774  * Must be called at splsched() (no higher!) and with
    775  * the sched_lock held.
    776  */
    777 void
    778 mi_switch(struct proc *p)
    779 {
    780 	struct schedstate_percpu *spc;
    781 	struct rlimit *rlim;
    782 	long s, u;
    783 	struct timeval tv;
    784 #if defined(MULTIPROCESSOR)
    785 	int hold_count;
    786 #endif
    787 
    788 	SCHED_ASSERT_LOCKED();
    789 
    790 #if defined(MULTIPROCESSOR)
    791 	/*
    792 	 * Release the kernel_lock, as we are about to yield the CPU.
    793 	 * The scheduler lock is still held until cpu_switch()
    794 	 * selects a new process and removes it from the run queue.
    795 	 */
    796 	if (p->p_flag & P_BIGLOCK)
    797 		hold_count = spinlock_release_all(&kernel_lock);
    798 #endif
    799 
    800 	KDASSERT(p->p_cpu != NULL);
    801 	KDASSERT(p->p_cpu == curcpu());
    802 
    803 	spc = &p->p_cpu->ci_schedstate;
    804 
    805 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    806 	spinlock_switchcheck();
    807 #endif
    808 #ifdef LOCKDEBUG
    809 	simple_lock_switchcheck();
    810 #endif
    811 
    812 	/*
    813 	 * Compute the amount of time during which the current
    814 	 * process was running, and add that to its total so far.
    815 	 */
    816 	microtime(&tv);
    817 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    818 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    819 	if (u < 0) {
    820 		u += 1000000;
    821 		s--;
    822 	} else if (u >= 1000000) {
    823 		u -= 1000000;
    824 		s++;
    825 	}
    826 	p->p_rtime.tv_usec = u;
    827 	p->p_rtime.tv_sec = s;
    828 
    829 	/*
    830 	 * Check if the process exceeds its cpu resource allocation.
    831 	 * If over max, kill it.  In any case, if it has run for more
    832 	 * than 10 minutes, reduce priority to give others a chance.
    833 	 */
    834 	rlim = &p->p_rlimit[RLIMIT_CPU];
    835 	if (s >= rlim->rlim_cur) {
    836 		if (s >= rlim->rlim_max)
    837 			psignal(p, SIGKILL);
    838 		else {
    839 			psignal(p, SIGXCPU);
    840 			if (rlim->rlim_cur < rlim->rlim_max)
    841 				rlim->rlim_cur += 5;
    842 		}
    843 	}
    844 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    845 	    p->p_nice == NZERO) {
    846 		p->p_nice = autoniceval + NZERO;
    847 		resetpriority(p);
    848 	}
    849 
    850 	/*
    851 	 * Process is about to yield the CPU; clear the appropriate
    852 	 * scheduling flags.
    853 	 */
    854 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    855 
    856 	/*
    857 	 * Pick a new current process and switch to it.  When we
    858 	 * run again, we'll return back here.
    859 	 */
    860 	uvmexp.swtch++;
    861 	cpu_switch(p);
    862 
    863 	/*
    864 	 * Make sure that MD code released the scheduler lock before
    865 	 * resuming us.
    866 	 */
    867 	SCHED_ASSERT_UNLOCKED();
    868 
    869 	/*
    870 	 * We're running again; record our new start time.  We might
    871 	 * be running on a new CPU now, so don't use the cache'd
    872 	 * schedstate_percpu pointer.
    873 	 */
    874 	KDASSERT(p->p_cpu != NULL);
    875 	KDASSERT(p->p_cpu == curcpu());
    876 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    877 
    878 #if defined(MULTIPROCESSOR)
    879 	/*
    880 	 * Reacquire the kernel_lock now.  We do this after we've
    881 	 * released the scheduler lock to avoid deadlock, and before
    882 	 * we reacquire the interlock.
    883 	 */
    884 	if (p->p_flag & P_BIGLOCK)
    885 		spinlock_acquire_count(&kernel_lock, hold_count);
    886 #endif
    887 }
    888 
    889 /*
    890  * Initialize the (doubly-linked) run queues
    891  * to be empty.
    892  */
    893 void
    894 rqinit()
    895 {
    896 	int i;
    897 
    898 	for (i = 0; i < RUNQUE_NQS; i++)
    899 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    900 		    (struct proc *)&sched_qs[i];
    901 }
    902 
    903 /*
    904  * Change process state to be runnable,
    905  * placing it on the run queue if it is in memory,
    906  * and awakening the swapper if it isn't in memory.
    907  */
    908 void
    909 setrunnable(struct proc *p)
    910 {
    911 
    912 	SCHED_ASSERT_LOCKED();
    913 
    914 	switch (p->p_stat) {
    915 	case 0:
    916 	case SRUN:
    917 	case SSUSPEND:
    918 	case SONPROC:
    919 	case SZOMB:
    920 	case SDEAD:
    921 	default:
    922 		panic("setrunnable");
    923 	case SSTOP:
    924 		/*
    925 		 * If we're being traced (possibly because someone attached us
    926 		 * while we were stopped), check for a signal from the debugger.
    927 		 */
    928 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    929 			sigaddset(&p->p_siglist, p->p_xstat);
    930 			p->p_sigcheck = 1;
    931 		}
    932 	case SSLEEP:
    933 		unsleep(p);		/* e.g. when sending signals */
    934 		break;
    935 
    936 	case SIDL:
    937 		break;
    938 	}
    939 	if ((p->p_flag & P_SUSPEND) == 0) {
    940 		p->p_stat = SRUN;
    941 		if (p->p_flag & P_INMEM)
    942 			setrunqueue(p);
    943 	} else
    944 		p->p_stat = SSUSPEND;
    945 	if (p->p_slptime > 1)
    946 		updatepri(p);
    947 	p->p_slptime = 0;
    948 	if ((p->p_flag & P_INMEM) == 0)
    949 		sched_wakeup((caddr_t)&proc0);
    950 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    951 		/*
    952 		 * XXXSMP
    953 		 * This is not exactly right.  Since p->p_cpu persists
    954 		 * across a context switch, this gives us some sort
    955 		 * of processor affinity.  But we need to figure out
    956 		 * at what point it's better to reschedule on a different
    957 		 * CPU than the last one.
    958 		 */
    959 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    960 	}
    961 }
    962 
    963 /*
    964  * Compute the priority of a process when running in user mode.
    965  * Arrange to reschedule if the resulting priority is better
    966  * than that of the current process.
    967  */
    968 void
    969 resetpriority(struct proc *p)
    970 {
    971 	unsigned int newpriority;
    972 
    973 	SCHED_ASSERT_LOCKED();
    974 
    975 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    976 	newpriority = min(newpriority, MAXPRI);
    977 	p->p_usrpri = newpriority;
    978 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    979 		/*
    980 		 * XXXSMP
    981 		 * Same applies as in setrunnable() above.
    982 		 */
    983 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    984 	}
    985 }
    986 
    987 /*
    988  * We adjust the priority of the current process.  The priority of a process
    989  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    990  * is increased here.  The formula for computing priorities (in kern_synch.c)
    991  * will compute a different value each time p_estcpu increases. This can
    992  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    993  * queue will not change.  The cpu usage estimator ramps up quite quickly
    994  * when the process is running (linearly), and decays away exponentially, at
    995  * a rate which is proportionally slower when the system is busy.  The basic
    996  * principle is that the system will 90% forget that the process used a lot
    997  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    998  * processes which haven't run much recently, and to round-robin among other
    999  * processes.
   1000  */
   1001 
   1002 void
   1003 schedclock(struct proc *p)
   1004 {
   1005 	int s;
   1006 
   1007 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1008 
   1009 	SCHED_LOCK(s);
   1010 	resetpriority(p);
   1011 	SCHED_UNLOCK(s);
   1012 
   1013 	if (p->p_priority >= PUSER)
   1014 		p->p_priority = p->p_usrpri;
   1015 }
   1016 
   1017 /*
   1018  * Mark all non-system processes as non-runnable, and remove from run queue.
   1019  */
   1020 void
   1021 suspendsched()
   1022 {
   1023 	int s, i;
   1024 	struct proc *p, *next;
   1025 
   1026 	SCHED_LOCK(s);
   1027 	sched_suspended++;
   1028 	if (sched_suspended > 1) {
   1029 		/* sheduling was already suspended */
   1030 		SCHED_UNLOCK(s);
   1031 		return;
   1032 	}
   1033 	/* mark P_SUSPEND all processes that aren't P_SYSTEM or curproc */
   1034 	for (p = LIST_FIRST(&allproc); p != NULL; p = next) {
   1035 		next = LIST_NEXT(p, p_list);
   1036 		if (p == curproc || (p->p_flag & P_SYSTEM) != 0)
   1037 			continue;
   1038 		p->p_flag |= P_SUSPEND;
   1039 	}
   1040 	/* go through the run queues, remove P_SUSPEND processes */
   1041 	for (i = 0; i < RUNQUE_NQS; i++) {
   1042 		for (p = (struct proc *)&sched_qs[i];
   1043 		    p->p_forw != (struct proc *)&sched_qs[i]; p = next) {
   1044 			next = p->p_forw;
   1045 			if ((p->p_flag & P_SUSPEND) != 0) {
   1046 				remrunqueue(p);
   1047 				p->p_stat = SSUSPEND;
   1048 			}
   1049 		}
   1050 	}
   1051 	SCHED_UNLOCK(s);
   1052 }
   1053 
   1054 /* resume scheduling, replace all suspended processes on a run queue */
   1055 void
   1056 resumesched()
   1057 {
   1058 	int s;
   1059 	struct proc *p, *next;
   1060 
   1061 	SCHED_LOCK(s);
   1062 	sched_suspended--;
   1063 	if (sched_suspended < 0)
   1064 		panic("resumesched");
   1065 	if (sched_suspended > 0) {
   1066 		/* someone still wants the sheduling to be suspended */
   1067 		/* XXX should we mark curproc P_SUSPEND as well ? */
   1068 		SCHED_UNLOCK(s);
   1069 		return;
   1070 	}
   1071 	for (p = LIST_FIRST(&allproc); p != NULL; p = next) {
   1072 		next = LIST_NEXT(p, p_list);
   1073 		p->p_flag &= ~P_SUSPEND;
   1074 		if (p->p_stat == SSUSPEND) {
   1075 			p->p_stat = SRUN;
   1076 			setrunqueue(p);
   1077 		}
   1078 	}
   1079 	SCHED_UNLOCK(s);
   1080 }
   1081