kern_sysctl.c revision 1.103 1 /* $NetBSD: kern_sysctl.c,v 1.103 2002/02/14 07:08:21 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Karels at Berkeley Software Design, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
39 */
40
41 /*
42 * sysctl system call.
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.103 2002/02/14 07:08:21 chs Exp $");
47
48 #include "opt_ddb.h"
49 #include "opt_insecure.h"
50 #include "opt_defcorename.h"
51 #include "opt_pipe.h"
52 #include "opt_sysv.h"
53 #include "pty.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/buf.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/dkstat.h>
62 #include <sys/exec.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/malloc.h>
66 #include <sys/mount.h>
67 #include <sys/msgbuf.h>
68 #include <sys/pool.h>
69 #include <sys/proc.h>
70 #include <sys/resource.h>
71 #include <sys/resourcevar.h>
72 #include <sys/syscallargs.h>
73 #include <sys/tty.h>
74 #include <sys/unistd.h>
75 #include <sys/vnode.h>
76 #include <sys/socketvar.h>
77 #define __SYSCTL_PRIVATE
78 #include <sys/sysctl.h>
79 #include <sys/lock.h>
80 #include <sys/namei.h>
81
82 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
83 #include <sys/ipc.h>
84 #endif
85 #ifdef SYSVMSG
86 #include <sys/msg.h>
87 #endif
88 #ifdef SYSVSEM
89 #include <sys/sem.h>
90 #endif
91 #ifdef SYSVSHM
92 #include <sys/shm.h>
93 #endif
94
95 #include <dev/cons.h>
96
97 #if defined(DDB)
98 #include <ddb/ddbvar.h>
99 #endif
100
101 #ifndef PIPE_SOCKETPAIR
102 #include <sys/pipe.h>
103 #endif
104
105 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
106
107 static int sysctl_file(void *, size_t *);
108 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
109 static int sysctl_sysvipc(int *, u_int, void *, size_t *);
110 #endif
111 static int sysctl_msgbuf(void *, size_t *);
112 static int sysctl_doeproc(int *, u_int, void *, size_t *);
113 static int sysctl_dotkstat(int *, u_int, void *, size_t *, void *);
114 #ifdef MULTIPROCESSOR
115 static int sysctl_docptime(void *, size_t *, void *);
116 static int sysctl_ncpus(void);
117 #endif
118 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
119 static int sysctl_procargs(int *, u_int, void *, size_t *, struct proc *);
120 #if NPTY > 0
121 static int sysctl_pty(void *, size_t *, void *, size_t);
122 #endif
123
124 /*
125 * The `sysctl_memlock' is intended to keep too many processes from
126 * locking down memory by doing sysctls at once. Whether or not this
127 * is really a good idea to worry about it probably a subject of some
128 * debate.
129 */
130 struct lock sysctl_memlock;
131
132 void
133 sysctl_init(void)
134 {
135
136 lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
137 }
138
139 int
140 sys___sysctl(struct proc *p, void *v, register_t *retval)
141 {
142 struct sys___sysctl_args /* {
143 syscallarg(int *) name;
144 syscallarg(u_int) namelen;
145 syscallarg(void *) old;
146 syscallarg(size_t *) oldlenp;
147 syscallarg(void *) new;
148 syscallarg(size_t) newlen;
149 } */ *uap = v;
150 int error;
151 size_t savelen = 0, oldlen = 0;
152 sysctlfn *fn;
153 int name[CTL_MAXNAME];
154 size_t *oldlenp;
155
156 /*
157 * all top-level sysctl names are non-terminal
158 */
159 if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
160 return (EINVAL);
161 error = copyin(SCARG(uap, name), &name,
162 SCARG(uap, namelen) * sizeof(int));
163 if (error)
164 return (error);
165
166 /*
167 * For all but CTL_PROC, must be root to change a value.
168 * For CTL_PROC, must be root, or owner of the proc (and not suid),
169 * this is checked in proc_sysctl() (once we know the targer proc).
170 */
171 if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
172 (error = suser(p->p_ucred, &p->p_acflag)))
173 return error;
174
175 switch (name[0]) {
176 case CTL_KERN:
177 fn = kern_sysctl;
178 break;
179 case CTL_HW:
180 fn = hw_sysctl;
181 break;
182 case CTL_VM:
183 fn = uvm_sysctl;
184 break;
185 case CTL_NET:
186 fn = net_sysctl;
187 break;
188 case CTL_VFS:
189 fn = vfs_sysctl;
190 break;
191 case CTL_MACHDEP:
192 fn = cpu_sysctl;
193 break;
194 #ifdef DEBUG
195 case CTL_DEBUG:
196 fn = debug_sysctl;
197 break;
198 #endif
199 #ifdef DDB
200 case CTL_DDB:
201 fn = ddb_sysctl;
202 break;
203 #endif
204 case CTL_PROC:
205 fn = proc_sysctl;
206 break;
207 default:
208 return (EOPNOTSUPP);
209 }
210
211 /*
212 * XXX Hey, we wire `old', but what about `new'?
213 */
214
215 oldlenp = SCARG(uap, oldlenp);
216 if (oldlenp) {
217 if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
218 return (error);
219 oldlenp = &oldlen;
220 }
221 if (SCARG(uap, old) != NULL) {
222 error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
223 if (error)
224 return (error);
225 error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_WRITE);
226 if (error) {
227 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
228 return error;
229 }
230 savelen = oldlen;
231 }
232 error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
233 oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
234 if (SCARG(uap, old) != NULL) {
235 uvm_vsunlock(p, SCARG(uap, old), savelen);
236 (void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
237 }
238 if (error)
239 return (error);
240 if (SCARG(uap, oldlenp))
241 error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
242 return (error);
243 }
244
245 /*
246 * Attributes stored in the kernel.
247 */
248 char hostname[MAXHOSTNAMELEN];
249 int hostnamelen;
250
251 char domainname[MAXHOSTNAMELEN];
252 int domainnamelen;
253
254 long hostid;
255
256 #ifdef INSECURE
257 int securelevel = -1;
258 #else
259 int securelevel = 0;
260 #endif
261
262 #ifndef DEFCORENAME
263 #define DEFCORENAME "%n.core"
264 #endif
265 char defcorename[MAXPATHLEN] = DEFCORENAME;
266 int defcorenamelen = sizeof(DEFCORENAME);
267
268 extern int kern_logsigexit;
269 extern fixpt_t ccpu;
270
271 #ifndef MULTIPROCESSOR
272 #define sysctl_ncpus() 1
273 #endif
274
275 #ifdef MULTIPROCESSOR
276
277 #ifndef CPU_INFO_FOREACH
278 #define CPU_INFO_ITERATOR int
279 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
280 #endif
281
282 static int
283 sysctl_docptime(void *oldp, size_t *oldlenp, void *newp)
284 {
285 u_int64_t cp_time[CPUSTATES];
286 int i;
287 struct cpu_info *ci;
288 CPU_INFO_ITERATOR cii;
289
290 for (i=0; i<CPUSTATES; i++)
291 cp_time[i] = 0;
292
293 for (CPU_INFO_FOREACH(cii, ci)) {
294 for (i=0; i<CPUSTATES; i++)
295 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
296 }
297 return (sysctl_rdstruct(oldp, oldlenp, newp,
298 cp_time, sizeof(cp_time)));
299 }
300
301 static int
302 sysctl_ncpus(void)
303 {
304 struct cpu_info *ci;
305 CPU_INFO_ITERATOR cii;
306
307 int ncpus = 0;
308 for (CPU_INFO_FOREACH(cii, ci))
309 ncpus++;
310 return ncpus;
311 }
312
313 #endif
314
315 /*
316 * kernel related system variables.
317 */
318 int
319 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
320 void *newp, size_t newlen, struct proc *p)
321 {
322 int error, level, inthostid;
323 int old_autonicetime;
324 int old_vnodes;
325 dev_t consdev;
326
327 /* All sysctl names at this level, except for a few, are terminal. */
328 switch (name[0]) {
329 case KERN_PROC:
330 case KERN_PROC2:
331 case KERN_PROF:
332 case KERN_MBUF:
333 case KERN_PROC_ARGS:
334 case KERN_SYSVIPC_INFO:
335 case KERN_PIPE:
336 case KERN_TKSTAT:
337 /* Not terminal. */
338 break;
339 default:
340 if (namelen != 1)
341 return (ENOTDIR); /* overloaded */
342 }
343
344 switch (name[0]) {
345 case KERN_OSTYPE:
346 return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
347 case KERN_OSRELEASE:
348 return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
349 case KERN_OSREV:
350 return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
351 case KERN_VERSION:
352 return (sysctl_rdstring(oldp, oldlenp, newp, version));
353 case KERN_MAXVNODES:
354 old_vnodes = desiredvnodes;
355 error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
356 if (newp && !error) {
357 if (old_vnodes > desiredvnodes) {
358 desiredvnodes = old_vnodes;
359 return (EINVAL);
360 }
361 vfs_reinit();
362 nchreinit();
363 }
364 return (error);
365 case KERN_MAXPROC:
366 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
367 case KERN_MAXFILES:
368 return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
369 case KERN_ARGMAX:
370 return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
371 case KERN_SECURELVL:
372 level = securelevel;
373 if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
374 newp == NULL)
375 return (error);
376 if (level < securelevel && p->p_pid != 1)
377 return (EPERM);
378 securelevel = level;
379 return (0);
380 case KERN_HOSTNAME:
381 error = sysctl_string(oldp, oldlenp, newp, newlen,
382 hostname, sizeof(hostname));
383 if (newp && !error)
384 hostnamelen = newlen;
385 return (error);
386 case KERN_DOMAINNAME:
387 error = sysctl_string(oldp, oldlenp, newp, newlen,
388 domainname, sizeof(domainname));
389 if (newp && !error)
390 domainnamelen = newlen;
391 return (error);
392 case KERN_HOSTID:
393 inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
394 error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
395 if (newp && !error)
396 hostid = inthostid;
397 return (error);
398 case KERN_CLOCKRATE:
399 return (sysctl_clockrate(oldp, oldlenp));
400 case KERN_BOOTTIME:
401 return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
402 sizeof(struct timeval)));
403 case KERN_VNODE:
404 return (sysctl_vnode(oldp, oldlenp, p));
405 case KERN_PROC:
406 case KERN_PROC2:
407 return (sysctl_doeproc(name, namelen, oldp, oldlenp));
408 case KERN_PROC_ARGS:
409 return (sysctl_procargs(name + 1, namelen - 1,
410 oldp, oldlenp, p));
411 case KERN_FILE:
412 return (sysctl_file(oldp, oldlenp));
413 #ifdef GPROF
414 case KERN_PROF:
415 return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
416 newp, newlen));
417 #endif
418 case KERN_POSIX1:
419 return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
420 case KERN_NGROUPS:
421 return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
422 case KERN_JOB_CONTROL:
423 return (sysctl_rdint(oldp, oldlenp, newp, 1));
424 case KERN_SAVED_IDS:
425 #ifdef _POSIX_SAVED_IDS
426 return (sysctl_rdint(oldp, oldlenp, newp, 1));
427 #else
428 return (sysctl_rdint(oldp, oldlenp, newp, 0));
429 #endif
430 case KERN_MAXPARTITIONS:
431 return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
432 case KERN_RAWPARTITION:
433 return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
434 #ifdef NTP
435 case KERN_NTPTIME:
436 return (sysctl_ntptime(oldp, oldlenp));
437 #endif
438 case KERN_AUTONICETIME:
439 old_autonicetime = autonicetime;
440 error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
441 if (autonicetime < 0)
442 autonicetime = old_autonicetime;
443 return (error);
444 case KERN_AUTONICEVAL:
445 error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
446 if (autoniceval < PRIO_MIN)
447 autoniceval = PRIO_MIN;
448 if (autoniceval > PRIO_MAX)
449 autoniceval = PRIO_MAX;
450 return (error);
451 case KERN_RTC_OFFSET:
452 return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
453 case KERN_ROOT_DEVICE:
454 return (sysctl_rdstring(oldp, oldlenp, newp,
455 root_device->dv_xname));
456 case KERN_MSGBUFSIZE:
457 /*
458 * deal with cases where the message buffer has
459 * become corrupted.
460 */
461 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
462 msgbufenabled = 0;
463 return (ENXIO);
464 }
465 return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
466 case KERN_FSYNC:
467 return (sysctl_rdint(oldp, oldlenp, newp, 1));
468 case KERN_SYSVMSG:
469 #ifdef SYSVMSG
470 return (sysctl_rdint(oldp, oldlenp, newp, 1));
471 #else
472 return (sysctl_rdint(oldp, oldlenp, newp, 0));
473 #endif
474 case KERN_SYSVSEM:
475 #ifdef SYSVSEM
476 return (sysctl_rdint(oldp, oldlenp, newp, 1));
477 #else
478 return (sysctl_rdint(oldp, oldlenp, newp, 0));
479 #endif
480 case KERN_SYSVSHM:
481 #ifdef SYSVSHM
482 return (sysctl_rdint(oldp, oldlenp, newp, 1));
483 #else
484 return (sysctl_rdint(oldp, oldlenp, newp, 0));
485 #endif
486 case KERN_DEFCORENAME:
487 if (newp && newlen < 1)
488 return (EINVAL);
489 error = sysctl_string(oldp, oldlenp, newp, newlen,
490 defcorename, sizeof(defcorename));
491 if (newp && !error)
492 defcorenamelen = newlen;
493 return (error);
494 case KERN_SYNCHRONIZED_IO:
495 return (sysctl_rdint(oldp, oldlenp, newp, 1));
496 case KERN_IOV_MAX:
497 return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
498 case KERN_MBUF:
499 return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
500 newp, newlen));
501 case KERN_MAPPED_FILES:
502 return (sysctl_rdint(oldp, oldlenp, newp, 1));
503 case KERN_MEMLOCK:
504 return (sysctl_rdint(oldp, oldlenp, newp, 1));
505 case KERN_MEMLOCK_RANGE:
506 return (sysctl_rdint(oldp, oldlenp, newp, 1));
507 case KERN_MEMORY_PROTECTION:
508 return (sysctl_rdint(oldp, oldlenp, newp, 1));
509 case KERN_LOGIN_NAME_MAX:
510 return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
511 case KERN_LOGSIGEXIT:
512 return (sysctl_int(oldp, oldlenp, newp, newlen,
513 &kern_logsigexit));
514 case KERN_FSCALE:
515 return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
516 case KERN_CCPU:
517 return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
518 case KERN_CP_TIME:
519 #ifndef MULTIPROCESSOR
520 return (sysctl_rdstruct(oldp, oldlenp, newp,
521 curcpu()->ci_schedstate.spc_cp_time,
522 sizeof(curcpu()->ci_schedstate.spc_cp_time)));
523 #else
524 return (sysctl_docptime(oldp, oldlenp, newp));
525 #endif
526 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
527 case KERN_SYSVIPC_INFO:
528 return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
529 #endif
530 case KERN_MSGBUF:
531 return (sysctl_msgbuf(oldp, oldlenp));
532 case KERN_CONSDEV:
533 if (cn_tab != NULL)
534 consdev = cn_tab->cn_dev;
535 else
536 consdev = NODEV;
537 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
538 sizeof consdev));
539 #if NPTY > 0
540 case KERN_MAXPTYS:
541 return sysctl_pty(oldp, oldlenp, newp, newlen);
542 #endif
543 #ifndef PIPE_SOCKETPAIR
544 case KERN_PIPE:
545 return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
546 newp, newlen));
547 #endif
548 case KERN_MAXPHYS:
549 return (sysctl_rdint(oldp, oldlenp, newp, MAXPHYS));
550 case KERN_SBMAX:
551 {
552 int new_sbmax = sb_max;
553
554 error = sysctl_int(oldp, oldlenp, newp, newlen, &new_sbmax);
555 if (newp && !error) {
556 if (new_sbmax < (16 * 1024)) /* sanity */
557 return (EINVAL);
558 sb_max = new_sbmax;
559 }
560 return (error);
561 }
562 case KERN_TKSTAT:
563 return (sysctl_dotkstat(name + 1, namelen - 1, oldp, oldlenp,
564 newp));
565 case KERN_MONOTONIC_CLOCK: /* XXX _POSIX_VERSION */
566 return (sysctl_rdint(oldp, oldlenp, newp, 200112));
567 default:
568 return (EOPNOTSUPP);
569 }
570 /* NOTREACHED */
571 }
572
573 /*
574 * hardware related system variables.
575 */
576 int
577 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
578 void *newp, size_t newlen, struct proc *p)
579 {
580
581 /* All sysctl names at this level, except for a few, are terminal. */
582 switch (name[0]) {
583 case HW_DISKSTATS:
584 /* Not terminal. */
585 break;
586 default:
587 if (namelen != 1)
588 return (ENOTDIR); /* overloaded */
589 }
590
591 switch (name[0]) {
592 case HW_MACHINE:
593 return (sysctl_rdstring(oldp, oldlenp, newp, machine));
594 case HW_MACHINE_ARCH:
595 return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
596 case HW_MODEL:
597 return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
598 case HW_NCPU:
599 return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
600 case HW_BYTEORDER:
601 return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
602 case HW_PHYSMEM:
603 return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
604 case HW_USERMEM:
605 return (sysctl_rdint(oldp, oldlenp, newp,
606 ctob(physmem - uvmexp.wired)));
607 case HW_PAGESIZE:
608 return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
609 case HW_ALIGNBYTES:
610 return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
611 case HW_DISKNAMES:
612 return (sysctl_disknames(oldp, oldlenp));
613 case HW_DISKSTATS:
614 return (sysctl_diskstats(name + 1, namelen - 1, oldp, oldlenp));
615 case HW_CNMAGIC: {
616 char magic[CNS_LEN];
617 int error;
618
619 if (oldp)
620 cn_get_magic(magic, CNS_LEN);
621 error = sysctl_string(oldp, oldlenp, newp, newlen,
622 magic, sizeof(magic));
623 if (newp && !error) {
624 error = cn_set_magic(magic);
625 }
626 return (error);
627 }
628 default:
629 return (EOPNOTSUPP);
630 }
631 /* NOTREACHED */
632 }
633
634 #ifdef DEBUG
635 /*
636 * Debugging related system variables.
637 */
638 struct ctldebug debug0, debug1, debug2, debug3, debug4;
639 struct ctldebug debug5, debug6, debug7, debug8, debug9;
640 struct ctldebug debug10, debug11, debug12, debug13, debug14;
641 struct ctldebug debug15, debug16, debug17, debug18, debug19;
642 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
643 &debug0, &debug1, &debug2, &debug3, &debug4,
644 &debug5, &debug6, &debug7, &debug8, &debug9,
645 &debug10, &debug11, &debug12, &debug13, &debug14,
646 &debug15, &debug16, &debug17, &debug18, &debug19,
647 };
648
649 int
650 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
651 void *newp, size_t newlen, struct proc *p)
652 {
653 struct ctldebug *cdp;
654
655 /* all sysctl names at this level are name and field */
656 if (namelen != 2)
657 return (ENOTDIR); /* overloaded */
658 cdp = debugvars[name[0]];
659 if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
660 return (EOPNOTSUPP);
661 switch (name[1]) {
662 case CTL_DEBUG_NAME:
663 return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
664 case CTL_DEBUG_VALUE:
665 return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
666 default:
667 return (EOPNOTSUPP);
668 }
669 /* NOTREACHED */
670 }
671 #endif /* DEBUG */
672
673 int
674 proc_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
675 void *newp, size_t newlen, struct proc *p)
676 {
677 struct proc *ptmp = NULL;
678 const struct proclist_desc *pd;
679 int error = 0;
680 struct rlimit alim;
681 struct plimit *newplim;
682 char *tmps = NULL;
683 int i, curlen, len;
684
685 if (namelen < 2)
686 return EINVAL;
687
688 if (name[0] == PROC_CURPROC) {
689 ptmp = p;
690 } else {
691 proclist_lock_read();
692 for (pd = proclists; pd->pd_list != NULL; pd++) {
693 for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
694 ptmp = LIST_NEXT(ptmp, p_list)) {
695 /* Skip embryonic processes. */
696 if (ptmp->p_stat == SIDL)
697 continue;
698 if (ptmp->p_pid == (pid_t)name[0])
699 break;
700 }
701 if (ptmp != NULL)
702 break;
703 }
704 proclist_unlock_read();
705 if (ptmp == NULL)
706 return(ESRCH);
707 if (p->p_ucred->cr_uid != 0) {
708 if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
709 p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
710 return EPERM;
711 if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
712 return EPERM; /* sgid proc */
713 for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
714 if (p->p_ucred->cr_groups[i] ==
715 ptmp->p_cred->p_rgid)
716 break;
717 }
718 if (i == p->p_ucred->cr_ngroups)
719 return EPERM;
720 }
721 }
722 if (name[1] == PROC_PID_CORENAME) {
723 if (namelen != 2)
724 return EINVAL;
725 /*
726 * Can't use sysctl_string() here because we may malloc a new
727 * area during the process, so we have to do it by hand.
728 */
729 curlen = strlen(ptmp->p_limit->pl_corename) + 1;
730 if (oldlenp && *oldlenp < curlen) {
731 if (!oldp)
732 *oldlenp = curlen;
733 return (ENOMEM);
734 }
735 if (newp) {
736 if (securelevel > 2)
737 return EPERM;
738 if (newlen > MAXPATHLEN)
739 return ENAMETOOLONG;
740 tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
741 if (tmps == NULL)
742 return ENOMEM;
743 error = copyin(newp, tmps, newlen + 1);
744 tmps[newlen] = '\0';
745 if (error)
746 goto cleanup;
747 /* Enforce to be either 'core' for end with '.core' */
748 if (newlen < 4) { /* c.o.r.e */
749 error = EINVAL;
750 goto cleanup;
751 }
752 len = newlen - 4;
753 if (len > 0) {
754 if (tmps[len - 1] != '.' &&
755 tmps[len - 1] != '/') {
756 error = EINVAL;
757 goto cleanup;
758 }
759 }
760 if (strcmp(&tmps[len], "core") != 0) {
761 error = EINVAL;
762 goto cleanup;
763 }
764 }
765 if (oldp && oldlenp) {
766 *oldlenp = curlen;
767 error = copyout(ptmp->p_limit->pl_corename, oldp,
768 curlen);
769 }
770 if (newp && error == 0) {
771 /* if the 2 strings are identical, don't limcopy() */
772 if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
773 error = 0;
774 goto cleanup;
775 }
776 if (ptmp->p_limit->p_refcnt > 1 &&
777 (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
778 newplim = limcopy(ptmp->p_limit);
779 limfree(ptmp->p_limit);
780 ptmp->p_limit = newplim;
781 }
782 if (ptmp->p_limit->pl_corename != defcorename) {
783 free(ptmp->p_limit->pl_corename, M_TEMP);
784 }
785 ptmp->p_limit->pl_corename = tmps;
786 return (0);
787 }
788 cleanup:
789 if (tmps)
790 free(tmps, M_TEMP);
791 return (error);
792 }
793 if (name[1] == PROC_PID_LIMIT) {
794 if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
795 return EINVAL;
796 memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
797 if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
798 error = sysctl_quad(oldp, oldlenp, newp, newlen,
799 &alim.rlim_max);
800 else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
801 error = sysctl_quad(oldp, oldlenp, newp, newlen,
802 &alim.rlim_cur);
803 else
804 error = EINVAL;
805
806 if (error)
807 return error;
808
809 if (newp)
810 error = dosetrlimit(ptmp, p->p_cred,
811 name[2] - 1, &alim);
812 return error;
813 }
814 return (EINVAL);
815 }
816
817 /*
818 * Convenience macros.
819 */
820
821 #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
822 if (oldlenp) { \
823 if (!oldp) \
824 *oldlenp = len; \
825 else { \
826 if (*oldlenp < len) \
827 return(ENOMEM); \
828 *oldlenp = len; \
829 error = copyout((caddr_t)valp, oldp, len); \
830 } \
831 }
832
833 #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
834 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
835
836 #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
837 if (newp && newlen != len) \
838 return (EINVAL);
839
840 #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
841 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
842
843 #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
844 if (error == 0 && newp) \
845 error = copyin(newp, valp, len);
846
847 #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
848 SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
849
850 #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
851 if (oldlenp) { \
852 len = strlen(str) + 1; \
853 if (!oldp) \
854 *oldlenp = len; \
855 else { \
856 if (*oldlenp < len) { \
857 err2 = ENOMEM; \
858 len = *oldlenp; \
859 } else \
860 *oldlenp = len; \
861 error = copyout(str, oldp, len);\
862 if (error == 0) \
863 error = err2; \
864 } \
865 }
866
867 /*
868 * Validate parameters and get old / set new parameters
869 * for an integer-valued sysctl function.
870 */
871 int
872 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
873 {
874 int error = 0;
875
876 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
877 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
878 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
879
880 return (error);
881 }
882
883
884 /*
885 * As above, but read-only.
886 */
887 int
888 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
889 {
890 int error = 0;
891
892 if (newp)
893 return (EPERM);
894
895 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
896
897 return (error);
898 }
899
900 /*
901 * Validate parameters and get old / set new parameters
902 * for an quad-valued sysctl function.
903 */
904 int
905 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
906 quad_t *valp)
907 {
908 int error = 0;
909
910 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
911 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
912 SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
913
914 return (error);
915 }
916
917 /*
918 * As above, but read-only.
919 */
920 int
921 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, quad_t val)
922 {
923 int error = 0;
924
925 if (newp)
926 return (EPERM);
927
928 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
929
930 return (error);
931 }
932
933 /*
934 * Validate parameters and get old / set new parameters
935 * for a string-valued sysctl function.
936 */
937 int
938 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
939 int maxlen)
940 {
941 int len, error = 0, err2 = 0;
942
943 if (newp && newlen >= maxlen)
944 return (EINVAL);
945
946 SYSCTL_STRING_CORE(oldp, oldlenp, str);
947
948 if (error == 0 && newp) {
949 error = copyin(newp, str, newlen);
950 str[newlen] = 0;
951 }
952 return (error);
953 }
954
955 /*
956 * As above, but read-only.
957 */
958 int
959 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
960 {
961 int len, error = 0, err2 = 0;
962
963 if (newp)
964 return (EPERM);
965
966 SYSCTL_STRING_CORE(oldp, oldlenp, str);
967
968 return (error);
969 }
970
971 /*
972 * Validate parameters and get old / set new parameters
973 * for a structure oriented sysctl function.
974 */
975 int
976 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
977 int len)
978 {
979 int error = 0;
980
981 SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
982 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
983 SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
984
985 return (error);
986 }
987
988 /*
989 * Validate parameters and get old parameters
990 * for a structure oriented sysctl function.
991 */
992 int
993 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
994 int len)
995 {
996 int error = 0;
997
998 if (newp)
999 return (EPERM);
1000
1001 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1002
1003 return (error);
1004 }
1005
1006 /*
1007 * As above, but can return a truncated result.
1008 */
1009 int
1010 sysctl_rdminstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1011 int len)
1012 {
1013 int error = 0;
1014
1015 if (newp)
1016 return (EPERM);
1017
1018 len = min(*oldlenp, len);
1019 SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
1020
1021 return (error);
1022 }
1023
1024 /*
1025 * Get file structures.
1026 */
1027 static int
1028 sysctl_file(void *vwhere, size_t *sizep)
1029 {
1030 int buflen, error;
1031 struct file *fp;
1032 char *start, *where;
1033
1034 start = where = vwhere;
1035 buflen = *sizep;
1036 if (where == NULL) {
1037 /*
1038 * overestimate by 10 files
1039 */
1040 *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1041 return (0);
1042 }
1043
1044 /*
1045 * first copyout filehead
1046 */
1047 if (buflen < sizeof(filehead)) {
1048 *sizep = 0;
1049 return (0);
1050 }
1051 error = copyout((caddr_t)&filehead, where, sizeof(filehead));
1052 if (error)
1053 return (error);
1054 buflen -= sizeof(filehead);
1055 where += sizeof(filehead);
1056
1057 /*
1058 * followed by an array of file structures
1059 */
1060 for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
1061 if (buflen < sizeof(struct file)) {
1062 *sizep = where - start;
1063 return (ENOMEM);
1064 }
1065 error = copyout((caddr_t)fp, where, sizeof(struct file));
1066 if (error)
1067 return (error);
1068 buflen -= sizeof(struct file);
1069 where += sizeof(struct file);
1070 }
1071 *sizep = where - start;
1072 return (0);
1073 }
1074
1075 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1076 #define FILL_PERM(src, dst) do { \
1077 (dst)._key = (src)._key; \
1078 (dst).uid = (src).uid; \
1079 (dst).gid = (src).gid; \
1080 (dst).cuid = (src).cuid; \
1081 (dst).cgid = (src).cgid; \
1082 (dst).mode = (src).mode; \
1083 (dst)._seq = (src)._seq; \
1084 } while (0);
1085 #define FILL_MSG(src, dst) do { \
1086 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1087 (dst).msg_qnum = (src).msg_qnum; \
1088 (dst).msg_qbytes = (src).msg_qbytes; \
1089 (dst)._msg_cbytes = (src)._msg_cbytes; \
1090 (dst).msg_lspid = (src).msg_lspid; \
1091 (dst).msg_lrpid = (src).msg_lrpid; \
1092 (dst).msg_stime = (src).msg_stime; \
1093 (dst).msg_rtime = (src).msg_rtime; \
1094 (dst).msg_ctime = (src).msg_ctime; \
1095 } while (0)
1096 #define FILL_SEM(src, dst) do { \
1097 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1098 (dst).sem_nsems = (src).sem_nsems; \
1099 (dst).sem_otime = (src).sem_otime; \
1100 (dst).sem_ctime = (src).sem_ctime; \
1101 } while (0)
1102 #define FILL_SHM(src, dst) do { \
1103 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1104 (dst).shm_segsz = (src).shm_segsz; \
1105 (dst).shm_lpid = (src).shm_lpid; \
1106 (dst).shm_cpid = (src).shm_cpid; \
1107 (dst).shm_atime = (src).shm_atime; \
1108 (dst).shm_dtime = (src).shm_dtime; \
1109 (dst).shm_ctime = (src).shm_ctime; \
1110 (dst).shm_nattch = (src).shm_nattch; \
1111 } while (0)
1112
1113 static int
1114 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
1115 {
1116 #ifdef SYSVMSG
1117 struct msg_sysctl_info *msgsi;
1118 #endif
1119 #ifdef SYSVSEM
1120 struct sem_sysctl_info *semsi;
1121 #endif
1122 #ifdef SYSVSHM
1123 struct shm_sysctl_info *shmsi;
1124 #endif
1125 size_t infosize, dssize, tsize, buflen;
1126 void *buf = NULL, *buf2;
1127 char *start;
1128 int32_t nds;
1129 int i, error, ret;
1130
1131 if (namelen != 1)
1132 return (EINVAL);
1133
1134 start = where;
1135 buflen = *sizep;
1136
1137 switch (*name) {
1138 case KERN_SYSVIPC_MSG_INFO:
1139 #ifdef SYSVMSG
1140 infosize = sizeof(msgsi->msginfo);
1141 nds = msginfo.msgmni;
1142 dssize = sizeof(msgsi->msgids[0]);
1143 break;
1144 #else
1145 return (EINVAL);
1146 #endif
1147 case KERN_SYSVIPC_SEM_INFO:
1148 #ifdef SYSVSEM
1149 infosize = sizeof(semsi->seminfo);
1150 nds = seminfo.semmni;
1151 dssize = sizeof(semsi->semids[0]);
1152 break;
1153 #else
1154 return (EINVAL);
1155 #endif
1156 case KERN_SYSVIPC_SHM_INFO:
1157 #ifdef SYSVSHM
1158 infosize = sizeof(shmsi->shminfo);
1159 nds = shminfo.shmmni;
1160 dssize = sizeof(shmsi->shmids[0]);
1161 break;
1162 #else
1163 return (EINVAL);
1164 #endif
1165 default:
1166 return (EINVAL);
1167 }
1168 /*
1169 * Round infosize to 64 bit boundary if requesting more than just
1170 * the info structure or getting the total data size.
1171 */
1172 if (where == NULL || *sizep > infosize)
1173 infosize = ((infosize + 7) / 8) * 8;
1174 tsize = infosize + nds * dssize;
1175
1176 /* Return just the total size required. */
1177 if (where == NULL) {
1178 *sizep = tsize;
1179 return (0);
1180 }
1181
1182 /* Not enough room for even the info struct. */
1183 if (buflen < infosize) {
1184 *sizep = 0;
1185 return (ENOMEM);
1186 }
1187 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1188 memset(buf, 0, min(tsize, buflen));
1189
1190 switch (*name) {
1191 #ifdef SYSVMSG
1192 case KERN_SYSVIPC_MSG_INFO:
1193 msgsi = (struct msg_sysctl_info *)buf;
1194 buf2 = &msgsi->msgids[0];
1195 msgsi->msginfo = msginfo;
1196 break;
1197 #endif
1198 #ifdef SYSVSEM
1199 case KERN_SYSVIPC_SEM_INFO:
1200 semsi = (struct sem_sysctl_info *)buf;
1201 buf2 = &semsi->semids[0];
1202 semsi->seminfo = seminfo;
1203 break;
1204 #endif
1205 #ifdef SYSVSHM
1206 case KERN_SYSVIPC_SHM_INFO:
1207 shmsi = (struct shm_sysctl_info *)buf;
1208 buf2 = &shmsi->shmids[0];
1209 shmsi->shminfo = shminfo;
1210 break;
1211 #endif
1212 }
1213 buflen -= infosize;
1214
1215 ret = 0;
1216 if (buflen > 0) {
1217 /* Fill in the IPC data structures. */
1218 for (i = 0; i < nds; i++) {
1219 if (buflen < dssize) {
1220 ret = ENOMEM;
1221 break;
1222 }
1223 switch (*name) {
1224 #ifdef SYSVMSG
1225 case KERN_SYSVIPC_MSG_INFO:
1226 FILL_MSG(msqids[i], msgsi->msgids[i]);
1227 break;
1228 #endif
1229 #ifdef SYSVSEM
1230 case KERN_SYSVIPC_SEM_INFO:
1231 FILL_SEM(sema[i], semsi->semids[i]);
1232 break;
1233 #endif
1234 #ifdef SYSVSHM
1235 case KERN_SYSVIPC_SHM_INFO:
1236 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1237 break;
1238 #endif
1239 }
1240 buflen -= dssize;
1241 }
1242 }
1243 *sizep -= buflen;
1244 error = copyout(buf, start, *sizep);
1245 /* If copyout succeeded, use return code set earlier. */
1246 if (error == 0)
1247 error = ret;
1248 if (buf)
1249 free(buf, M_TEMP);
1250 return (error);
1251 }
1252 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
1253
1254 static int
1255 sysctl_msgbuf(void *vwhere, size_t *sizep)
1256 {
1257 char *where = vwhere;
1258 size_t len, maxlen = *sizep;
1259 long beg, end;
1260 int error;
1261
1262 /*
1263 * deal with cases where the message buffer has
1264 * become corrupted.
1265 */
1266 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1267 msgbufenabled = 0;
1268 return (ENXIO);
1269 }
1270
1271 if (where == NULL) {
1272 /* always return full buffer size */
1273 *sizep = msgbufp->msg_bufs;
1274 return (0);
1275 }
1276
1277 error = 0;
1278 maxlen = min(msgbufp->msg_bufs, maxlen);
1279
1280 /*
1281 * First, copy from the write pointer to the end of
1282 * message buffer.
1283 */
1284 beg = msgbufp->msg_bufx;
1285 end = msgbufp->msg_bufs;
1286 while (maxlen > 0) {
1287 len = min(end - beg, maxlen);
1288 if (len == 0)
1289 break;
1290 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1291 if (error)
1292 break;
1293 where += len;
1294 maxlen -= len;
1295
1296 /*
1297 * ... then, copy from the beginning of message buffer to
1298 * the write pointer.
1299 */
1300 beg = 0;
1301 end = msgbufp->msg_bufx;
1302 }
1303 return (error);
1304 }
1305
1306 /*
1307 * try over estimating by 5 procs
1308 */
1309 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1310
1311 static int
1312 sysctl_doeproc(int *name, u_int namelen, void *vwhere, size_t *sizep)
1313 {
1314 struct eproc eproc;
1315 struct kinfo_proc2 kproc2;
1316 struct kinfo_proc *dp;
1317 struct proc *p;
1318 const struct proclist_desc *pd;
1319 char *where, *dp2;
1320 int type, op, arg, elem_size, elem_count;
1321 int buflen, needed, error;
1322
1323 dp = vwhere;
1324 dp2 = where = vwhere;
1325 buflen = where != NULL ? *sizep : 0;
1326 error = needed = 0;
1327 type = name[0];
1328
1329 if (type == KERN_PROC) {
1330 if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
1331 return (EINVAL);
1332 op = name[1];
1333 if (op != KERN_PROC_ALL)
1334 arg = name[2];
1335 } else {
1336 if (namelen != 5)
1337 return (EINVAL);
1338 op = name[1];
1339 arg = name[2];
1340 elem_size = name[3];
1341 elem_count = name[4];
1342 }
1343
1344 proclist_lock_read();
1345
1346 pd = proclists;
1347 again:
1348 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1349 /*
1350 * Skip embryonic processes.
1351 */
1352 if (p->p_stat == SIDL)
1353 continue;
1354 /*
1355 * TODO - make more efficient (see notes below).
1356 * do by session.
1357 */
1358 switch (op) {
1359
1360 case KERN_PROC_PID:
1361 /* could do this with just a lookup */
1362 if (p->p_pid != (pid_t)arg)
1363 continue;
1364 break;
1365
1366 case KERN_PROC_PGRP:
1367 /* could do this by traversing pgrp */
1368 if (p->p_pgrp->pg_id != (pid_t)arg)
1369 continue;
1370 break;
1371
1372 case KERN_PROC_SESSION:
1373 if (p->p_session->s_sid != (pid_t)arg)
1374 continue;
1375 break;
1376
1377 case KERN_PROC_TTY:
1378 if (arg == KERN_PROC_TTY_REVOKE) {
1379 if ((p->p_flag & P_CONTROLT) == 0 ||
1380 p->p_session->s_ttyp == NULL ||
1381 p->p_session->s_ttyvp != NULL)
1382 continue;
1383 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1384 p->p_session->s_ttyp == NULL) {
1385 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1386 continue;
1387 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1388 continue;
1389 break;
1390
1391 case KERN_PROC_UID:
1392 if (p->p_ucred->cr_uid != (uid_t)arg)
1393 continue;
1394 break;
1395
1396 case KERN_PROC_RUID:
1397 if (p->p_cred->p_ruid != (uid_t)arg)
1398 continue;
1399 break;
1400
1401 case KERN_PROC_GID:
1402 if (p->p_ucred->cr_gid != (uid_t)arg)
1403 continue;
1404 break;
1405
1406 case KERN_PROC_RGID:
1407 if (p->p_cred->p_rgid != (uid_t)arg)
1408 continue;
1409 break;
1410
1411 case KERN_PROC_ALL:
1412 /* allow everything */
1413 break;
1414
1415 default:
1416 error = EINVAL;
1417 goto cleanup;
1418 }
1419 if (type == KERN_PROC) {
1420 if (buflen >= sizeof(struct kinfo_proc)) {
1421 fill_eproc(p, &eproc);
1422 error = copyout((caddr_t)p, &dp->kp_proc,
1423 sizeof(struct proc));
1424 if (error)
1425 goto cleanup;
1426 error = copyout((caddr_t)&eproc, &dp->kp_eproc,
1427 sizeof(eproc));
1428 if (error)
1429 goto cleanup;
1430 dp++;
1431 buflen -= sizeof(struct kinfo_proc);
1432 }
1433 needed += sizeof(struct kinfo_proc);
1434 } else { /* KERN_PROC2 */
1435 if (buflen >= elem_size && elem_count > 0) {
1436 fill_kproc2(p, &kproc2);
1437 /*
1438 * Copy out elem_size, but not larger than
1439 * the size of a struct kinfo_proc2.
1440 */
1441 error = copyout(&kproc2, dp2,
1442 min(sizeof(kproc2), elem_size));
1443 if (error)
1444 goto cleanup;
1445 dp2 += elem_size;
1446 buflen -= elem_size;
1447 elem_count--;
1448 }
1449 needed += elem_size;
1450 }
1451 }
1452 pd++;
1453 if (pd->pd_list != NULL)
1454 goto again;
1455 proclist_unlock_read();
1456
1457 if (where != NULL) {
1458 if (type == KERN_PROC)
1459 *sizep = (caddr_t)dp - where;
1460 else
1461 *sizep = dp2 - where;
1462 if (needed > *sizep)
1463 return (ENOMEM);
1464 } else {
1465 needed += KERN_PROCSLOP;
1466 *sizep = needed;
1467 }
1468 return (0);
1469 cleanup:
1470 proclist_unlock_read();
1471 return (error);
1472 }
1473
1474 /*
1475 * Fill in an eproc structure for the specified process.
1476 */
1477 void
1478 fill_eproc(struct proc *p, struct eproc *ep)
1479 {
1480 struct tty *tp;
1481
1482 ep->e_paddr = p;
1483 ep->e_sess = p->p_session;
1484 ep->e_pcred = *p->p_cred;
1485 ep->e_ucred = *p->p_ucred;
1486 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1487 ep->e_vm.vm_rssize = 0;
1488 ep->e_vm.vm_tsize = 0;
1489 ep->e_vm.vm_dsize = 0;
1490 ep->e_vm.vm_ssize = 0;
1491 /* ep->e_vm.vm_pmap = XXX; */
1492 } else {
1493 struct vmspace *vm = p->p_vmspace;
1494
1495 ep->e_vm.vm_rssize = vm_resident_count(vm);
1496 ep->e_vm.vm_tsize = vm->vm_tsize;
1497 ep->e_vm.vm_dsize = vm->vm_dsize;
1498 ep->e_vm.vm_ssize = vm->vm_ssize;
1499 }
1500 if (p->p_pptr)
1501 ep->e_ppid = p->p_pptr->p_pid;
1502 else
1503 ep->e_ppid = 0;
1504 ep->e_pgid = p->p_pgrp->pg_id;
1505 ep->e_sid = ep->e_sess->s_sid;
1506 ep->e_jobc = p->p_pgrp->pg_jobc;
1507 if ((p->p_flag & P_CONTROLT) &&
1508 (tp = ep->e_sess->s_ttyp)) {
1509 ep->e_tdev = tp->t_dev;
1510 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1511 ep->e_tsess = tp->t_session;
1512 } else
1513 ep->e_tdev = NODEV;
1514 if (p->p_wmesg)
1515 strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
1516 ep->e_xsize = ep->e_xrssize = 0;
1517 ep->e_xccount = ep->e_xswrss = 0;
1518 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
1519 if (SESS_LEADER(p))
1520 ep->e_flag |= EPROC_SLEADER;
1521 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
1522 }
1523
1524 /*
1525 * Fill in an eproc structure for the specified process.
1526 */
1527 static void
1528 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
1529 {
1530 struct tty *tp;
1531
1532 memset(ki, 0, sizeof(*ki));
1533
1534 ki->p_forw = PTRTOINT64(p->p_forw);
1535 ki->p_back = PTRTOINT64(p->p_back);
1536 ki->p_paddr = PTRTOINT64(p);
1537
1538 ki->p_addr = PTRTOINT64(p->p_addr);
1539 ki->p_fd = PTRTOINT64(p->p_fd);
1540 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
1541 ki->p_stats = PTRTOINT64(p->p_stats);
1542 ki->p_limit = PTRTOINT64(p->p_limit);
1543 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
1544 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
1545 ki->p_sess = PTRTOINT64(p->p_session);
1546 ki->p_tsess = 0; /* may be changed if controlling tty below */
1547 ki->p_ru = PTRTOINT64(p->p_ru);
1548
1549 ki->p_eflag = 0;
1550 ki->p_exitsig = p->p_exitsig;
1551 ki->p_flag = p->p_flag;
1552
1553 ki->p_pid = p->p_pid;
1554 if (p->p_pptr)
1555 ki->p_ppid = p->p_pptr->p_pid;
1556 else
1557 ki->p_ppid = 0;
1558 ki->p_sid = p->p_session->s_sid;
1559 ki->p__pgid = p->p_pgrp->pg_id;
1560
1561 ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
1562
1563 ki->p_uid = p->p_ucred->cr_uid;
1564 ki->p_ruid = p->p_cred->p_ruid;
1565 ki->p_gid = p->p_ucred->cr_gid;
1566 ki->p_rgid = p->p_cred->p_rgid;
1567
1568 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
1569 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
1570 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
1571
1572 ki->p_jobc = p->p_pgrp->pg_jobc;
1573 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
1574 ki->p_tdev = tp->t_dev;
1575 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1576 ki->p_tsess = PTRTOINT64(tp->t_session);
1577 } else {
1578 ki->p_tdev = NODEV;
1579 }
1580
1581 ki->p_estcpu = p->p_estcpu;
1582 ki->p_rtime_sec = p->p_rtime.tv_sec;
1583 ki->p_rtime_usec = p->p_rtime.tv_usec;
1584 ki->p_cpticks = p->p_cpticks;
1585 ki->p_pctcpu = p->p_pctcpu;
1586 ki->p_swtime = p->p_swtime;
1587 ki->p_slptime = p->p_slptime;
1588 if (p->p_stat == SONPROC) {
1589 KDASSERT(p->p_cpu != NULL);
1590 ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
1591 } else
1592 ki->p_schedflags = 0;
1593
1594 ki->p_uticks = p->p_uticks;
1595 ki->p_sticks = p->p_sticks;
1596 ki->p_iticks = p->p_iticks;
1597
1598 ki->p_tracep = PTRTOINT64(p->p_tracep);
1599 ki->p_traceflag = p->p_traceflag;
1600
1601 ki->p_holdcnt = p->p_holdcnt;
1602
1603 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
1604 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
1605 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
1606 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
1607
1608 ki->p_stat = p->p_stat;
1609 ki->p_priority = p->p_priority;
1610 ki->p_usrpri = p->p_usrpri;
1611 ki->p_nice = p->p_nice;
1612
1613 ki->p_xstat = p->p_xstat;
1614 ki->p_acflag = p->p_acflag;
1615
1616 strncpy(ki->p_comm, p->p_comm,
1617 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
1618
1619 if (p->p_wmesg)
1620 strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
1621 ki->p_wchan = PTRTOINT64(p->p_wchan);
1622
1623 strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
1624
1625 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
1626 ki->p_vm_rssize = 0;
1627 ki->p_vm_tsize = 0;
1628 ki->p_vm_dsize = 0;
1629 ki->p_vm_ssize = 0;
1630 } else {
1631 struct vmspace *vm = p->p_vmspace;
1632
1633 ki->p_vm_rssize = vm_resident_count(vm);
1634 ki->p_vm_tsize = vm->vm_tsize;
1635 ki->p_vm_dsize = vm->vm_dsize;
1636 ki->p_vm_ssize = vm->vm_ssize;
1637 }
1638
1639 if (p->p_session->s_ttyvp)
1640 ki->p_eflag |= EPROC_CTTY;
1641 if (SESS_LEADER(p))
1642 ki->p_eflag |= EPROC_SLEADER;
1643
1644 /* XXX Is this double check necessary? */
1645 if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
1646 ki->p_uvalid = 0;
1647 } else {
1648 ki->p_uvalid = 1;
1649
1650 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
1651 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
1652
1653 ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
1654 ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
1655 ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
1656 ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
1657
1658 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
1659 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
1660 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
1661 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
1662 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
1663 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
1664 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
1665 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
1666 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
1667 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
1668 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
1669 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
1670 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
1671 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
1672
1673 ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
1674 p->p_stats->p_cru.ru_stime.tv_sec;
1675 ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
1676 p->p_stats->p_cru.ru_stime.tv_usec;
1677 }
1678 #ifdef MULTIPROCESSOR
1679 if (p->p_cpu != NULL)
1680 ki->p_cpuid = p->p_cpu->ci_cpuid;
1681 else
1682 #endif
1683 ki->p_cpuid = KI_NOCPU;
1684 }
1685
1686 int
1687 sysctl_procargs(int *name, u_int namelen, void *where, size_t *sizep,
1688 struct proc *up)
1689 {
1690 struct ps_strings pss;
1691 struct proc *p;
1692 size_t len, upper_bound, xlen;
1693 struct uio auio;
1694 struct iovec aiov;
1695 vaddr_t argv;
1696 pid_t pid;
1697 int nargv, type, error, i;
1698 char *arg;
1699 char *tmp;
1700
1701 if (namelen != 2)
1702 return (EINVAL);
1703 pid = name[0];
1704 type = name[1];
1705
1706 switch (type) {
1707 case KERN_PROC_ARGV:
1708 case KERN_PROC_NARGV:
1709 case KERN_PROC_ENV:
1710 case KERN_PROC_NENV:
1711 /* ok */
1712 break;
1713 default:
1714 return (EINVAL);
1715 }
1716
1717 /* check pid */
1718 if ((p = pfind(pid)) == NULL)
1719 return (EINVAL);
1720
1721 /* only root or same user change look at the environment */
1722 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1723 if (up->p_ucred->cr_uid != 0) {
1724 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1725 up->p_cred->p_ruid != p->p_cred->p_svuid)
1726 return (EPERM);
1727 }
1728 }
1729
1730 if (sizep != NULL && where == NULL) {
1731 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1732 *sizep = sizeof (int);
1733 else
1734 *sizep = ARG_MAX; /* XXX XXX XXX */
1735 return (0);
1736 }
1737 if (where == NULL || sizep == NULL)
1738 return (EINVAL);
1739
1740 /*
1741 * Zombies don't have a stack, so we can't read their psstrings.
1742 * System processes also don't have a user stack.
1743 */
1744 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1745 return (EINVAL);
1746
1747 /*
1748 * Lock the process down in memory.
1749 */
1750 /* XXXCDC: how should locking work here? */
1751 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1752 return (EFAULT);
1753 p->p_vmspace->vm_refcnt++; /* XXX */
1754
1755 /*
1756 * Allocate a temporary buffer to hold the arguments.
1757 */
1758 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1759
1760 /*
1761 * Read in the ps_strings structure.
1762 */
1763 aiov.iov_base = &pss;
1764 aiov.iov_len = sizeof(pss);
1765 auio.uio_iov = &aiov;
1766 auio.uio_iovcnt = 1;
1767 auio.uio_offset = (vaddr_t)p->p_psstr;
1768 auio.uio_resid = sizeof(pss);
1769 auio.uio_segflg = UIO_SYSSPACE;
1770 auio.uio_rw = UIO_READ;
1771 auio.uio_procp = NULL;
1772 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1773 if (error)
1774 goto done;
1775
1776 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1777 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1778 else
1779 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1780 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1781 error = copyout(&nargv, where, sizeof(nargv));
1782 *sizep = sizeof(nargv);
1783 goto done;
1784 }
1785 /*
1786 * Now read the address of the argument vector.
1787 */
1788 switch (type) {
1789 case KERN_PROC_ARGV:
1790 /* XXX compat32 stuff here */
1791 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1792 break;
1793 case KERN_PROC_ENV:
1794 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1795 break;
1796 default:
1797 return (EINVAL);
1798 }
1799 auio.uio_offset = (off_t)(long)tmp;
1800 aiov.iov_base = &argv;
1801 aiov.iov_len = sizeof(argv);
1802 auio.uio_iov = &aiov;
1803 auio.uio_iovcnt = 1;
1804 auio.uio_resid = sizeof(argv);
1805 auio.uio_segflg = UIO_SYSSPACE;
1806 auio.uio_rw = UIO_READ;
1807 auio.uio_procp = NULL;
1808 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1809 if (error)
1810 goto done;
1811
1812 /*
1813 * Now copy in the actual argument vector, one page at a time,
1814 * since we don't know how long the vector is (though, we do
1815 * know how many NUL-terminated strings are in the vector).
1816 */
1817 len = 0;
1818 upper_bound = *sizep;
1819 for (; nargv != 0 && len < upper_bound; len += xlen) {
1820 aiov.iov_base = arg;
1821 aiov.iov_len = PAGE_SIZE;
1822 auio.uio_iov = &aiov;
1823 auio.uio_iovcnt = 1;
1824 auio.uio_offset = argv + len;
1825 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1826 auio.uio_resid = xlen;
1827 auio.uio_segflg = UIO_SYSSPACE;
1828 auio.uio_rw = UIO_READ;
1829 auio.uio_procp = NULL;
1830 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1831 if (error)
1832 goto done;
1833
1834 for (i = 0; i < xlen && nargv != 0; i++) {
1835 if (arg[i] == '\0')
1836 nargv--; /* one full string */
1837 }
1838
1839 /* make sure we don't copyout past the end of the user's buffer */
1840 if (len + i > upper_bound)
1841 i = upper_bound - len;
1842
1843 error = copyout(arg, (char *)where + len, i);
1844 if (error)
1845 break;
1846
1847 if (nargv == 0) {
1848 len += i;
1849 break;
1850 }
1851 }
1852 *sizep = len;
1853
1854 done:
1855 uvmspace_free(p->p_vmspace);
1856
1857 free(arg, M_TEMP);
1858 return (error);
1859 }
1860
1861 #if NPTY > 0
1862 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1863
1864 /*
1865 * Validate parameters and get old / set new parameters
1866 * for pty sysctl function.
1867 */
1868 static int
1869 sysctl_pty(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
1870 {
1871 int error = 0;
1872 int oldmax = 0, newmax = 0;
1873
1874 /* get current value of maxptys */
1875 oldmax = pty_maxptys(0, 0);
1876
1877 SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
1878
1879 if (!error && newp) {
1880 SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
1881 SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
1882
1883 if (newmax != pty_maxptys(newmax, (newp != NULL)))
1884 return (EINVAL);
1885
1886 }
1887
1888 return (error);
1889 }
1890 #endif /* NPTY > 0 */
1891
1892 static int
1893 sysctl_dotkstat(name, namelen, where, sizep, newp)
1894 int *name;
1895 u_int namelen;
1896 void *where;
1897 size_t *sizep;
1898 void *newp;
1899 {
1900 /* all sysctl names at this level are terminal */
1901 if (namelen != 1)
1902 return (ENOTDIR); /* overloaded */
1903
1904 switch (name[0]) {
1905 case KERN_TKSTAT_NIN:
1906 return (sysctl_rdquad(where, sizep, newp, tk_nin));
1907 case KERN_TKSTAT_NOUT:
1908 return (sysctl_rdquad(where, sizep, newp, tk_nout));
1909 case KERN_TKSTAT_CANCC:
1910 return (sysctl_rdquad(where, sizep, newp, tk_cancc));
1911 case KERN_TKSTAT_RAWCC:
1912 return (sysctl_rdquad(where, sizep, newp, tk_rawcc));
1913 default:
1914 return (EOPNOTSUPP);
1915 }
1916 }
1917